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Security and Programming languages

Restricting rights of downloaded programs is not sufficient...

... since attackers can borrow privileges from local programs [Hardy].
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First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].
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Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).
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Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].

Alice and Bob compete for a contract ; Charlie is the buyer.

Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

Alice Bob

Charlie

Charlie may interact with Alice and Bob.

But as soon as Charlie interacts with Alice, Charlie may no longer
interact with Bob.



Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].

Alice and Bob compete for a contract ; Charlie is the buyer.

Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

Alice Bob

Charlie

Charlie may interact with Alice and Bob.

But as soon as Charlie interacts with Alice...Charlie may no longer
interact with Bob.



Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].

Alice and Bob compete for a contract ; Charlie is the buyer.

Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

Alice Bob

Charlie

Charlie may interact with Alice and Bob.

But as soon as Charlie interacts with Alice, Charlie may no longer
interact with Bob.



Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].

Alice and Bob compete for a contract ; Charlie is the buyer.

Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

Alice Bob

Charlie

Charlie may interact with Alice and Bob.

But as soon as Charlie interacts with Alice, Charlie may no longer
interact with Bob.



Summary

Safety policy Safety property
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Flow Information Non interference

Chinese Wall ?
Objectives :

define the Chinese Wall in the λ-calculus.

examine the safety property of the Chinese Wall policy.
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λn-calculus : a λ-calculus with principals

Alice, Bob, Charlie are principals.

A,B, . . .

Terms of λn-calculus :

M, N ::= x Variable
| (λx .M)A Abstraction
| (MN)A Application

Values :

V ::= (λx .M)A

Remark : principals differ from labels in the labelled λ-calculus.
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Reduction in λn-calculus

(β) ((λx .M)AN)B → M{x\N}

xA
@B

M
N

x x

M

N N



An example of reduction in the λn-calculus
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Basic properties of the λn-calculus

Confluence

Finite Developments

Standardisation



Reduction ignoring a principal

Definition

The reduction M
((λx .N)BP)C−−−−−−−−→ M ′ ignores A iff A /∈ {B,C}.

Also written M
−−||A−−→ M ′.

We write M
−−||A−−→→ M ′ if every reduction step ignores A.

Example
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Actions of A and B are independent if they commute.
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Independence

Definition (Independence)

The reduction R : M →→ N is independent of the interaction between A

and B iff there exists RA : M
−−||A−−→→ MA and RB : M

−−||B−−→→ MB such that
R ≤ R ′ (i.e. R/R ′ is empty) with R ′ = RA; (RB/RA) = RB ; (RA/RB).

M

N

R
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Independence : example 1/2
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The λn-calculus : summary

A λ-calculus with principals.

A safety property : independence.

How to express the Chinese Wall policy in the λn-calculus ?
I This policy relies on history.
I We use the labelled λ-calculus to track history of interactions.

Which safety property is guaranteed by the Chinese Wall policy ?
I We show that a reduction following the Chinese Wall policy between A

and B is independent of the interaction between A and B.
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The labelled λn-calculus

Terms M, N ::= x
| (λx .N)A

| (MN)A

| a :M

Atomic labels a, b ::= dαe | bαc
Compound labels α, β ::= Aa1a2 · · · anB n ≥ 0

Values V , W ::= (λx .N)A | a :V



Labelled reduction

xB

@A

M

N

x x

M

N N

a1
an

⌈⌉

⌊⌋⌊⌋

(β) R = (a1 : . . . :an :(λx .M)BN)A → dαe :M{x\bαc :N}
α = Aa1 . . . anB

The redex name is name(R) = α.



Labelled reduction : an example

@

x

y

B

A

@C

yC
z
z

(((λx .(λy .y)C )Az)C z)B →(dCAe : (λy .y)C z)B

→ dBdCAeCe : bBdCAeCc : z



Labelled reduction : an example

@

x

y

B

A

@C

yC
z
z

y

B@

yC z⌈CA⌉

(((λx .(λy .y)C )Az)C z)B → (dCAe : (λy .y)C z)B

→ dBdCAeCe : bBdCAeCc : z



Labelled reduction : an example

@

x

y

B

A

@C

yC
z
z

y

B@

yC z⌈CA⌉

(((λx .(λy .y)C )Az)C z)B → (dCAe : (λy .y)C z)B

→ dBdCAeCe : bBdCAeCc : z



Labelled reduction : an example

@

x

y

B

A

@C

yC
z
z

y

B@

yC z

z
⌊B⌈CA⌉C⌋

⌈CA⌉
⌈B⌈CA⌉C⌉

(((λx .(λy .y)C )Az)C z)B → (dCAe : (λy .y)C z)B

→ dBdCAeCe : bBdCAeCc : z



Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)



Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

I Example : τ(a : b : c : (λx .x)A) = abc



Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

Principals contained in atomic or compound labels :

Princ(Aa1 . . . anB) = {A,B} ∪1≤i≤n Princ(ai )
Princ(dαe) = Princ(bαc) = Princ(α)



Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

Principals contained in atomic or compound labels :

Princ(Aa1 . . . anB) = {A,B} ∪1≤i≤n Princ(ai )
Princ(dαe) = Princ(bαc) = Princ(α)

I Example : Princ(AdBbACcDeE ) = {A,B,C ,D,E}



Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

Principals contained in atomic or compound labels :

Princ(Aa1 . . . anB) = {A,B} ∪1≤i≤n Princ(ai )
Princ(dαe) = Princ(bαc) = Princ(α)

Definition (Separation)

A sequence of atomic labels a1 . . . an separates the principals A and B iff,
for every 1 ≤ i ≤ n, we have {A,B} 6⊆ Princ(ai ).



Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

Principals contained in atomic or compound labels :

Princ(Aa1 . . . anB) = {A,B} ∪1≤i≤n Princ(ai )
Princ(dαe) = Princ(bαc) = Princ(α)

Definition (Separation)

A sequence of atomic labels a1 . . . an separates the principals A and B iff,
for every 1 ≤ i ≤ n, we have {A,B} 6⊆ Princ(ai ).

Examples : F dACebCdDEeBc separates A et B.
F dDCebCdAEeBc does not separate A et B.



Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M →→ V is independent of
the interaction between A and B, then τ(V ) separates A and B.

The head sequence dBCedACebACc separates A and B.
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Independence and separation

Theorem

If M →→ V and if τ(V ) separates A and B, then there is a reduction
R : M →→ W independent of the interaction between A and B.

F The label dAAe separates A and B.

F This reduction is not independent of the interaction between A and B.
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Expressing Chinese Wall in the λn-calculus

The Chinese Wall between A and B is written CW(A,B).

Definition (Chinese Wall)

A reduction follows CW(A,B) iff every redex R contracted by this
reduction is such that :

{A,B} 6⊆ Princ(name(R))



Chinese Wall in the λn-calculus : example 1/2
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Princ(name(R1)) = {A,C}
Princ(name(R2)) = {A,B,C}

This reduction does not follow CW(A,B).



Chinese Wall in the λn-calculus : example 2/2
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This reduction follows CW(A,B).



Correction of CW(A, B)

Theorem (Correction)

If R : M →→ N follows CW(A,B), then R is independent of the interaction
between A and B.

A

M

N

N'

MA MB

RA RB
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The Chinese Wall guarantees the independence.
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...hence it is independent of the interaction between A and B



Correction of CW(A, B) : proof

Sublabel of a compound label :

α � α
α � Aa1 . . . anB si ∃i . ai = dβe and α � β
α � Aa1 . . . anB si ∃i . ai = bβc and α � β

Example : α � AdαebγcB
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For 1 ≤ i ≤ n, we write αi = name(Si ).
We have {A,B} ∩ Princ(αi ) 6= {A,B}.
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For 1 ≤ i ≤ n, we write αi = name(Si ).
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For 1 ≤ i ≤ n, we write αi = name(Si ).
We have {A,B} ∩ Princ(αi ) 6= {A,B}.

Lemma (Completion)

If R : M
S1−→ . . .

Sn−→ N and if for every i , we have name(Si ) = αi , then

R1 : M
α1=⇒ . . .

αn=⇒ N1 and R ≤ R1.
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For 1 ≤ i ≤ n, we write αi = name(Si ).
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Lemma (Reordering)

If R : M
α1=⇒ . . .

αn=⇒ N, there is a reduction R ′ : M
β1
=⇒ . . .

βm
=⇒ N ′ such that

(1) {βi}1≤i≤m ⊆ {αi}1≤i≤n (2) if i < j , then βj 6≺ βi (3) R ≤ R ′
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If i < j , we have βj 6≺ βi .

{γi}1≤i≤k : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi ) = ∅.
{δi}1≤i≤k ′ : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi ) 6= ∅.
If βi ∈ {δi}1≤i≤k ′ , if βj ∈ {γi}1≤i≤k , we have βi 6≺ βj .
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βj 6≺ βi .

Lemma (Permutation)

If α 6≺ β and β 6≺ α and if R1 : M
α
=⇒ β

=⇒ N, then we have R2 : M
β
=⇒ α

=⇒ N
and R1 ∼ R2.
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such that {A,B} ∩ Princ(δi ) = {B}.
For every i , j , we have ηi 6≺ θj and θj 6≺ ηi .
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λ-calculus and Chinese Wall : summary

1 Safety property : independence

2 Correspondence between labelled lambda calculus and independence

Safety policy Safety property

Stack inspection -

Information flow Non interference

Chinese Wall Independence



Future works



Objectives

1 Static information flow in the λ-calculus
I labelled λ-calculus and DCC [Riecke], FlowCaml as [Simonet,

Pottier], DCC+ [Abadi], etc
2 Reduction strategies

I call-by-value λ-calculus
I weak λ-calculus

3 Adding delta rules
I Imperative features and exceptions
I Safety rules (safety operators : uses or binds)

4 Concurrent features
I Permutation equivalence and Event structures
I Reversible processes (backtracking) [Jean Krivine]



Conclusion : non interference

A

M =

Non interference : the labels of the λ-calculus express functional
interference.

In the λ-calculus with references, labels have to also capture
interference with memory.

I A memory cell interferes within some time interval.

T't 1 t 3 t 4 t 6T

t
I We can use irreversibility of contexts in the labelled λ-calculus

[Blanc].
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Conclusion : independence

A

M =

B

1 Created principals and extended independence.

2 Link between non-interference and independence : express these
properties within a common framework.

3 Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

4 David Van Horn and Harry Mairson showed that kCFA is NP as soon
as k > 0. [ICFP 07].

5 Simple proofs for safety properties.
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