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Security and Programming languages

@ Restricting rights of downloaded programs is not sufficient...

@ ... since attackers can borrow privileges from local programs [Hardy].




First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.
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@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].
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First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.
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First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].
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First approach : stack inspection

@ Used in Java and C#.

@ Before executing a sensitive action, one inspects the chain of function
calls leading to that action.

@ Problem : there remains (indirect) ways of acting outside function
calls [Fournet-Gordon].
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Second approach : Information Flow

@ Data are classified in several categories and their propagation is
tracked during program execution.
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o Data are classified in several categories and their propagation is
tracked during program execution.

o Non-interference : public output does not rely on secret inputs.

.'.x
U
‘A




Second approach : Information Flow

o Data are classified in several categories and their propagation is
tracked during program execution.

o Non-interference : public output does not rely on secret inputs.

e Static analysis is do-able even on complete languages (FlowCaml,
JIF).
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Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].
Alice and Bob compete for a contract; Charlie is the buyer.
Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.
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Third approach : the Chinese Wall

Conflicts of interest in « economy » [Brewer-Nash].
Alice and Bob compete for a contract; Charlie is the buyer.
Alice and Bob fix the price of the contract.

Charlie wants to negotiate the price.

@ Charlie may interact with Alice and Bob.

@ But as soon as Charlie interacts with Alice, Charlie may no longer
interact with Bob.
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Summary

Safety policy Safety property

Stack Inspection -

Flow Information | Non interference

Chinese Wall ?

Objectives :
@ define the Chinese Wall in the A-calculus.

@ examine the safety property of the Chinese Wall policy.



A-calculus, principals and
independence



Ap-calculus : a A-calculus with principals

@ Alice, Bob, Charlie are principals.
AB,...
@ Terms of \,-calculus :
M, N X Variable
Ax.M)”  Abstraction

| (
| (MN)*  Application

@ Values :

V= (Ax.M)A



Ap-calculus : a A-calculus with principals

@ Alice, Bob, Charlie are principals.
AB,...
@ Terms of \,-calculus :
M, N = x Variable

| (Ax.M)*  Abstraction

| (MN)*  Application
o Values :

V= (Ax.M)A

@ Remark : principals differ from labels in the labelled A-calculus.
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An example of reduction in the \,-calculus

@B
|
/@< E AN
AaxC z Ay© oz :
Ay y



Basic properties of the \,-calculus

e Confluence
e Finite Developments

e Standardisation



Reduction ignoring a principal

Definition

(Ax.N)EP)C

The reduction M M’ ignores A iff A¢ {B, C}.

) A
o Also written M A, M’

o We write M 2 M’ if every reduction step ignores A.
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Reduction ignoring a principal

Definition

: ((Ax.N)BP)C 0 )
The reduction M ———— M' ignores A iff A ¢ {B, C}.

) A
o Also written M A, M’

o We write M 25 M/ if every reduction step ignores A

Example :
W
|
@< E AN
1B 1A

AaxC z Ay© oz
\
Ay© y



@ Actions of A and B are independent if they commute.
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@ Actions of A and B are independent if they commute.
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@ Actions of A and B are independent if they commute.



Independence

Definition (Independence)
The reduction R : M — N is independent of the interaction between A

and B iff there exists Ry : M LN My and Rg : M BLEN Mg such that
R<R (/e R/Rl is empty) with R’ = Ra; (RB/RA) = Rpg; (RA/RB)
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Independence

Definition (Independence)
The reduction R : M — N is independent of the interaction between A

and B iff there exists Ry : M LN My and Rg : M BLEN Mg such that
R<R (/e R/Rl is empty) with R’ = Ra; (RB/RA) = Rpg; (RA/RB)

M
<A 1B
M, N M,
R/R,". “RR,



Independence : example 1/2
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This reduction is not independent of the interaction between A and B.



Independence : example 2/2
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Independence : example 2/2
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This reduction is independent of the interaction between A and B.



@ A A-calculus with principals.

o A safety property : independence.
@ How to express the Chinese Wall policy in the \,-calculus?
» This policy relies on history.

» We use the labelled A-calculus to track history of interactions.

@ Which safety property is guaranteed by the Chinese Wall policy ?

» We show that a reduction following the Chinese Wall policy between A
and B is independent of the interaction between A and B.
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The A,-calculus : summary

@ A A-calculus with principals.

o A safety property : independence.
@ How to express the Chinese Wall policy in the A,-calculus?
» This policy relies on history.
» We use the labelled A-calculus to track history of interactions.
@ Which safety property is guaranteed by the Chinese Wall policy ?
» We show that a reduction following the Chinese Wall policy between A
and B is independent of the interaction between A and B.



A-calculus

and
the Chinese Wall



The labelled \,-calculus

Terms M, N = x
| (Ax.M)A
| (Mn)*
| a:M
Atomic labels a, b [a] | |
Compound labels «, 8 := Aajar---a,B n>0
Values V, W= Ox.N)A|a:V



Labelled reduction

The redex name is name(R) = «.
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Labelled reduction : an example

o \
P AN IBjcA|C]
AxA z A z — |
| Ay lB[C\A]CJ
Ayc y z
Y

(x-(Ayy))*2)€2)" — ([CAT: (Ay.y)€ 2)°
— [B[CA|C]: |B[CA|C]|:z



@ Head sequence : 7(x) = 7((Ax.M)A) = 7((MN)*) = 0
7(a: M) = ar(M)
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Independence and labels

@ Head sequence : 7(x) = 7((Ax.M)A) = 7((MN)*) =0
7(a: M) = ar(M)

» Example : 7(a: b: c: (Ax.x)") = abc
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Independence and labels

@ Head sequence : 7(x) = 7((Ax.M)A) = 7((MN)*) =0
7(a: M) = ar(M)

@ Principals contained in atomic or compound labels :

Princ(Aa;...a,B) = {A, B} Ui<i<, Princ(a;)
Princ([«]) = Princ(|a|) = Princ(w)

Definition (Separation)

A sequence of atomic labels a; ... a, separates the principals A and B iff,
for every 1 < i < n, we have {A, B} Z Princ(a;).

e Examples: * [AC]||C[DE]B| separates A et B.
x [DC]||C[AE]B] does not separate A et B.



Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M —» V' is independent of
the interaction between A and B, then (V') separates A and B.
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the interaction between A and B, then (V') separates A and B.
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Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M —» V' is independent of
the interaction between A and B, then (V') separates A and B.
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Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction M —» V' is independent of
the interaction between A and B, then (V') separates A and B.

| |
@b @® \
/. [BC]
e T Ax Y
PN pi 4
¢ c |AC AuC
A )\‘M )\‘MC I/‘l
Voh Nw
[BC]
(lpA
AN
AyC Au€
7
y u

The head sequence [BC|[AC||AC] separates A and B.



Independence and separation

Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.
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Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.
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Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.
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Independence and separation

Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.
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Independence and separation

Theorem

If M — V and if 7(V) separates A and B, then there is a reduction
R : M — W independent of the interaction between A and B.

éA [AA]
B
B
Ay u @
/
@FB A \y
/N Az€
X ]/ ‘
u

*  The label [AA] separates A et B.

* This reduction is independent of the interaction between A and B.



Expressing Chinese Wall in the \,-calculus

@ The Chinese Wall between A and B is written CWW(A, B).

Definition (Chinese Wall)

A reduction follows CYV (A, B) iff every redex R contracted by this
reduction is such that :

{A, B} Z Princ(name(R))




Chinese Wall in the \,-calculus : example 1/2

@B
AN B |
/@C\ z o @ IBICAIC]
Az T c z —
| A‘y lB[C‘A]CJ
C
"V v
Yy
Princ(name(Ry;)) = {A, C}
Princ(name(R;)) = {A,B,C}

This reduction does not follow CW(A, B).



Chinese Wall in the \,-calculus : example 2/2

@B\ " IBC]
C |
AXA z )\x/c \Z — [A‘C]
@ [AC] [A‘CJ
AF‘//C \z [A‘CJ Z
2
y

Princ(name(Ry))
Princ(name(Ry))

{A,
{B,

wabw

This reduction follows CW(A, B).



Correction of CW(A, B)

Theorem (Correction)

If R : M — N follows CW(A, B), then R is independent of the interaction
between A and B.

M
R, R R,
A | B
M, N M,
Ry/R;. RYR,
N'

The Chinese Wall guarantees the independence.



Correction of CW(A, B) : example

at o "
¢ c |
"‘x z Mz jacl
@’ ACl lAc]

)\y/c \J\uc lA\CJC Auc
\ A‘u 1/\1

The reduction follows CW(A, B)...



Correction of CW(A, B) : example

at o "
c C
"‘x z JB, ATz [A:d
@é lACl lAc]
C C |AC| AMC
)\y 2\‘u ?\‘MC |
y o u | u
JA u |
\ [B‘C] /
Py
A‘yC /\MC
I

...hence it is independent of the interaction between A and B



Correction of CW(A, B) : proof

@ Sublabel of a compound label :

a2«
a =X Aai...apBsidi.ai=[f]land a <X
a = Aay...apBsidi.aj=|f]anda=p



Correction of CW(A, B) : proof

@ Sublabel of a compound label :

a2«
a =X Aai...apBsidi.ai=[f]land a <X
a = Aay...apBsidi.aj=|f]anda=p

e Example : o < Ala]|v]|B
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Correction of CW(A, B) : proof

S, S
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S
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M N

For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.
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For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.
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Ri:M=Z .. . 22N, and R < Ry.
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For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Lemma (Completion)

IfR: M S, A N and if for every i, we have name(S;) = «;, then
Ri:M=Z .. . 22N, and R < Ry.
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For 1 <i < n, we write o; = name(S;).
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Lemma (Completion)
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For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Lemma (Reordering)

IFR: M2 . 28 N there is a reduction R : M2 ... 22 N’ such that
(1) {Biticicm CH{aiticicn  (2)ifi<j, then B A8  (3) RS R



Correction of CW(A, B) : proof
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For 1 <i < n, we write o; = name(S;).
We have {A, B} NPrinc(«;) # {A, B}.

Lemma (Reordering)

IFR: M2 . 28 N there is a reduction R : M2 ... 22 N’ such that
(1) {Biticicm CH{aiticicn  (2)ifi<j, then B A8  (3) RS R
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Correction of CW(A, B) : proof

S, S, S S
M 1 2 3 . ___“n N
B, g
B,
R's)|
i R'/R
Bm Pt
U
N/

e If i < j, we have 3; £ 3.

o {’)/,'}1§i§k : elements of {ﬁ;}lg,’gm
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A-calculus and Chinese Wall : summary

@ Safety property : independence
@ Correspondence between labelled lambda calculus and independence

Safety policy Safety property

Stack inspection -

Information flow | Non interference

Chinese Wall Independence




Future works



Objectives

@ Static information flow in the \-calculus

» labelled A-calculus and DCC [Riecke], FlowCaml as [Simonet,
Pottier], DCC+ [Abadil, etc

@ Reduction strategies

» call-by-value A-calculus
» weak A-calculus

@ Adding delta rules

» Imperative features and exceptions

» Safety rules (safety operators : uses or binds)
@ Concurrent features

» Permutation equivalence and Event structures
» Reversible processes (backtracking) [Jean Krivine]
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@ Non interference : the labels of the A-calculus express functional
interference.
@ In the A-calculus with references, labels have to also capture
interference with memory.
» A memory cell interferes within some time interval.

L]
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» We can use irreversibility of contexts in the labelled A-calculus
[Blanc].
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Conclusion : independence

@ Created principals and extended independence.

@ Link between non-interference and independence : express these
properties within a common framework.

© Dynamic labels are a good starting point for an analysis mixing static
and dynamic checks.

@ David Van Horn and Harry Mairson showed that kCFA is NP as soon
as k > 0. [ICFP 07].

© Simple proofs for safety properties.



