Plan

• Why3
• demos
• conclusions

Goal

Write elegant programs

with elegant correctness proofs

+ training in program proofs

Why3

Why3 (1/8)

A programming language tells you what a program does,
Why3 tells you why it works.

• 3rd release of system Why
• developed at LRI (orsay) + Inria
• http://why3.lri.fr

[Jean-Christophe Filliâtre,
Claude Marché,
Andrei Paskevich,
Guillaume Melquiond,
Vincent Bolot,
et al]
Why3 (2/8)

• small Pascal-like imperative programming language
 [with ML syntax]

• invariants + assertions in Hoare logic
 [+ recursive functions, inductive datatypes, inductive predicates]

• interfaces with modern SMT’s
 [alt-ergo, cvc3, cvc4, eprover, gappa, simplify, spass, yices, z3]

• interfaces with interactive proof assistants
 [coq, pvs, isabelle-hol]

Why3 (3/8)

• programming language MLW

Why3 (4/8)

• Hoare logic

Why3 (5/8)

• theories on arrays

(see the why3 libraries)

Why3 (6/8)

- theories on arrays

```ocaml
let selection_sort (a: array int) =
  ensures { sorted a \&\& permut (old a) a }
  (*l:*)
  for i = 0 to length a - 1 do
    invariant { sorted_sub a 0 \&\& permut (at a 'L) a }
    invariant { forall k1 k2: int. \&\& i < k1 < k2 \&\& k2 < length a \&\& a[k1] <= a[k2] }
    let imin = ref i in
    for j = i + 1 to length a - 1 do
      invariant { i <= !imin < j }
      invariant { forall k: int. \&\& i <= k < j \&\& a![imin] <= a[k] }
      if a[j] < a[imin] then imin := j
      done;
      swap a !imin i;
    done
  done
```

Why3 (7/8)

- interfaces with interactive proof assistants
- PVS [SRI, Shankar], Isabelle [Paulson, Nipkow]
- Coq [Inria, Herbelin et al]
 - Why3 theories are translated to Coq
 - lengthy proofs are feasible
 - use Ssreflect commands to shorten proofs [MSR-Inria, Gonthier et al]
 - unfortunately Why3 is not fully compatible with SSreflect

Why3 (8/8)

- interfaces with automatic provers (SMT's)
- SMT tool successful if «good assertion»
 - impact on writings of Hoare logic formulae
 - impact on program text
- Alt-Ergo among best for Why3 [LRI, Conchon, et al]
- Z3 is excellent [MSRR, Bjorner/de Moura]
- CVC3 top on recursive datatypes
- Gappa for real numbers [Inria, Melquiond]
A few sorting algorithms

• demos
• insertion sort

A few sorting algorithms

• quicksort

Depth-first search in graphs

• reachability [the 'white path theorem']
• non white-to-black edges in undirected graphs

Conclusions
Conclusion (1/3)

- **Automatic** part of proof for **tedious** case analyzes
- **Interactive** proofs for the **conceptual** part of the algorithm
- the ideal world
- From interactive part, one must call the automatic part
 - possible extensions of Why3 theories
 - but typing problems (inside Coq)

Conclusion (2/3)

- Hoare logic prevents to write awkward denotational semantics
- Nobody cares about termination ?! 😳
- Explore **simple** programs about algorithms before jumping to **large** programs.
- Why3 **memory model** is naive. It is a «back-end for other systems».
- Plan to experiment on **graph** algorithms and prove all Sedgewick's book on algorithms.

Conclusion (3/3)

- Why3 is **excellent** for mixing formal proofs and SMT's calls
- Interface **still rough** for beginners
- Concurrency ?
- Functional programs ?
- Hoare logic vs Type refinements (F* [MSR])
- **Frama-C** project at french CEA extends Why3 to C programs.