Tomasz Blanc

Jean-Jacques Lévy

INRIA Rocquencourt and MSR-INRIA Joint Centre

November 13, 2007

«O>r «Fr <

Plan

@ Motivations
@ J-calculus, principals and independence
@)\-calculus and the Chinese Wall

Q@ Future works

Motivations

Security and Programming languages

@ Restricting rights of downloaded programs is not sufficient...

Security and Programming languages

@ Restricting rights of downloaded programs is not sufficient...

Security and Programming languages

@ Restricting rights of downloaded programs is not sufficient...

X

Security and Programming languages

@ Restricting rights of downloaded programs is not sufficient...

Security and Programming languages

@ Restricting rights of downloaded programs is not sufficient...

@ ... since attackers can borrow privileges from local programs [Hardy].

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

First approach : stack inspection
@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

First approach : stack inspection
@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

First approach : stack inspection
@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

First approach : stack inspection
@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

e o
I]

u]
o)

|

i
it
)
pe)
i)

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

.
Cherche temporaire <\ L/

u]
o)

|

i
it
)
pe)
i)

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

oY o
P o
{ ,.-\/
,-" V

"PlugIn.tmp" |

u]
o)

|

i
it
)
pe)
i)

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

L
"PluglIn. tmp"

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

u]
o)

|

i
it
)
pe)
i)

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

u]
o)

|

i
it
)
pe)
i)

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

u]
o)

|

i
it
)
pe)
o)

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

u]
o)

|

i
it
)
pe)
i)

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

u]
o)

|

i
it
)
pe)
i)

First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].

u]
o)

|

i
it
)
pe)
o)

Second approach : Information Flow

@ Data are classified in several categories and their propagation is
tracked during program execution.

Second approach : Information Flow

o Data are classified in several categories and their propagation is
tracked during program execution.

DA

Second approach : Information Flow

o Data are classified in several categories and their propagation is
tracked during program execution.

DA

Second approach : Information Flow

o Data are classified in several categories and their propagation is
tracked during program execution.

Second approach : Information Flow

o Data are classified in several categories and their propagation is
tracked during program execution.

Second approach : Information Flow

o Data are classified in several categories and their propagation is
tracked during program execution.

Second approach : Information Flow

o Data are classified in several categories and their propagation is
tracked during program execution.

Second approach : Information Flow

o Data are classified in several categories and their propagation is
tracked during program execution.

o Non-interference : public output does not rely on secret inputs.

.'.x
U
‘A

Second approach : Information Flow

o Data are classified in several categories and their propagation is
tracked during program execution.

o Non-interference : public output does not rely on secret inputs.

e Static analysis is do-able even on complete languages (FlowCaml,
JIF).

.'.x
U
‘A

u]
o)

|

i
it
)
pe)
i)

Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].
Alice and Bob compete for a contract; Charlie is the buyer.
Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

.@ AN -
N .
N .

N .
N .
N .

N
N ,
N .
N
N .
N .
N .
N IH .

@ Charlie may interact with Alice and Bob.

Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].
Alice and Bob compete for a contract; Charlie is the buyer.
Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

@ Charlie may interact with Alice and Bob.
@ But as soon as Charlie interacts with Alice...

Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].
Alice and Bob compete for a contract; Charlie is the buyer.
Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

@ Charlie may interact with Alice and Bob.

@ But as soon as Charlie interacts with Alice, Charlie may no longer
interact with Bob.

Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].
Alice and Bob compete for a contract; Charlie is the buyer.
Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

@ Charlie may interact with Alice and Bob.

@ But as soon as Charlie interacts with Alice, Charlie may no longer
interact with Bob.

Summary

Safety policy

Safety property

Stack Inspection

Flow Information

Non interference

Chinese Wall

?

Summary

Safety policy Safety property

Stack Inspection -

Flow Information | Non interference

Chinese Wall ?

Objectives :
@ define the Chinese Wall in the A-calculus.

@ examine the safety property of the Chinese Wall policy.

A-calculus, principals and
independence

Ap-calculus : a A-calculus with principals

@ Alice, Bob, Charlie are principals.
AB,...
@ Terms of \,-calculus :
M, N X Variable
Ax.M)” Abstraction

| (
| (MN)* Application

@ Values :

V= (Ax.M)A

Ap-calculus : a A-calculus with principals

@ Alice, Bob, Charlie are principals.
AB,...
@ Terms of \,-calculus :
M, N = x Variable

| (Ax.M)* Abstraction

| (MN)* Application
o Values :

V= (Ax.M)A

@ Remark : principals differ from labels in the labelled A-calculus.

(B) ((x-M)AN)® — M{x\N}

s
i A
X X

«O>r «Fr «=E» «=>» = DA

An example of reduction in the \,-calculus

An example of reduction in the \,-calculus

@B
\
/@< E PN
AxC€ Z Ty z
Ay y

An example of reduction in the \,-calculus

@B
|
/@< > S
AxC€ z Ay© z
Ay y

An example of reduction in the \,-calculus

@B
|
/@< E AN
AaxC z Ay© oz :
Ay y

Basic properties of the \,-calculus

e Confluence
e Finite Developments

e Standardisation

Reduction ignoring a principal

Definition

(Ax.N)EP)C

The reduction M M’ ignores A iff A¢ {B, C}.

) A
o Also written M A, M’

o We write M 2 M’ if every reduction step ignores A.

Reduction ignoring a principal

Definition

: ((Ax.N)BP)C 0)
The reduction M ———— M' ignores A iff A ¢ {B, C}.

) A
o Also written M A, M’

o We write M 25 M/ if every reduction step ignores A

Example :
W
@< \z
AaxC oz
Ay©

Reduction ignoring a principal

Definition

: ((Ax.N)BP)C 0)
The reduction M ———— M' ignores A iff A ¢ {B, C}.

) A
o Also written M A, M’

o We write M 25 M/ if every reduction step ignores A

Example :
W
|
@< \z @B\
1B

AaxC oz oAyt oz

\

Ay© y

Reduction ignoring a principal

Definition

: ((Ax.N)BP)C 0)
The reduction M ———— M' ignores A iff A ¢ {B, C}.

) A
o Also written M A, M’

o We write M 25 M/ if every reduction step ignores A

Example :
W
|
@< E AN
1B 1A

AaxC z Ay© oz
\
Ay© y

@ Actions of A and B are independent if they commute.

()

&) & ©

«O>r «Fr «=>»

«E)»

DA

Independence

@ Actions of A and B are independent if they commute.

(©)
(4)«—1—(D)
(£)

Independence

@ Actions of A and B are independent if they commute.

(©)
@@
(£)

Independence

@ Actions of A and B are independent if they commute.

@ Actions of A and B are independent if they commute.

()

&) & ©

«O>r «Fr «=>»

«E)»

DA

Independence

@ Actions of A and B are independent if they commute.

Independence

@ Actions of A and B are independent if they commute.

@ Actions of A and B are independent if they commute.

()

&) & ©

«O>r «Fr «=>»

«E)»

DA

Independence

@ Actions of A and B are independent if they commute.

@
> ® e
®

Independence

@ Actions of A and B are independent if they commute.

Independence

Definition (Independence)
The reduction R : M — N is independent of the interaction between A

and B iff there exists Ry : M LN My and Rg : M BLEN Mg such that
R<R (/e R/Rl is empty) with R’ = Ra; (RB/RA) = Rpg; (RA/RB)

M
R

Independence

Definition (Independence)
The reduction R : M — N is independent of the interaction between A

and B iff there exists Ry : M LN My and Rg : M BLEN Mg such that
R<R (/e R/Rl is empty) with R’ = Ra; (RB/RA) = Rpg; (RA/RB)

Independence

Definition (Independence)
The reduction R : M — N is independent of the interaction between A

and B iff there exists Ry : M LN My and Rg : M BLEN Mg such that
R<R (/e R/Rl is empty) with R’ = Ra; (RB/RA) = Rpg; (RA/RB)

M
R, R R,
a4 | B
M, N M

Independence

Definition (Independence)
The reduction R : M — N is independent of the interaction between A

and B iff there exists Ry : M LN My and Rg : M BLEN Mg such that
R<R (/e R/Rl is empty) with R’ = Ra; (RB/RA) = Rpg; (RA/RB)

M
R, Rl R 5
T4 | B
M, N M,
R,/R " R /R,

Independence

Definition (Independence)
The reduction R : M — N is independent of the interaction between A

and B iff there exists Ry : M LN My and Rg : M BLEN Mg such that
R<R (/e R/Rl is empty) with R’ = Ra; (RB/RA) = Rpg; (RA/RB)

M
<A 1B
M, N M,
R/R,". “RR,

Independence : example 1/2

@B
\
s E PN
1B 1A
AxC€ z ©oAay© z ’ %
/
Yy

This reduction is not independent of the interaction between A and B.

Independence : example 2/2

@” &P
Axc \Z —lB Axc \Z L
‘@A | z
N :
AFV z

y

This reduction is independent of the interaction between A and B.

Independence : example 2/2

@” &P
A€ \Z B \z A |
‘@A | z
\ Z
?\yc z 1A 1B
|
y @’
e
Z

This reduction is independent of the interaction between A and B.

@ A A-calculus with principals.

o A safety property : independence.
@ How to express the Chinese Wall policy in the \,-calculus?
» This policy relies on history.

» We use the labelled A-calculus to track history of interactions.

@ Which safety property is guaranteed by the Chinese Wall policy ?

» We show that a reduction following the Chinese Wall policy between A
and B is independent of the interaction between A and B.

«O>r «Fr <

it
a
it

DA

The A,-calculus : summary

@ A A-calculus with principals.

o A safety property : independence.
@ How to express the Chinese Wall policy in the A,-calculus?
» This policy relies on history.

The A,-calculus : summary

@ A A-calculus with principals.
o A safety property : independence.

@ How to express the Chinese Wall policy in the A,-calculus?

» This policy relies on history.
» We use the labelled A-calculus to track history of interactions.

The A,-calculus : summary

@ A A-calculus with principals.

o A safety property : independence.
@ How to express the Chinese Wall policy in the A,-calculus?

» This policy relies on history.
» We use the labelled A-calculus to track history of interactions.

@ Which safety property is guaranteed by the Chinese Wall policy ?

The A,-calculus : summary

@ A A-calculus with principals.

o A safety property : independence.
@ How to express the Chinese Wall policy in the A,-calculus?
» This policy relies on history.
» We use the labelled A-calculus to track history of interactions.
@ Which safety property is guaranteed by the Chinese Wall policy ?
» We show that a reduction following the Chinese Wall policy between A
and B is independent of the interaction between A and B.

A-calculus

and
the Chinese Wall

The labelled \,-calculus

Terms M, N = x
| (Ax.M)A
| (Mn)*
| a:M
Atomic labels a, b [a] | |
Compound labels «, 8 := Aajar---a,B n>0
Values V, W= Ox.N)A|a:V

Labelled reduction

The redex name is name(R) = «.

Labelled reduction :

an example

Labelled reduction :

an example

Labelled reduction :

an example

Labelled reduction : an example

o \
P AN IBjcA|C]
AxA z A z — |
| Ay lB[C\A]CJ
Ayc y z
Y

(x-(Ayy))*2)€2)" — ([CAT: (Ay.y)€ 2)°
— [B[CA|C]: |B[CA|C]|:z

@ Head sequence : 7(x) = 7((Ax.M)A) = 7((MN)*) = 0
7(a: M) = ar(M)

«O>r «Fr <

Independence and labels

@ Head sequence : 7(x) = 7((Ax.M)A) = 7((MN)*) =0
7(a: M) = ar(M)

» Example : 7(a: b: c: (Ax.x)") = abc

Independence and labels

@ Head sequence : 7(x) = 7((Ax.M)A) = 7((MN)*) =0
7(a: M) = ar(M)

@ Principals contained in atomic or compound labels :

Princ(Aa;...a,B) = {A, B} Ui<i<, Princ(a;)
Princ([«]) = Princ(|a|) = Princ(w)

Independence and labels
@ Head sequence : 7(x) = 7((Ax.M)A) = 7((MN)*) =0
7(a: M) = ar(M)

@ Principals contained in atomic or compound labels :

Princ(Aa;...a,B) = {A, B} Ui<i<, Princ(a;)
Princ([«]) = Princ(|a|) = Princ(w)

» Example : Princ(A[B|AC|D|E) ={A,B,C,D,E}

Independence and labels

@ Head sequence : 7(x) = 7((Ax.M)A) = 7((MN)*) =0
7(a: M) = ar(M)

@ Principals contained in atomic or compound labels :

Princ(Aa;...a,B) = {A, B} Ui<i<, Princ(a;)
Princ([«]) = Princ(|a|) = Princ(w)

Definition (Separation)

A sequence of atomic labels a; ... a, separates the principals A and B iff,
for every 1 < i < n, we have {A, B} Z Princ(a;).

Independence and labels

@ Head sequence : 7(x) = 7((Ax.M)A) = 7((MN)*) =0
7(a: M) = ar(M)

@ Principals contained in atomic or compound labels :

Princ(Aa;...a,B) = {A, B} Ui<i<, Princ(a;)
Princ([«]) = Princ(|a|) = Princ(w)

Definition (Separation)

A sequence of atomic labels a; ... a, separates the principals A and B iff,
for every 1 < i < n, we have {A, B} Z Princ(a;).

e Examples: * [AC]||C[DE]B| separates A et B.
x [DC]||C[AE]B] does not separate A et B.

Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M —» V' is independent of
the interaction between A and B, then (V') separates A and B.

Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M —» V' is independent of
the interaction between A and B, then (V') separates A and B.

| |
@”® @® \
/. [BC|
A o Axs Y
PN pi 4
A€ A‘uc IQEIC Auc

\
y u) "

Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M —» V' is independent of
the interaction between A and B, then (V') separates A and B.

| |
@b @® \
y [BC]
A o, Axs Y
PN pi 4
¢ c |AC AuC
A)\‘M)\‘MC I/‘l
Voh Nw
[BC]
(lpA
AN
AyC Au€
7

Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M —» V' is independent of
the interaction between A and B, then (V') separates A and B.

| |
@b @® \
/. [BC]
e T Ax Y
PN pi 4
¢ c |AC AuC
A)\‘M)\‘MC I/‘l
Voh Nw
[BC]
(lpA
AN
AyC Au€
7
y u

The head sequence [BC|[AC||AC] separates A and B.

Independence and separation

Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.

Independence and separation

Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.

c‘@A [AA] |
Ax/A \/\ZC Ay” [A‘AWB
| 5 | B @ 1A ?\‘y
A u
@%3 A \y a1
/N Az¢ U
X y |

Independence and separation

Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.

c‘@A [AA] |
Ax/A \/\ZC Ay” [A‘AWB
| 5 | B @ 1A ?\‘y
A u
@%3 A \y a1
/N Az¢ U
X y |

u

* The label [AA] separates A et B.

Independence and separation

Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.

éA [AA] |
Ax/A \/\ZC Ay” M‘Mlg
| 5 | B @ 1A ?\‘y
A u
@%3 A \y A
/N Az¢ U
X y |

u
* The label [AA] separates A et B.

* This reduction is not independent of the interaction between A and B.

Independence and separation

Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.

éA [AA]
B
B
Ay u @
/
@FB A \y
/N Az€
X]/ ‘
u

* The label [AA] separates A et B.

* This reduction is independent of the interaction between A and B.

Expressing Chinese Wall in the \,-calculus

@ The Chinese Wall between A and B is written CWW(A, B).

Definition (Chinese Wall)

A reduction follows CYV (A, B) iff every redex R contracted by this
reduction is such that :

{A, B} Z Princ(name(R))

Chinese Wall in the \,-calculus : example 1/2

@B
AN B |
/@C\ z o @ IBICAIC]
Az T c z —
| A‘y lB[C‘A]CJ
C
"V v
Yy
Princ(name(Ry;)) = {A, C}
Princ(name(R;)) = {A,B,C}

This reduction does not follow CW(A, B).

Chinese Wall in the \,-calculus : example 2/2

@B\ " IBC]
C |
AXA z)\x/c \Z — [A‘C]
@ [AC] [A‘CJ
AF‘//C \z [A‘CJ Z
2
y

Princ(name(Ry))
Princ(name(Ry))

{A,
{B,

wabw

This reduction follows CW(A, B).

Correction of CW(A, B)

Theorem (Correction)

If R : M — N follows CW(A, B), then R is independent of the interaction
between A and B.

M
R, R R,
A | B
M, N M,
Ry/R;. RYR,
N'

The Chinese Wall guarantees the independence.

Correction of CW(A, B) : example

at o "
¢ c |
"‘x z Mz jacl
@’ ACl lAc]

)\y/c \J\uc lA\CJC Auc
\ A‘u 1/\1

The reduction follows CW(A, B)...

Correction of CW(A, B) : example

at o "
c C
"‘x z JB, ATz [A:d
@é lACl lAc]
C C |AC| AMC
)\y 2\‘u ?\‘MC |
y o u | u
JA u |
\ [B‘C] /
Py
A‘yC /\MC
I

...hence it is independent of the interaction between A and B

Correction of CW(A, B) : proof

@ Sublabel of a compound label :

a2«
a =X Aai...apBsidi.ai=[f]land a <X
a = Aay...apBsidi.aj=|f]anda=p

Correction of CW(A, B) : proof

@ Sublabel of a compound label :

a2«
a =X Aai...apBsidi.ai=[f]land a <X
a = Aay...apBsidi.aj=|f]anda=p

e Example : o < Ala]|v]|B

DRSSPI

wa

Correction of CW(A, B) : proof

S, S

3 -

S

2

M N

For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Correction of CW(A, B) : proof

5.5 S

2 3

n N

M
X

1

For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Correction of CW(A, B) : proof

M S1 Sz Ss o Sn N
&, i
&, |
R, «, 'RJ/R
o |
~ R/R, ¢
Nl ——————————————————————— >

For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Correction of CW(A, B) : proof
S, S

2

For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Lemma (Completion)

IfR: M S, A N and if for every i, we have name(S;) = «;, then
Ri:M=Z .. . 22N, and R < Ry.

Correction of CW(A, B) : proof
S, S

2

For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Lemma (Completion)

IfR: M S, A N and if for every i, we have name(S;) = «;, then
Ri:M=Z .. . 22N, and R < Ry.

Correction of CW(A, B) : proof

S, S

M 2,0

2 3 __S

- N
;
.
.

“RJR

LL/

For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Lemma (Completion)

IfR: M S, A N and if for every i, we have name(S;) = «;, then
Ri:M=Z .. . 22N, and R < Ry.

Correction of CW(A, B) : proof

S, S

M 2,0

2 3 __S

- N
;
.
.

“RJR

LL/

For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Lemma (Reordering)

IFR: M2 . 28 N there is a reduction R : M2 ... 22 N’ such that
(1) {Biticicm CH{aiticicn (2)ifi<j, then B A8 (3) RS R

Correction of CW(A, B) : proof

5.5 .5 S

M 1 2 3 n N
B,
1{/33 ///
i R’/R
BHIV \LL//
NI

For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Lemma (Reordering)

IFR: M2 . 28 N there is a reduction R : M2 ... 22 N’ such that
(1) {Biticicm CH{aiticicn (2)ifi<j, then B A8 (3) RS R

Correction of CW(A, B) : proof

S, S S

MS1 2 3 . ___“n N
B,
B,
R’BS ///
i R'/R
Bm Pt
U
N/

e If i < j, we have 3; £ 3.

Correction of CW(A, B) : proof

S, S, S S
M 1 2 3 . ___“n N
B, g
B,
R's)|
i R'/R
Bm Pt
U
N/

e If i < j, we have 3; £ 3.

o {’)/,'}1§i§k : elements of {ﬁ;}lg,’gm
such that {A, B} NPrinc(f3;) = 0.
o {Ji}1<i<k : elements of {fBi}1<i<m
such that {A, B} NPrinc(3;) # 0.

Correction of CW(A, B) : proof

s § S S
M 1 2 3 _ N M
B, - 1
52 //// ﬁz
R’s, R’s,
R’/R f
Bm . Bm
N’ N’

e If i < j, we have 3; £ 3.

) {’)/;}1§i§k . elements of {ﬁ;}lg,’gm
such that {A, B} NPrinc(f3;) = 0.

o {Ji}1<i<k : elements of {fBi}1<i<m
such that {A, B} NPrinc(3;) # 0.

o If ﬁ,‘ c {5,’}1§;§k1, if ﬁj S {’y,-}lg,-gk, we have ﬁ,‘ 74 ,Bj.

Correction of CW(A, B) : proof

S, S, S S
M 1 2 3. “n N M
B, B,
5; //// Bz
R’p, R’s,
R’/R f
Bm . Bm
= U
N’ N’

e If i < j, we have 3; £ (.

o {7yiti<i<k : elements of {Bi}1<i<m
such that {A, B} NPrinc(3;) = 0.

o {Ji}1<i<k : elements of {fBi}1<i<m
such that {A, B} NPrinc(3;) # 0.

o If g; € {5;}1§;§k/, if ﬁj S {’\/i}lgigk: we haves3; 74 ﬁj.

Correction of CW(A, B) : proof

S, S, S S
M 1 2 3 . ___“n N M
B, B,
52 //// ﬁz
R’p, R’s,
R’/R f
Bm . Bm
NI N/

o If i <jand 3 € {6i}1<i<k and fBj € {7i}1<i<k, we have 3; £ ; and
Bj A Bi.

Correction of CW(A, B) : proof

S, S, S S
M 1 2 3 _ N M
B, B,
52 ///// ﬁz
R’p, R’s,
R’/R f
Bm Pt Bm
e U
NI N/

o If i <jand 3 € {6i}1<i<k and fBj € {7i}1<i<k, we have 3; £ ; and
Bj A Bi.

Lemma (Permutation)

Ifoa£ G andB 4o andif R : M3L N, then we have Ry : M 25 N
and Rl ~ R2.

Correction of CW(A, B) : proof

MSLS, S, Sy M &
5, Bl Ny
N
B, A, /51
R,ﬁs R’B3 j‘sz

R’/R 7

B Bl / 5,

N’ N

o If/ <jet 0G; € {5i}1§i§k’ and ﬂj S {’7,'}19'9(, we have (3; 74 ﬁj et
Bj & Bi.

Lemma (Permutation)

Ifoa£ G andB 4o andif R : M3L N, then we have Ry : M 25 N
and Rl ~ R2.

Correction of CW(A, B) : proof

M S1 Sz Ss . Sn N
B,
B,
R’BS ///
i R'/R
Bm Pt
U
N/

e {ni}i<i<p : elements of {4;};

such that {A, B} NPrinc(6;) = {A}.
o {0i}i<i<p : elements of {§;};

such that {A, B} N Princ(d;) = {B}.

BZIVI \\y{i\ Ve
Ny

B, /51

R's, Je.
5 /5

Correction of CW(A, B) : proof

ML S, 5, S

- N
;
.
.

e {ni}i<i<p : elements of {4;};
such that {A, B} NPrinc(6;) = {A}.

o {0i}i<i<p : elements of {§;};
such that {A, B} N Princ(d;) = {B}.

@ For every i,j, we have n; £ 6; and 0; A 1

Correction of CW(A, B) : proof

MSLS, S S, N M\\a?

B, R Bl Ny,

Ny n,

5. B, .

R’s, ’ R, M
R'/R f B
B 5 5
}

e {ni}i<i<p : elements of {4;};
such that {A, B} NPrinc(6;) = {A}.

o {0i}i<i<p : elements of {§;};
such that {A, B} N Princ(d;) = {B}.

@ For every i, j, we have n; 4 6; and 6; A 1

Correction of CW(A, B) : proof

M Sl Sz 53 -TTT S” N y]/ M N)/]
B] R P yk//ll, B 1 N \yk
- 0
5 2 y [32 an n
R’ B, v R’ B, N\
X R’/R M, ; M
; Ny ! /,1/01
B S B e
" Ny
N b N Qp,

e {ni}i<i<p : elements of {4;};
such that {A, B} NPrinc(6;) = {A}.

o {0i}i<i<p : elements of {§;};
such that {A, B} N Princ(d;) = {B}.

@ For every i, j, we have n; 4 6; and 6; A 1

Correction of CW(A, B) : proof

M S1 Sz Ss o Sn N 3’1/ M%l
B, R d RA Yo o~ B, \\y 3 RB
0
52 0 /,/y BZ \).171 n
R,ﬁs v R’B3 N\
X R’/R M, ; M
; Ny ! /,1/01
B S B
e NV,
N b N Qp,

e {ni}i<i<p : elements of {4;};
such that {A, B} NPrinc(6;) = {A}.

o {0i}i<i<p : elements of {§;};
such that {A, B} N Princ(d;) = {B}.

@ For every i, j, we have n; 4 6; and 6; A 1

Correction of CW(A, B) : proof

S § S S
M 1 2 3 . ___“n N M
B, R RA B7 RB
B, 794 B B
R’s, R’s,

. RIR :
B Ry/RN_ B A/RB
4

Correction of CW(A, B) : proof

M35, 50, HN

ﬁﬂ R
Rﬁﬂ / / \
ﬂ: //'/R’/R
B M ﬂ / R./R,

N

R, .~ R R,
1A B
M, N M,
R,/R ™ R/R,

A-calculus and Chinese Wall : summary

@ Safety property : independence
@ Correspondence between labelled lambda calculus and independence

Safety policy Safety property

Stack inspection -

Information flow | Non interference

Chinese Wall Independence

Future works

Objectives

@ Static information flow in the \-calculus

» labelled A-calculus and DCC [Riecke], FlowCaml as [Simonet,
Pottier], DCC+ [Abadil, etc

@ Reduction strategies

» call-by-value A-calculus
» weak A-calculus

@ Adding delta rules

» Imperative features and exceptions

» Safety rules (safety operators : uses or binds)
@ Concurrent features

» Permutation equivalence and Event structures
» Reversible processes (backtracking) [Jean Krivine]

Conclusion : non interference

@ Non interference : the labels of the A-calculus express functional
interference.

Conclusion : non interference

@ Non interference : the labels of the A-calculus express functional
interference.
@ In the A-calculus with references, labels have to also capture
interference with memory.
» A memory cell interferes within some time interval.

L]

Conclusion : non interference

@ Non interference : the labels of the A-calculus express functional
interference.
@ In the A-calculus with references, labels have to also capture
interference with memory.
» A memory cell interferes within some time interval.

L]

t. T t. t T ¢t

1 4 6

» We can use irreversibility of contexts in the labelled A-calculus
[Blanc].

Conclusion : independence

@ Created principals and extended independence.

Conclusion : independence

@ Created principals and extended independence.

@ Link between non-interference and independence : express these
properties within a common framework.

Conclusion : independence

@ Created principals and extended independence.

@ Link between non-interference and independence : express these
properties within a common framework.

© Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

Conclusion : independence

@ Created principals and extended independence.

@ Link between non-interference and independence : express these
properties within a common framework.

© Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

@ David Van Horn and Harry Mairson showed that kCFA is NP as soon
as k > 0. [ICFP 07].

Conclusion : independence

@ Created principals and extended independence.

@ Link between non-interference and independence : express these
properties within a common framework.

© Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

@ David Van Horn and Harry Mairson showed that kCFA is NP as soon
as k > 0. [ICFP 07].

© Simple proofs for safety properties.

