
History based flow analysis
in the lambda calculus

Tomasz Blanc

Jean-Jacques Lévy

INRIA Rocquencourt and MSR-INRIA Joint Centre

November 13, 2007

Plan

1 Motivations

2 λ-calculus, principals and independence

3 λ-calculus and the Chinese Wall

4 Future works

Motivations

Security and Programming languages

Restricting rights of downloaded programs is not sufficient...

... since attackers can borrow privileges from local programs [Hardy].

Security and Programming languages

Restricting rights of downloaded programs is not sufficient...

... since attackers can borrow privileges from local programs [Hardy].

Security and Programming languages

Restricting rights of downloaded programs is not sufficient...

... since attackers can borrow privileges from local programs [Hardy].

Security and Programming languages

Restricting rights of downloaded programs is not sufficient...

... since attackers can borrow privileges from local programs [Hardy].

Security and Programming languages

Restricting rights of downloaded programs is not sufficient...

... since attackers can borrow privileges from local programs [Hardy].

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Effacer_fichier

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Efface_fichier

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Efface_fichier

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Efface_fichier

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Navigateur

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Navigateur
Efface_fichier_TMP

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Cherche_temporaire

Navigateur
Efface_fichier_TMP

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Navigateur
Efface_fichier_TMP

"PlugIn.tmp"

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Navigateur
Efface_fichier_TMP

Efface_fichier
"PlugIn.tmp"

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Efface_fichier

Navigateur
Efface_fichier_TMP

"PlugIn.tmp"

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Navigateur

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Navigateur
Efface_fichier_TMP

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Cherche_temporaire

Navigateur
Efface_fichier_TMP

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Navigateur
Efface_fichier_TMP

"mon_fichier"

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Efface_fichier

Navigateur
Efface_fichier_TMP

"mon_fichier"

First approach : stack inspection

Used in Java and C#.

Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

Efface_fichier

Navigateur
Efface_fichier_TMP

"mon_fichier"

Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).

Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).

Navigateur

Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).

Navigateur
Efface_fichier_TMP

Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).

Cherche_temporaire

Navigateur
Efface_fichier_TMP

Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).

Navigateur
Efface_fichier_TMP

"mon_fichier"

Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).

Efface_fichier

Navigateur
Efface_fichier_TMP

"mon_fichier"

Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).

Efface_fichier

Navigateur
Efface_fichier_TMP

"mon_fichier"

Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).

Efface_fichier

Navigateur
Efface_fichier_TMP

"mon_fichier"

Second approach : Information Flow

Data are classified in several categories and their propagation is
tracked during program execution.

Non-interference : public output does not rely on secret inputs.

Static analysis is do-able even on complete languages (FlowCaml,
JIF).

Efface_fichier

Navigateur
Efface_fichier_TMP

"mon_fichier"

Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].

Alice and Bob compete for a contract ; Charlie is the buyer.

Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

Alice Bob

Charlie

Charlie may interact with Alice and Bob.

But as soon as Charlie interacts with Alice, Charlie may no longer
interact with Bob.

Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].

Alice and Bob compete for a contract ; Charlie is the buyer.

Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

Alice Bob

Charlie

Charlie may interact with Alice and Bob.

But as soon as Charlie interacts with Alice...Charlie may no longer
interact with Bob.

Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].

Alice and Bob compete for a contract ; Charlie is the buyer.

Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

Alice Bob

Charlie

Charlie may interact with Alice and Bob.

But as soon as Charlie interacts with Alice, Charlie may no longer
interact with Bob.

Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].

Alice and Bob compete for a contract ; Charlie is the buyer.

Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

Alice Bob

Charlie

Charlie may interact with Alice and Bob.

But as soon as Charlie interacts with Alice, Charlie may no longer
interact with Bob.

Summary

Safety policy Safety property

Stack Inspection -

Flow Information Non interference

Chinese Wall ?
Objectives :

define the Chinese Wall in the λ-calculus.

examine the safety property of the Chinese Wall policy.

Summary

Safety policy Safety property

Stack Inspection -

Flow Information Non interference

Chinese Wall ?
Objectives :

define the Chinese Wall in the λ-calculus.

examine the safety property of the Chinese Wall policy.

λ-calculus, principals and
independence

λn-calculus : a λ-calculus with principals

Alice, Bob, Charlie are principals.

A,B, . . .

Terms of λn-calculus :

M, N ::= x Variable
| (λx .M)A Abstraction
| (MN)A Application

Values :

V ::= (λx .M)A

Remark : principals differ from labels in the labelled λ-calculus.

λn-calculus : a λ-calculus with principals

Alice, Bob, Charlie are principals.

A,B, . . .

Terms of λn-calculus :

M, N ::= x Variable
| (λx .M)A Abstraction
| (MN)A Application

Values :

V ::= (λx .M)A

Remark : principals differ from labels in the labelled λ-calculus.

Reduction in λn-calculus

(β) ((λx .M)AN)B → M{x\N}

xA
@B

M
N

x x

M

N N

An example of reduction in the λn-calculus

@

x

y

B

C

@A

yC
z
z

(((λx .(λy .y)C)C z)Az)B → ((λy .y)C z)B → z

An example of reduction in the λn-calculus

@

x

y

B

C

@A

yC
z
z

y

B@
yC z

(((λx .(λy .y)C)C z)Az)B → ((λy .y)C z)B → z

An example of reduction in the λn-calculus

@

x

y

B

C

@A

yC
z
z

y

B@
yC z

(((λx .(λy .y)C)C z)Az)B → ((λy .y)C z)B → z

An example of reduction in the λn-calculus

@

x

y

B

C

@A

yC
z
z

y

B@
yC z z

(((λx .(λy .y)C)C z)Az)B → ((λy .y)C z)B → z

Basic properties of the λn-calculus

Confluence

Finite Developments

Standardisation

Reduction ignoring a principal

Definition

The reduction M
((λx .N)BP)C−−−−−−−−→ M ′ ignores A iff A /∈ {B,C}.

Also written M
−−||A−−→ M ′.

We write M
−−||A−−→→ M ′ if every reduction step ignores A.

Example

Reduction ignoring a principal

Definition

The reduction M
((λx .N)BP)C−−−−−−−−→ M ′ ignores A iff A /∈ {B,C}.

Also written M
−−||A−−→ M ′.

We write M
−−||A−−→→ M ′ if every reduction step ignores A.

Example :

@

x

y

B

C

@A

yC
z
z

Reduction ignoring a principal

Definition

The reduction M
((λx .N)BP)C−−−−−−−−→ M ′ ignores A iff A /∈ {B,C}.

Also written M
−−||A−−→ M ′.

We write M
−−||A−−→→ M ′ if every reduction step ignores A.

Example :

@

x

y

B

C

@A

yC
z
z

y

B@
yC z

B

Reduction ignoring a principal

Definition

The reduction M
((λx .N)BP)C−−−−−−−−→ M ′ ignores A iff A /∈ {B,C}.

Also written M
−−||A−−→ M ′.

We write M
−−||A−−→→ M ′ if every reduction step ignores A.

Example :

@

x

y

B

C

@A

yC
z
z

y

B@
yC z z

AB

Independence

Actions of A and B are independent if they commute.

BA

C

E

D

Independence

Actions of A and B are independent if they commute.

BA

C

E

D1

Independence

Actions of A and B are independent if they commute.

BA

C

E

D1
2

Independence

Actions of A and B are independent if they commute.

BA

C

E

D1
2

3

Independence

Actions of A and B are independent if they commute.

BA

C

E

D

Independence

Actions of A and B are independent if they commute.

BA

C

E

D1
2

Independence

Actions of A and B are independent if they commute.

BA

C

E

D
3

1
2

Independence

Actions of A and B are independent if they commute.

BA

C

E

D

Independence

Actions of A and B are independent if they commute.

BA

C

E

D
1

Independence

Actions of A and B are independent if they commute.

BA

C

E

D

3

2
1

Independence

Definition (Independence)

The reduction R : M →→ N is independent of the interaction between A

and B iff there exists RA : M
−−||A−−→→ MA and RB : M

−−||B−−→→ MB such that
R ≤ R ′ (i.e. R/R ′ is empty) with R ′ = RA; (RB/RA) = RB ; (RA/RB).

M

N

R

Independence

Definition (Independence)

The reduction R : M →→ N is independent of the interaction between A

and B iff there exists RA : M
−−||A−−→→ MA and RB : M

−−||B−−→→ MB such that
R ≤ R ′ (i.e. R/R ′ is empty) with R ′ = RA; (RB/RA) = RB ; (RA/RB).

A

M

NMA

RA R

Independence

Definition (Independence)

The reduction R : M →→ N is independent of the interaction between A

and B iff there exists RA : M
−−||A−−→→ MA and RB : M

−−||B−−→→ MB such that
R ≤ R ′ (i.e. R/R ′ is empty) with R ′ = RA; (RB/RA) = RB ; (RA/RB).

A

M

NMA MB

RA RB
B

R

Independence

Definition (Independence)

The reduction R : M →→ N is independent of the interaction between A

and B iff there exists RA : M
−−||A−−→→ MA and RB : M

−−||B−−→→ MB such that
R ≤ R ′ (i.e. R/R ′ is empty) with R ′ = RA; (RB/RA) = RB ; (RA/RB).

A

M

N

N'

MA MB

RA RB

RB/RA RA/RB

B
R

Independence

Definition (Independence)

The reduction R : M →→ N is independent of the interaction between A

and B iff there exists RA : M
−−||A−−→→ MA and RB : M

−−||B−−→→ MB such that
R ≤ R ′ (i.e. R/R ′ is empty) with R ′ = RA; (RB/RA) = RB ; (RA/RB).

A

M

N

N'

MA MB

RA RB

RB/RA RA/RB
R'/R

B
R

Independence : example 1/2

@

x

y

B

C

@A

yC
z
z

y

B@
yC z z

AB

This reduction is not independent of the interaction between A and B.

Independence : example 2/2

@
x

y

B

C

@A

yC z

z z
AB

@
x

B

C z
z

This reduction is independent of the interaction between A and B.

Independence : example 2/2

@
x

y

B

C

@A

yC z

z z
AB

@
x

B

C z
z

@
x

A

C z
z

A B

This reduction is independent of the interaction between A and B.

The λn-calculus : summary

A λ-calculus with principals.

A safety property : independence.

How to express the Chinese Wall policy in the λn-calculus ?
I This policy relies on history.
I We use the labelled λ-calculus to track history of interactions.

Which safety property is guaranteed by the Chinese Wall policy ?
I We show that a reduction following the Chinese Wall policy between A

and B is independent of the interaction between A and B.

The λn-calculus : summary

A λ-calculus with principals.

A safety property : independence.

How to express the Chinese Wall policy in the λn-calculus ?
I This policy relies on history.
I We use the labelled λ-calculus to track history of interactions.

Which safety property is guaranteed by the Chinese Wall policy ?
I We show that a reduction following the Chinese Wall policy between A

and B is independent of the interaction between A and B.

The λn-calculus : summary

A λ-calculus with principals.

A safety property : independence.

How to express the Chinese Wall policy in the λn-calculus ?
I This policy relies on history.
I We use the labelled λ-calculus to track history of interactions.

Which safety property is guaranteed by the Chinese Wall policy ?
I We show that a reduction following the Chinese Wall policy between A

and B is independent of the interaction between A and B.

The λn-calculus : summary

A λ-calculus with principals.

A safety property : independence.

How to express the Chinese Wall policy in the λn-calculus ?
I This policy relies on history.
I We use the labelled λ-calculus to track history of interactions.

Which safety property is guaranteed by the Chinese Wall policy ?
I We show that a reduction following the Chinese Wall policy between A

and B is independent of the interaction between A and B.

The λn-calculus : summary

A λ-calculus with principals.

A safety property : independence.

How to express the Chinese Wall policy in the λn-calculus ?
I This policy relies on history.
I We use the labelled λ-calculus to track history of interactions.

Which safety property is guaranteed by the Chinese Wall policy ?
I We show that a reduction following the Chinese Wall policy between A

and B is independent of the interaction between A and B.

λ-calculus

and
the Chinese Wall

The labelled λn-calculus

Terms M, N ::= x
| (λx .N)A

| (MN)A

| a :M

Atomic labels a, b ::= dαe | bαc
Compound labels α, β ::= Aa1a2 · · · anB n ≥ 0

Values V , W ::= (λx .N)A | a :V

Labelled reduction

xB

@A

M

N

x x

M

N N

a1
an

⌈⌉

⌊⌋⌊⌋

(β) R = (a1 : . . . :an :(λx .M)BN)A → dαe :M{x\bαc :N}
α = Aa1 . . . anB

The redex name is name(R) = α.

Labelled reduction : an example

@

x

y

B

A

@C

yC
z
z

(((λx .(λy .y)C)Az)C z)B →(dCAe : (λy .y)C z)B

→ dBdCAeCe : bBdCAeCc : z

Labelled reduction : an example

@

x

y

B

A

@C

yC
z
z

y

B@

yC z⌈CA⌉

(((λx .(λy .y)C)Az)C z)B → (dCAe : (λy .y)C z)B

→ dBdCAeCe : bBdCAeCc : z

Labelled reduction : an example

@

x

y

B

A

@C

yC
z
z

y

B@

yC z⌈CA⌉

(((λx .(λy .y)C)Az)C z)B → (dCAe : (λy .y)C z)B

→ dBdCAeCe : bBdCAeCc : z

Labelled reduction : an example

@

x

y

B

A

@C

yC
z
z

y

B@

yC z

z
⌊B⌈CA⌉C⌋

⌈CA⌉
⌈B⌈CA⌉C⌉

(((λx .(λy .y)C)Az)C z)B → (dCAe : (λy .y)C z)B

→ dBdCAeCe : bBdCAeCc : z

Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

I Example : τ(a : b : c : (λx .x)A) = abc

Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

Principals contained in atomic or compound labels :

Princ(Aa1 . . . anB) = {A,B} ∪1≤i≤n Princ(ai)
Princ(dαe) = Princ(bαc) = Princ(α)

Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

Principals contained in atomic or compound labels :

Princ(Aa1 . . . anB) = {A,B} ∪1≤i≤n Princ(ai)
Princ(dαe) = Princ(bαc) = Princ(α)

I Example : Princ(AdBbACcDeE) = {A,B,C ,D,E}

Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

Principals contained in atomic or compound labels :

Princ(Aa1 . . . anB) = {A,B} ∪1≤i≤n Princ(ai)
Princ(dαe) = Princ(bαc) = Princ(α)

Definition (Separation)

A sequence of atomic labels a1 . . . an separates the principals A and B iff,
for every 1 ≤ i ≤ n, we have {A,B} 6⊆ Princ(ai).

Independence and labels

Head sequence : τ(x) = τ((λx .M)A) = τ((MN)A) = 0
τ(a : M) = aτ(M)

Principals contained in atomic or compound labels :

Princ(Aa1 . . . anB) = {A,B} ∪1≤i≤n Princ(ai)
Princ(dαe) = Princ(bαc) = Princ(α)

Definition (Separation)

A sequence of atomic labels a1 . . . an separates the principals A and B iff,
for every 1 ≤ i ≤ n, we have {A,B} 6⊆ Princ(ai).

Examples : F dACebCdDEeBc separates A et B.
F dDCebCdAEeBc does not separate A et B.

Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M →→ V is independent of
the interaction between A and B, then τ(V) separates A and B.

The head sequence dBCedACebACc separates A and B.

Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M →→ V is independent of
the interaction between A and B, then τ(V) separates A and B.

@
x

y

B

C

@A

yC

z
@

x

B

C z
⌈AC⌉

⌊AC⌋

⌈AC⌉

⌊AC⌋

⌈BC⌉

u
uC

u
uC u

uC

The head sequence dBCedACebACc separates A and B.

Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M →→ V is independent of
the interaction between A and B, then τ(V) separates A and B.

@
x

y

B

C

@A

yC

z
@

x

B

C z
⌈AC⌉

⌊AC⌋

⌈AC⌉

⌊AC⌋

⌈BC⌉

⌈BC⌉

y

@A

yC

B

A
u
uC

u
uC u

uC

u
uC

The head sequence dBCedACebACc separates A and B.

Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M →→ V is independent of
the interaction between A and B, then τ(V) separates A and B.

@
x

y

B

C

@A

yC

z
@

x

B

C z
⌈AC⌉

⌊AC⌋

⌈AC⌉

⌊AC⌋

⌈BC⌉

⌈BC⌉

y

@A

yC

B

A
u
uC

u
uC u

uC

u
uC

The head sequence dBCedACebACc separates A and B.

Independence and separation

Theorem

If M →→ V and if τ(V) separates A and B, then there is a reduction
R : M →→ W independent of the interaction between A and B.

F The label dAAe separates A and B.

F This reduction is not independent of the interaction between A and B.

Independence and separation

Theorem

If M →→ V and if τ(V) separates A and B, then there is a reduction
R : M →→ W independent of the interaction between A and B.

@

B

Ax C

x

B@
y

AB

@
y

z
u

A ⌈AA⌉

⌊AA⌋
Cz

u

By

By ⌈AA⌉
By

⌈B⌊AA⌋C⌉

u

F The label dAAe separates A et B.

F This reduction is not independent of the interaction between A and B.

Independence and separation

Theorem

If M →→ V and if τ(V) separates A and B, then there is a reduction
R : M →→ W independent of the interaction between A and B.

@

B

Ax C

x

B@
y

AB

@
y

z
u

A ⌈AA⌉

⌊AA⌋
Cz

u

By

By ⌈AA⌉
By

⌈B⌊AA⌋C⌉

u

F The label dAAe separates A et B.

F This reduction is not independent of the interaction between A and B.

Independence and separation

Theorem

If M →→ V and if τ(V) separates A and B, then there is a reduction
R : M →→ W independent of the interaction between A and B.

@

B

Ax C

x

B@
y

AB

@
y

z
u

A ⌈AA⌉

⌊AA⌋
Cz

u

By

By ⌈AA⌉
By

⌈B⌊AA⌋C⌉

u

F The label dAAe separates A et B.

F This reduction is not independent of the interaction between A and B.

Independence and separation

Theorem

If M →→ V and if τ(V) separates A and B, then there is a reduction
R : M →→ W independent of the interaction between A and B.

@

B

Ax C

x

B@
y

B

@
y

z
u

A ⌈AA⌉

⌊AA⌋
Cz

u

By

By

F The label dAAe separates A et B.

F This reduction is independent of the interaction between A and B.

Expressing Chinese Wall in the λn-calculus

The Chinese Wall between A and B is written CW(A,B).

Definition (Chinese Wall)

A reduction follows CW(A,B) iff every redex R contracted by this
reduction is such that :

{A,B} 6⊆ Princ(name(R))

Chinese Wall in the λn-calculus : example 1/2

@

x

y

B

A

@C

yC
z
z

y

B@

yC z

z
⌊B⌈CA⌉C⌋

⌈CA⌉
⌈B⌈CA⌉C⌉

Princ(name(R1)) = {A,C}
Princ(name(R2)) = {A,B,C}

This reduction does not follow CW(A,B).

Chinese Wall in the λn-calculus : example 2/2

@
x

y

B

C

@A

yC z

z
@

x

B

C z

z

⌈AC⌉

⌊AC⌋ z

⌈AC⌉

⌊AC⌋

⌈BC⌉

Princ(name(R1)) = {A,C}
Princ(name(R2)) = {B,C}

This reduction follows CW(A,B).

Correction of CW(A, B)

Theorem (Correction)

If R : M →→ N follows CW(A,B), then R is independent of the interaction
between A and B.

A

M

N

N'

MA MB

RA RB

RB/RA RA/RB
R'/R

B
R

The Chinese Wall guarantees the independence.

Correction of CW(A, B) : example

@
x

y

B

C

@A

yC

z
@

x

B

C z
⌈AC⌉

⌊AC⌋

⌈AC⌉

⌊AC⌋

⌈BC⌉

u
uC

u
uC u

uC

The reduction follows CW(A,B)...

Correction of CW(A, B) : example

@
x

y

B

C

@A

yC

z
@

x

B

C z
⌈AC⌉

⌊AC⌋

⌈AC⌉

⌊AC⌋

⌈BC⌉

⌈BC⌉

y

@A

yC

B

A
u
uC

u
uC u

uC

u
uC

...hence it is independent of the interaction between A and B

Correction of CW(A, B) : proof

Sublabel of a compound label :

α � α
α � Aa1 . . . anB si ∃i . ai = dβe and α � β
α � Aa1 . . . anB si ∃i . ai = bβc and α � β

Example : α � AdαebγcB

Correction of CW(A, B) : proof

Sublabel of a compound label :

α � α
α � Aa1 . . . anB si ∃i . ai = dβe and α � β
α � Aa1 . . . anB si ∃i . ai = bβc and α � β

Example : α � AdαebγcB

Correction of CW(A, B) : proof

M S1 NS2 S3 Sn

R

Correction of CW(A, B) : proof

M S1 NS2 S3 Sn

R

For 1 ≤ i ≤ n, we write αi = name(Si).
We have {A,B} ∩ Princ(αi) 6= {A,B}.

Correction of CW(A, B) : proof

M S1

N1

1
N

2

3

n

S2 S3 Sn

R

R1

For 1 ≤ i ≤ n, we write αi = name(Si).
We have {A,B} ∩ Princ(αi) 6= {A,B}.

Correction of CW(A, B) : proof

M S1
1

N

2

3

n

S2 S3 Sn

R

R1/RR1

R/R1N1

For 1 ≤ i ≤ n, we write αi = name(Si).
We have {A,B} ∩ Princ(αi) 6= {A,B}.

Correction of CW(A, B) : proof

M S1
1

N

2

3

n

S2 S3 Sn

R

R1/RR1

R/R1N1

For 1 ≤ i ≤ n, we write αi = name(Si).
We have {A,B} ∩ Princ(αi) 6= {A,B}.

Lemma (Completion)

If R : M
S1−→ . . .

Sn−→ N and if for every i , we have name(Si) = αi , then

R1 : M
α1=⇒ . . .

αn=⇒ N1 and R ≤ R1.

Correction of CW(A, B) : proof

M S1
1

N

2

3

n

S2 S3 Sn

R

R1/RR1

R/R1=∅
n

N1 N1

For 1 ≤ i ≤ n, we write αi = name(Si).
We have {A,B} ∩ Princ(αi) 6= {A,B}.

Lemma (Completion)

If R : M
S1−→ . . .

Sn−→ N and if for every i , we have name(Si) = αi , then

R1 : M
α1=⇒ . . .

αn=⇒ N1 and R ≤ R1.

Correction of CW(A, B) : proof

M S1
1

N

2

3

n

S2 S3 Sn

R

R1/R
R1

N1

For 1 ≤ i ≤ n, we write αi = name(Si).
We have {A,B} ∩ Princ(αi) 6= {A,B}.

Lemma (Completion)

If R : M
S1−→ . . .

Sn−→ N and if for every i , we have name(Si) = αi , then

R1 : M
α1=⇒ . . .

αn=⇒ N1 and R ≤ R1.

Correction of CW(A, B) : proof

M S1
1

N

2

3

n

S2 S3 Sn

R

R1/R
R1

N1

For 1 ≤ i ≤ n, we write αi = name(Si).
We have {A,B} ∩ Princ(αi) 6= {A,B}.

Lemma (Reordering)

If R : M
α1=⇒ . . .

αn=⇒ N, there is a reduction R ′ : M
β1
=⇒ . . .

βm
=⇒ N ′ such that

(1) {βi}1≤i≤m ⊆ {αi}1≤i≤n (2) if i < j , then βj 6≺ βi (3) R ≤ R ′

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

For 1 ≤ i ≤ n, we write αi = name(Si).
We have {A,B} ∩ Princ(αi) 6= {A,B}.

Lemma (Reordering)

If R : M
α1=⇒ . . .

αn=⇒ N, there is a reduction R ′ : M
β1
=⇒ . . .

βm
=⇒ N ′ such that

(1) {βi}1≤i≤m ⊆ {αi}1≤i≤n (2) if i < j , then βj 6≺ βi (3) R ≤ R ′

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

1

2

3

m

R'

If i < j , we have βj 6≺ βi .

{γi}1≤i≤k : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi) = ∅.
{δi}1≤i≤k ′ : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi) 6= ∅.
If βi ∈ {δi}1≤i≤k ′ , if βj ∈ {γi}1≤i≤k , we have βi 6≺ βj .

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

1

2

3

m

R'

If i < j , we have βj 6≺ βi .

{γi}1≤i≤k : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi) = ∅.
{δi}1≤i≤k ′ : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi) 6= ∅.
If βi ∈ {δi}1≤i≤k ′ , if βj ∈ {γi}1≤i≤k , we have βi 6≺ βj .

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

1

2

3

m

R'

If i < j , we have βj 6≺ βi .

{γi}1≤i≤k : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi) = ∅.
{δi}1≤i≤k ′ : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi) 6= ∅.
If βi ∈ {δi}1≤i≤k ′ , if βj ∈ {γi}1≤i≤k , we have βi 6≺ βj .

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

1

2

3

m

R'

If i < j , we have βj 6≺ βi .

{γi}1≤i≤k : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi) = ∅.
{δi}1≤i≤k ′ : elements of {βi}1≤i≤m

such that {A,B} ∩ Princ(βi) 6= ∅.
If βi ∈ {δi}1≤i≤k ′ , if βj ∈ {γi}1≤i≤k , we have βi 6≺ βj .

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

1

2

3

m

R'

If i < j and βi ∈ {δi}1≤i≤k ′ and βj ∈ {γi}1≤i≤k , we have βi 6≺ βj and
βj 6≺ βi .

Lemma (Permutation)

If α 6≺ β and β 6≺ α and if R1 : M
α
=⇒ β

=⇒ N, then we have R2 : M
β
=⇒ α

=⇒ N
and R1 ∼ R2.

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

1

2

3

m

R'

If i < j and βi ∈ {δi}1≤i≤k ′ and βj ∈ {γi}1≤i≤k , we have βi 6≺ βj and
βj 6≺ βi .

Lemma (Permutation)

If α 6≺ β and β 6≺ α and if R1 : M
α
=⇒ β

=⇒ N, then we have R2 : M
β
=⇒ α

=⇒ N
and R1 ∼ R2.

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

R'

1
k

1

2

k'

1

2

3

m

If i < j et βi ∈ {δi}1≤i≤k ′ and βj ∈ {γi}1≤i≤k , we have βi 6≺ βj et
βj 6≺ βi .

Lemma (Permutation)

If α 6≺ β and β 6≺ α and if R1 : M
α
=⇒ β

=⇒ N, then we have R2 : M
β
=⇒ α

=⇒ N
and R1 ∼ R2.

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

R'

1
k

1

2

k'

1

2

3

m

{ηi}1≤i≤p : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {A}.
{θi}1≤i≤p′ : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {B}.
For every i , j , we have ηi 6≺ θj and θj 6≺ ηi .

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

R'

1
k

1

2

k'

1

2

3

m

{ηi}1≤i≤p : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {A}.
{θi}1≤i≤p′ : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {B}.
For every i , j , we have ηi 6≺ θj and θj 6≺ ηi .

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

R'

1
k

MB

1

p'

1
p

1

2

3

m

{ηi}1≤i≤p : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {A}.
{θi}1≤i≤p′ : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {B}.
For every i , j , we have ηi 6≺ θj and θj 6≺ ηi .

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

R'

1
k

1
k

1
p'

MA MB

1

p'

1
p

1

p

1

2

3

m

{ηi}1≤i≤p : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {A}.
{θi}1≤i≤p′ : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {B}.
For every i , j , we have ηi 6≺ θj and θj 6≺ ηi .

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

R'

1
k

1
k

1
p'

MA MB

1

p'

1
p

1

p

RA RB1

2

3

m

{ηi}1≤i≤p : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {A}.
{θi}1≤i≤p′ : elements of {δi}i

such that {A,B} ∩ Princ(δi) = {B}.
For every i , j , we have ηi 6≺ θj and θj 6≺ ηi .

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

R'
MA MB

RA RB
A B

RB/RA RA/RB

1

2

3

m

Correction of CW(A, B) : proof

M S1

N'

1
N

2

3

m

S2 S3 Sn

R

R'/R
R'

M

N'

R'
MA MB

RA RB
A B

RB/RA RA/RB

1

2

3

m

A

M

N

N'

MA MB

RA RB

RB/RA RA/RB
R'/R

B
R

λ-calculus and Chinese Wall : summary

1 Safety property : independence

2 Correspondence between labelled lambda calculus and independence

Safety policy Safety property

Stack inspection -

Information flow Non interference

Chinese Wall Independence

Future works

Objectives

1 Static information flow in the λ-calculus
I labelled λ-calculus and DCC [Riecke], FlowCaml as [Simonet,

Pottier], DCC+ [Abadi], etc
2 Reduction strategies

I call-by-value λ-calculus
I weak λ-calculus

3 Adding delta rules
I Imperative features and exceptions
I Safety rules (safety operators : uses or binds)

4 Concurrent features
I Permutation equivalence and Event structures
I Reversible processes (backtracking) [Jean Krivine]

Conclusion : non interference

A

M =

Non interference : the labels of the λ-calculus express functional
interference.

In the λ-calculus with references, labels have to also capture
interference with memory.

I A memory cell interferes within some time interval.

T't 1 t 3 t 4 t 6T

t
I We can use irreversibility of contexts in the labelled λ-calculus

[Blanc].

Conclusion : non interference

A

M =

Non interference : the labels of the λ-calculus express functional
interference.

In the λ-calculus with references, labels have to also capture
interference with memory.

I A memory cell interferes within some time interval.

T't 1 t 3 t 4 t 6T

t
I We can use irreversibility of contexts in the labelled λ-calculus

[Blanc].

Conclusion : non interference

A

M =

Non interference : the labels of the λ-calculus express functional
interference.

In the λ-calculus with references, labels have to also capture
interference with memory.

I A memory cell interferes within some time interval.

T't 1 t 3 t 4 t 6T

t
I We can use irreversibility of contexts in the labelled λ-calculus

[Blanc].

Conclusion : independence

A

M =

B

1 Created principals and extended independence.

2 Link between non-interference and independence : express these
properties within a common framework.

3 Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

4 David Van Horn and Harry Mairson showed that kCFA is NP as soon
as k > 0. [ICFP 07].

5 Simple proofs for safety properties.

Conclusion : independence

A

M =

B

1 Created principals and extended independence.

2 Link between non-interference and independence : express these
properties within a common framework.

3 Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

4 David Van Horn and Harry Mairson showed that kCFA is NP as soon
as k > 0. [ICFP 07].

5 Simple proofs for safety properties.

Conclusion : independence

A

M =

B

1 Created principals and extended independence.

2 Link between non-interference and independence : express these
properties within a common framework.

3 Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

4 David Van Horn and Harry Mairson showed that kCFA is NP as soon
as k > 0. [ICFP 07].

5 Simple proofs for safety properties.

Conclusion : independence

A

M =

B

1 Created principals and extended independence.

2 Link between non-interference and independence : express these
properties within a common framework.

3 Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

4 David Van Horn and Harry Mairson showed that kCFA is NP as soon
as k > 0. [ICFP 07].

5 Simple proofs for safety properties.

Conclusion : independence

A

M =

B

1 Created principals and extended independence.

2 Link between non-interference and independence : express these
properties within a common framework.

3 Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

4 David Van Horn and Harry Mairson showed that kCFA is NP as soon
as k > 0. [ICFP 07].

5 Simple proofs for safety properties.

