Analysis and Caching of Dependencies*

Martín Abadi
Digital Systems Research Center
ma@pa.dec.com

Butler Lampson
Microsoft
blampson@microsoft.com

Jean-Jacques Lévy
INRIA Rocquencourt
Jean-Jacques.Levy@inria.fr

October 26, 1995

Abstract

We address the problem of dependency analysis and caching in the context of the λ-calculus. The dependencies of a λ-term are (roughly) the parts of the λ-term that contribute to the result of evaluating it. We introduce a mechanism for keeping track of dependencies, and discuss how to use these dependencies in caching.

1 Introduction

Suppose that we have evaluated the function application \(f(1, 2) \), and that its result is 7. If we cache the equality \(f(1, 2) = 7 \), we may save ourselves the work of evaluating \(f(1, 2) \) in the future. Suppose further that, in the course of evaluating \(f(1, 2) \), we noticed that the first argument of \(f \) was not accessed at all. Then we can make a more general cache entry: \(f(n, 2) = 7 \) for all \(n \). In call-by-name evaluation, we may not even care about whether \(n \) is defined or not. Later, if asked about the result of \(f(2, 2) \), for example, we may match \(f(2, 2) \) against our cache entry, and deduce that \(f(2, 2) = 7 \) without having to compute \(f \).

There are three parts in this caching scheme: (i) the dependency analysis (in this case, noticing that \(f \) did not use its first argument in the course of the computation); (ii) writing down dependency information, in some way, and caching it; (iii) the cache lookup. Each of the parts can be complex. However, the caching scheme is worthwhile if the computation of \(f \) is expensive and if we expect to encounter several similar inputs (e.g., \(f(1, 2) \), \(f(2, 2) \), ...).

We address the problem of dependency analysis and caching in the context of the λ-calculus. We introduce a mechanism for keeping track of dependencies, and show how to use these dependencies in caching. (However, we stop short of considering issues of cache organization, replacement policy, etc.) Our techniques apply to programs with higher-order functions, and not just to trivial first-order

*Keywords: program analysis and optimization
Contact address: M. Abadi, Digital Equipment Corp., Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA.
examples like \(f(1, 2) \). The presence of higher-order functions creates the need for sophisticated dependency propagation.

As an example, consider the higher-order function:

\[
f \triangleq \lambda x.\lambda y.\text{fst}(x(\text{fst}(y))(\text{snd}(y)))
\]

where pairs are encoded as usual:

\[
\langle a, b \rangle \triangleq \lambda x.x(a)(b) \quad \text{fst} \triangleq \lambda p.p(\lambda u.\lambda z.u) \quad \text{snd} \triangleq \lambda p.p(\lambda u.\lambda z.z)
\]

The function \(f \) takes two arguments \(x \) and \(y \); presumably \(x \) is a function and \(y \) is a pair. The function applies \(x \) to the first and second components of \(y \), and then extracts the first component of the result. A priori, it may seem that \(f \) depends on \(x \) and on all of \(y \). Consider now the arguments:

\[
g \triangleq \lambda u.\lambda z.(z, u) \quad r \triangleq \langle 1, 2 \rangle
\]

\[
g' \triangleq \lambda u.\lambda z.(z, \langle u, z \rangle) \quad r' \triangleq \langle 2, 2 \rangle
\]

Both functions \(g \) and \(g' \) seem to depend on their arguments. However, all these a priori expectations are too coarse. After evaluating \(f(g)(r) \) to 2, we can deduce that \(f(g')(r') \) also yields 2. For this we need to express that \(f \) accesses only part of the pair that \(g \) produces, that \(g \) accesses only part of the pair that \(f \) feeds it, and that \(g \) and \(g' \) look sufficiently similar. We develop a simple way of capturing and of exploiting these fairly elaborate dependencies.

Our approach is based on a labelled \(\lambda \)-calculus [Lev78]. Roughly, our labelled \(\lambda \)-calculus is like a \(\lambda \)-calculus with names for subexpressions. In the course of computation, the names propagate, and some of them end up in the result. If \(a \) reduces to \(v \), then \(v \) will contain the names of the subexpressions of \(a \) that contributed to producing \(v \). Then, if we are given \(a' \) that coincides with \(a \) on those subexpressions, we may deduce that \(a' \) reduces to \(v \).

In our example, we would proceed as follows. First, when given the expression \(f(g)(r) \), we would label some of its subexpressions. The more labels we use, the more information we obtain. In this example, which is still relatively simple, we label only components of \(g \) and \(r \):

\[
\hat{g} \triangleq \lambda u.\lambda z.(e_0; z; e_1; u) \quad \hat{r} \triangleq \langle e_2; 1, e_3; 2 \rangle
\]

where \(e_0 \), \(e_1 \), and \(e_3 \) are distinct labels. We extend the reduction rules of the \(\lambda \)-calculus to handle labels; in this case, \(f(\hat{g})(\hat{r}) \) reduces to \(e_0; e_3; 2 \). Stripping off all the labels, we can deduce that \(f(g)(r) \) reduces to 2. Studying the labels, we may notice that \(e_1 \) and \(e_2 \) do not appear in the result. As we will prove, this means that \(f(g^*)(r^*) \) reduces to 2 for any expressions \(g^* \) and \(r^* \) of the forms:

\[
g^* \triangleq \lambda u.\lambda z.(z; \ldots) \quad r^* \triangleq \langle \ldots; 2 \rangle
\]

Obviously, \(g' \) and \(r' \) match this pattern, and hence \(f(g')(r') \) reduces to 2. As this small example suggests, our techniques for dependency analysis are effective, reasonably efficient, and hence potentially practical.

In the next section we review the background for our work and some related work. In section 3, we study dependency analysis and caching in the pure \(\lambda \)-calculus. In sections 4, we extend our techniques to a more realistic language; this language includes records and has a weak operational semantics based on explicit substitutions [ACCL91, Fie90].
2 Motivation and Related Work

The motivation for this work arose in the context of a system-modelling system called Vesta [LM93, HL93]—roughly a replacement for tools like make and rcs. In Vesta, the analogue of a makefile is a program written in a specialized, untyped, higher-order, lazy functional language. The functional character of the language guarantees that the results of system building are predictable and reproducible.

In Vesta, the basic computation steps are expensive calls to functions like compile and link; hence it is important to avoid unnecessary recomputations. The programs can be reasonably large; it is therefore desirable to notice cache hits for large subexpressions rather than for individual calls to primitives (e.g., individual compilations). Furthermore, irrelevant changes in parameters are expected to be frequent; so a simple memoisation [Mic68, Hug85] would not suffice, and a more savvy dependency analysis is necessary.

This paper, however, is not about Vesta. Research on caching in Vesta is currently in progress. Here we discuss techniques for the λ-calculus; these are somewhat simpler, easier to explain, and perhaps of more general interest.

In the λ-calculus, the work that seems most closely related to ours is that of Field and Teitelbaum [FT90]. They have investigated the problem of reductions of similar expressions (which may not even yield the same result). Their approach is based on a λ-calculus with a new “fork” primitive (Δ) rather than on a labelled λ-calculus. For example, they can represent the two similar expressions b(a) and b′(a) as the single expression Δ(b, b′)(a), with a rule for duplication: Δ(b, b′)(a) = Δ(b(a), b′(a)). Their algorithm seems particularly appropriate for dealing with pairs of expressions that differ at only one or a few predictable subexpressions.

Dependency analysis is also similar to traditional analyses such as strictness analysis (e.g., [BHA86]). There is even a recent version of strictness analysis that relies on a labelled λ-calculus [GVSar]. Strictness analysis is concerned with what parts of a program must be evaluated; in contrast, for doing cache lookups we need to know what parts may affect the result. Furthermore, we do not use approximate abstract interpretations, but rather rely on previous, actual executions of programs similar to the one being analyzed.

3 Dependencies in the Pure λ-calculus

In this section we consider incremental computation in the context of the pure λ-calculus. This is a minimal system, but it enables us to illustrate our ideas. First we review some classical results that suggest an approach to dependency analysis; then we describe a labelled calculus, a basic scheme for caching, some examples, and finally a more sophisticated scheme for caching.

3.1 The λ-calculus

The standard λ-calculus has the following grammar for expressions:

\[
\begin{align*}
a, b, c &::= \text{terms} \\
&| x \quad \text{variable (} x \in V \text{)} \\
&| \lambda x.a \quad \text{abstraction (} x \in V \text{)} \\
&| b(a) \quad \text{application}
\end{align*}
\]
where \(V \) is a set of variables.

The \(\beta \) rule is, as usual:

\[
(\lambda x.b)a \rightarrow b[a/x]
\]

where \(b[a/x] \) is the result of replacing \(x \) with \(a \) in \(b \). When \(C \) is a context (a term with a hole), we write \(C\{a\} \) for the result of filling \(C \)'s hole with \(a \) (possibly with variable captures). We adopt the following congruence rule:

\[
a \rightarrow b \\
\frac{C\{a\} \rightarrow C\{b\}}{}
\]

The relation \(\rightarrow^* \) is the reflexive, transitive closure of \(\rightarrow \). A computation stops when it reaches a normal form.

We can now reformulate the problem posed in the introduction. Suppose that \(a \) is a term and \(a \rightarrow^* v \). When can we say that \(b \rightarrow^* v \) simply by comparing \(a \) and \(b \)? In order to address this question, we recall a few known theorems.

Theorem 1 (Church-Rosser) The calculus is confluent.

Theorem 2 (Normalization) If a term has a normal form then leftmost outermost reduction reaches this normal form.

Clearly the leftmost outermost reduction reduces only subexpressions necessary to get to the normal form.

A prefix is an expression possibly with several missing subexpressions:

\[
\begin{align*}
a, b, c &::= &\text{prefixes} \\
&| &\text{hole} \\
&| &x \quad \text{variable} (x \in V) \\
&| &\lambda x.a \quad \text{abstraction} (x \in V) \\
&| &b(a) \quad \text{application}
\end{align*}
\]

A prefix \(a \) is prefix of another prefix (or expression) \(b \) if \(a \) matches \(b \) except in some holes; we write \(a \preceq b \). For instance, we have that \(_{(x)(_)(\lambda y._)(y)(_)(_))} \preceq y(x)(_)(\lambda y._)(y) \). For the purposes of reduction, \(_ \) behaves like a free variable; for example, \((\lambda x.x(x)))(_) \rightarrow a(_).

Proposition 1 (Maximality of terms) If \(b \preceq d \) and \(b \) is a term, then \(b = d \).

Proposition 2 (Monotonicity) If \(a, b, \) and \(c \) are prefixes, \(a \rightarrow^* b \), and \(a \preceq c \), then there exists a prefix \(d \) such that \(c \rightarrow^* d \) and \(b \preceq d \).

Theorem 3 (Stability) If a term has a normal form, then there is a minimum prefix of the term which has a normal form.

The stability theorem follows from the stability of Böhm trees [Ber78].

We can give a first solution to our problem, as follows. Suppose that \(a \rightarrow^* v \) and \(v \) is a term in normal form. Let \(a_0 \) be the minimum prefix of \(a \) such that \(a_0 \rightarrow^* v \). Given \(b \), if \(a_0 \preceq b \) then we can reuse the computation \(a \rightarrow^* v \) and conclude that \(b \rightarrow^* v \).

It remains for us to compute \(a_0 \). As we will show, this computation can be performed at the same time as we evaluate \(a \), and does not require much additional work. Intuitively, we will mark every subexpression of \(a \) necessary to compute \(v \) along the leftmost outermost reduction.
3.2 A labelled λ-calculus

In order to compute minimum prefixes as discussed above, we follow the underlined method of Barendregt [Bar84], generalized by use of labels as in the work of Field, Lévy, or Maranget [Fie90, Lév78, Mar91]. Our application of this method gives rise to a new labelled calculus, which we define next.

We consider a λ-calculus with the following extended grammar for expressions:

$$
\begin{align*}
 a, b, c & ::= \quad \text{terms} \\
 & \quad \ldots \quad \text{as in section 3.1} \\
 & \quad ex \quad \text{labelled term } (e \in E)
\end{align*}
$$

where E is a set of labels.

There is one new one-step reduction rule:

$$(c:b)(a) \quad \rightarrow \quad e:(b(a))$$

The essential purpose of this rule is to move labels outwards as little as possible in order to permit β reduction. For example, $(e_0:((\lambda x.x)x)(e_1:y))$ reduces to $e_0:((\lambda x.x)(e_1:y))$ via the new rule, and then yields $e_0((e_1;y)(e_1:y))$ by the β rule.

There are clear correspondences between the unlabelled calculus and the labelled calculus. When a' is a labelled term, let $\text{strip}(a')$ be the unlabelled term obtained by removing every label in a'.

Proposition 3 (Simulation) Let a, b be terms, and let a', b' be labelled terms.

- If $a \rightarrow b'$, then $\text{strip}(a') \rightarrow^* \text{strip}(b')$.
- If $a = \text{strip}(a')$ and $a \rightarrow b$, then $a' \rightarrow^* b'$ for some b' such that $b = \text{strip}(b')$.

The labelled calculus enjoys the same fundamental theorems as the unlabelled calculus: confluence, normalization, and stability. The confluence theorem follows from Klop's dissertation, because the labelled calculus is a regular combinatorial reduction systems [Klo80]; the labelled calculus is left-linear and without critical pairs. The normalization theorem can also be derived from Klop's work; alternatively it can be obtained from results about abstract reductions systems [GLM92], via O'Donnell's notion of left systems [O'D77]. The proof of the stability theorem is similar to the one in [HL91].

3.3 Basic caching

Suppose that $a \rightarrow^* v$, where a is a term and v is its normal form. Put a different label on every subexpression of a, obtaining a labelled term a'. By Proposition 3, $a' \rightarrow^* v'$ for some v' such that $v = \text{strip}(v')$. Consider all the labels in v'; to each of these labels corresponds a subterm of a' and thus of a. Let $G(a)$ be a prefix obtained from a by replacing with _ each subterm whose label does not appear in v'.

We can prove that $G(a)$ is well-defined. In particular, the value of $G(a)$ does not depend on the choice of a' or v'; and if the label for a subterm of a appears in v' then so do the labels for all subterms that contain it.

When $a \rightarrow^* v$, we may cache the pair $(G(a), v)$. When we consider a new term b, it is sufficient to check that $G(a) \leq b$ in order to produce v as the result of b. The next theorem states that $G(a)$ is the part of a sufficient to get v (what we called a_0 in section 3.1).
Theorem 4 If a is a term, v is a term in normal form, $a \rightarrow^* v$, and $G(a) \preceq b$, then $b \rightarrow^* v$.

Theorem 4 supports a simple caching strategy. In this strategy, we maintain a cache with the following invariants:

- the cache is a set of pairs (a_0, v), consisting each of an unlabelled prefix a_0 and an unlabelled term v in normal form;
- if (a_0, v) is in the cache and $a_0 \preceq b$ then $b \rightarrow^* v$.

Therefore, whenever we know that v is the normal form of a, we may add to the cache the pair $(G(a), v)$. Theorem 4 implies that this preserves the cache invariants.

Suppose that a is a term without labels. In order to evaluate a, we do:

- if there is a cache entry (a_0, v) such that $a_0 \preceq a$, then return v;
- otherwise:
 - let a' be the result of adding distinct labels to a, at every subexpression;
 - suppose that, by reduction, we find that $a' \rightarrow^* v'$ for v' in normal form;
 - let $v = \text{strip}(v')$ and $a_0 = G(a)$;
 - optionally, add the entry (a_0, v) to the cache;
 - return v.

Both cases preserve the cache invariants. In both, the v returned is such that $a \rightarrow^* v$.

In a refinement of this scheme, we may put labels at only some subexpressions of a. The function G can be easily generalized to this case: in this case, $G(a)$ should replace with a subexpressions of a only if this subexpression is initially labelled. The more labels we use, the more general the prefix $G(a)$; this results in better cache entries, at a moderate cost. However, in examples, we prefer to use few labels in order to enhance readability.

Another refinement of the scheme consists in caching pairs of labelled prefixes and results. The advantage of not stripping the labels is that the cache records the precise dependencies of results on prefixes. We return to this subject in section 3.5.

3.4 Examples

The machinery that we have developed so far handles the example of the introduction (the term $f(g)(r)$). We leave the step-by-step calculation for that example as an exercise to the reader. As that example illustrates, pairing behaves nicely, in the sense that $\text{fst}(a, b)$ depends only on a, as one would expect.

As a second example, we show that the Church booleans behave nicely too. The encoding of booleans is as usual:

\[
\text{true} \triangleq \lambda x.\lambda y.x \quad \text{false} \triangleq \lambda x.\lambda y.y \quad \text{if} \ a \ \text{then} \ b \ \text{else} \ c \ \triangleq \ a(b)(c)
\]

In the setting of the labelled λ-calculus, we obtain as a derived rule that:

\[
\text{if} \ (e; a) \ \text{then} \ b \ \text{else} \ c \rightarrow^* e; (\text{if} \ a \ \text{then} \ b \ \text{else} \ c)
\]
It follows from this rule that, for example,
\[(\lambda x. if e_0 \cdot x \text{ then } e_1 \cdot y \text{ else } e_2 \cdot z)(e_3 \cdot \text{true}) \rightarrow^* e_0 : e_1 : e_y \]
We obtain the unlabelled prefix:
\[(\lambda x. \text{if } x \text{ then } y \text{ else } _{})(\text{true}) \]
and we can deduce that any expression that matches this prefix reduces to \(y \).

Similar examples arise in the context of Vesta (see section 2). A simple one is the term:
\[(\text{if } isC(\text{file}) \text{ then } \text{Compile} \text{ else } M3\text{compile})(\text{file}) \]
where \(isC(f) \) returns true whenever \(f \) is a C source file, and \(file \) is either a C source file or an M3 source file. If \(isC(\text{file}) \) returns true, then the term
\((\text{if } isC(\text{file}) \text{ then } \text{Compile} \text{ else } M3\text{compile})(\text{file}) \)
yields \(\text{Compile}(\text{file}) \). Using labels, we can easily discover that this result does not depend on the value of \(M3\text{compile} \), and hence that it need not be recomputed when that value changes. In fact, even \(isC(\text{file}) \) and the conditional need not be reevaluated.

3.5 Limitations of the basic caching scheme

The basic caching scheme of section 3.3 has some limitations, illustrated by the following two concrete examples.

Suppose that we have the cache entry:
\[(((\lambda x. \langle \text{snd}(x), \text{fst}(x) \rangle)(\langle \text{true, false} \rangle), \langle \text{false, true} \rangle) \]
Suppose further that we wish to evaluate the term:
\[\text{fst}((\lambda x. \langle \text{snd}(x), \text{fst}(x) \rangle)(\langle \text{true, false} \rangle)) \]
The cache entry enables us to reduce this term to \(\text{fst}(\langle \text{false, true} \rangle) \), and eventually we obtain false. However, in the course of this computation, we have not learned how the result depends on the input. We are unable to make an interesting cache entry for the term we have evaluated. Given the new, similar term
\[\text{fst}((\lambda x. \langle \text{snd}(x), \text{fst}(x) \rangle)(\langle \text{false, false} \rangle)) \]
we cannot immediately tell that it yields the same result.

As a second example, suppose that we have the cache entry:
\[(\text{if } \text{true then } \text{true else } _, \text{true}) \]
and that we wish to evaluate the term:
\[\text{not}(\text{if } \text{true then } \text{true else } \text{true}) \]
In our basic caching scheme, we would initially label this term, for example as:
\[\text{not}(\text{if } \text{true then } e_0 \cdot \text{true else } e_1 \cdot \text{true}) \]
Then we would have to reduce this term, and as part of that task we would have to reduce the subterm (if true then e_0; true else e_1; true). At this point our cache entry would tell us that the subterm yields true, modulo some labels. We can complete the reduction, obtaining false, and we can make a trivial cache entry:

$$(\text{not}(\text{if true then true else true}), \text{false})$$

However, we have lost track of which prefix of the input determines the result, and we cannot make the better cache entry:

$$(\text{not}(\text{if true then true else } _, \text{false})$$

The moral from these examples is that cache entries should contain dependency information that indicates how each part of the result depends on each part of the input. One obvious possibility is not to strip the labels of prefixes and results before making cache entries; after all, these labels encode the desired dependency information. We have developed a refinement of the basic caching scheme that does precisely that, but we omit its detailed description in this paper. Next we give another solution to the limitations of the basic caching scheme.

3.6 A More Sophisticated Caching Scheme

In this section we describe another caching scheme. This scheme does not rely directly on the labelled λ-calculus, but it can be understood or even implemented in terms of that calculus.

With each reduction $a \rightarrow^{*} v$ of a term a, we associate a function d from prefixes of v to prefixes of a. We write $a \rightarrow_{d}^{*} v$ to indicate the function. This annotated reduction relation is defined by the following rules.

- **Reflexivity:**

 $$a \rightarrow_{id}^{*} a$$

 where id is the identity function on prefixes.

- **Transitivity:**

 $$a \rightarrow_{d}^{*} b \quad b \rightarrow_{d'}^{*} c \quad \rightarrow_{(d',d)}^{*} c$$

 where $d'; d$ is the function composition of d' and d.

- **Congruence:** Given a function d from prefixes of b to prefixes of a, we define a function $C\{d\}$ from prefixes of $C\{b\}$ to prefixes of $C\{a\}$. If $c_0 \preceq C$ then $C\{d\}(c_0) = c_0$; otherwise, there exists a unique $b_0 \preceq b$ such that $c_0 = C\{b_0\}$, and we let $C\{d\}(c_0) = C\{d(b_0)\}$. We obtain the rule:

 $$a \rightarrow_{d}^{*} b \quad \rightarrow_{C\{d\}}^{*} C\{b\}$$

- **β:** If $c_0 \preceq b(a/x)$, then there exist least $a_0 \preceq a$ and $b_0 \preceq b$ such that $c_0 \preceq b_0(a_0/x)$. We obtain the rule:

 $$(\lambda x.b)(a) \rightarrow_{d_{\beta}}^{*} b(a/x)$$

 where $d_{\beta}(c_0) = (\lambda x.b_0)(a_0)$, and a_0 and b_0 are defined from c_0 as above.
The rules may seem a little mysterious, but they can be understood in terms of labels. Imagine that every subexpression of a is labelled (with an invisible label), that $a \rightarrow^* v$, and that $v_0 \preceq v$; then $d(v_0)$ is the least prefix of a that contains all of the labels that ended up in v_0.

The rules give rise to a new caching scheme. The cache entries in this scheme consist of judgements $a \rightarrow^*_d v$, where a and v are terms and d is a function from prefixes of v to prefixes of a. The representation of d can be its graph (i.e., a set of pairs of prefixes) or a formal expression (written in terms of id, d_j, etc.); it can even be the pair of a labelling of a and a corresponding labelling of v. Whenever we encounter a term b such that $d(v) \preceq b$, we may deduce that $b \rightarrow^*_d v$:

Theorem 5 If a is a term, $a \rightarrow^*_d v$, and $d(v) \preceq b$, then $b \rightarrow^*_d v$.

This caching scheme does not suffer from the limitations of the basic one. In particular, each cache entry contains dependency information for every part of the result, rather than for the whole result. Moreover, the rules of inference provide a way of combining dependency information for subcomputations; therefore, we can make an interesting cache entry whenever we do an evaluation, even if we used the cache in the course of the evaluation.

4 Dependencies in a Weak λ-calculus with Records

The techniques developed in the previous section are not limited to the pure λ- calculus. In this section, we demonstrate their applicability to a more realistic language, with primitive booleans, primitive records, and explicit substitutions. The operational semantics of this language is weak (so function and record closures are not reduced).

4.1 A weak calculus with records

We consider an extended λ-calculus with the following grammars for terms and for substitutions:

$$a, b, c ::= \ldots \quad \text{terms}$$

$$a[s] \quad \text{as in section 3}$$

$$\langle l_1 = a_1, \ldots, l_n = a_n, \text{else} = a_{n+1} \rangle \quad \text{record} \ (l_i \in L, \text{distinct})$$

$$a.l \quad \text{selection} \ (l \in L)$$

$$\text{true} \quad \text{true}$$

$$\text{false} \quad \text{false}$$

$$\text{if } a \text{ then } b \text{ else } c \quad \text{conditional}$$

$$s ::= x_1 = a_1, \ldots, x_n = a_n, \text{else} = a_{n+1} \quad \text{substitutions} \ (x_i \in V, \text{distinct})$$

where L is a set of names (field names for records) and else is a keyword. As we show below, the “else” clauses in records and substitutions are useful in dependency analysis. We typically think of the “else” clauses as corresponding to run-time errors (missing fields, unbound variables). The term a_{n+1} in an “else” clause can be arbitrary; a term that represents a run-time error will do.
We use the following notation for extending substitutions. Let s be $x_1 = a_1, \ldots, x_n = a_n, else = a_{n+1}$; then $(x = a) \cdot s$ is $x = a, x_1 = a_1, \ldots, x_n = a_n, else = a_{n+1}$ if x is not among the variables x_1, \ldots, x_n, and it is $x = a, x_1 = a_1, \ldots, x_{i-1} = a_{i-1}, x_i = a_i, \ldots, x_n = a_n, else = a_{n+1}$ if x is x_i.

The one-step reduction rules now use explicit substitutions:

$$
\begin{align*}
 x[x_1 = a_1, \ldots, x_n = a_n, else = a_{n+1}] & \rightarrow a_i & (x = x_i) \\
 x[x_1 = a_1, \ldots, x_n = a_n, else = a_{n+1}] & \rightarrow a_{n+1} & (x \neq \text{all } x_i) \\
 (b(a))[s] & \rightarrow b[s](a[s]) \\
 ((\lambda x.b)[s])a & \rightarrow b[(x = a) \cdot s] \\
 (b,l)[s] & \rightarrow (b[s],l) \\
 ((l_1 = a_1, \ldots, l_n = a_n, else = a_{n+1})[s],l & \rightarrow a_i[s] & (l = l_i) \\
 ((l_1 = a_1, \ldots, l_n = a_n, else = a_{n+1})[s],l & \rightarrow a_{n+1}[s] & (l \neq \text{all } l_i) \\
 \text{true}[s] & \rightarrow \text{true} \\
 \text{false}[s] & \rightarrow \text{false} \\
 \text{if } a \text{ then } b \text{ else } c[s] & \rightarrow \text{if } a[s] \text{ then } b[s] \text{ else } c[s] \\
 \text{if true then } b \text{ else } c & \rightarrow b \\
 \text{if false then } b \text{ else } c & \rightarrow c
\end{align*}
$$

An active context is a context generated by the following grammar:

$$
\begin{align*}
 C & ::= & \text{active contexts} \\
 & \mid & \text{hole} \\
 & \mid & C(a) & \text{application (left)} \\
 & \mid & b(C) & \text{application (right)} \\
 & \mid & a[S] & \text{closure} \\
 & \mid & C.l & \text{selection } (l \in L) \\
 & \mid & \text{if } C \text{ then } b \text{ else } c & \text{conditional (guard)} \\
 & \mid & \text{if } a \text{ then } C \text{ else } c & \text{conditional (then)} \\
 & \mid & \text{if } a \text{ then } b \text{ else } C & \text{conditional (else)}
\end{align*}
$$

$$
\begin{align*}
 S & ::= & x_1 = a_1, \ldots, x_i = C_i, \ldots, x_n = a_n, else = a_{n+1} & \text{substitutions} \\
 & \mid & x_1 = a_1, \ldots, x_n = a_n, else = C
\end{align*}
$$

We adopt the following congruence rule: for any active context C,

$$
\begin{align*}
 a & \rightarrow b \\
 C[a] & \rightarrow C[b]
\end{align*}
$$

Notice that this rule allows us to compute inside substitutions, but not under λ, inside records, or in the term part of closures. The relation \rightarrow^* is the reflexive, transitive closure of \rightarrow.

The prefix ordering for this language is interesting. Let s be the substitution $x_1 = a_1, \ldots, x_n = a_n, else = a_{n+1}$, let r be the record $(l_1 = a_1, \ldots, l_n = a_n, else = a_{n+1})$. We associate with s and r the following functions from variables or field names to prefixes:

$$
\begin{align*}
 [s](x) = \begin{cases}
 a_i & \text{if } x = x_i \\
 a_{n+1} & \text{if } x \neq \text{all } x_i
 \end{cases}
\end{align*}
\quad
\begin{align*}
 [r](l) = \begin{cases}
 a_i & \text{if } l = l_i \\
 a_{n+1} & \text{if } l \neq \text{all } l_i
 \end{cases}
\end{align*}
$$

The prefix ordering is as before except for substitutions and records where $s \preceq s'$ if $[s](x) \leq [s'](x)$ for all $x \in V$, and $r \preceq r'$ if $[r](l) \leq [r'](l)$ for all $l \in L$. According
to this definition, the order of the components of substitutions and records does not matter. In addition, we obtain that, if the "else" clause has a hole, then any other holes can be collapsed into it; for example, the prefixes \(l_1 = a, l_2 = _, \text{else} = _, \) \(l_3 = _, l = a, \text{else} = _, \) and \(l = a, \text{else} = _ \) are all equivalent.

This \(\lambda \)-calculus enjoys the same theorems as the pure \(\lambda \)-calculus of section 3.1 (modulo that now \(\leq \) is actually a pre-order, not an order). These theorems should not be taken for granted, however. Their proofs are less easy, but they can be done by using results on abstract reduction systems [GLM92]. The stability theorem ensures that there is a minimum prefix for obtaining any result; moreover, the maximality and monotonicity propositions are the basis for a caching mechanism.

Finally, we should note that, in this calculus, closures may contain irrelevant bindings. For example, consider the function closure \((\lambda y.y)[x = z, \text{else} = w] \), where \(z \) is a variable and \(w \) is an arbitrary normal form. This closure reduces only to itself; the irrelevant substitution does not disappear. In this case, we will consider that the result depends on the substitution. We could add rules for minimizing substitutions but, for the sake of simplicity, we do not.

4.2 A weak labelled calculus with records

Following the same approach as in section 3, we define a labelled calculus:

\[
\begin{align*}
\text{terms} & ::= \quad \text{terms} \\
| & \quad \ldots \quad \text{as in section 4.1} \\
| & \quad e:a \quad \text{labelled term} \ (e \in E)
\end{align*}
\]

There are new one-step reduction rules in addition to those of section 4.1:

\[
\begin{align*}
(e:b)(a) & \rightarrow e:(b(a)) \\
(e:b)[s] & \rightarrow e:(b[s]) \\
(e:b).l & \rightarrow e:(b.l)
\end{align*}
\]

if \((e:a)\) then \(b\) else \(c\) \(\rightarrow e:((\text{if } a \text{ then } b \text{ else } c))\)

The grammar for active contexts is extended with one clause:

\[
\begin{align*}
\text{active contexts} & ::= \quad \text{active contexts} \\
| & \quad \ldots \quad \text{as in section 4.1} \\
| & \quad e:C \quad \text{labelled context} \ (e \in E)
\end{align*}
\]

The congruence rule is as usual—it permits reduction in any active context.

4.3 Dependency analysis and caching (by example)

The labelled calculus provides a basis for dependency analysis and caching. The sequence of definitions and results would be much as in section 3. We do not go through it, but rather give one instructive example.

We consider the term:

\[
((\lambda x.x.l_1)(l_1 = y_1, l_2 = y_2, \text{else} = w))[y_1 = z_1, y_2 = z_2, \text{else} = w]
\]

This term yields \(z_1 \). We label the term, obtaining:

\[
((\lambda x.x.l_1)(l_1 = (e_1:y_1), l_2 = (e_2:y_2), \text{else} = (e_3:w)))[y_1 = (e_4:z_1), y_2 = (e_5:z_2), \text{else} = (e_6:w)]
\]
This labelled term yields $e_1; e_4; z_1$, so we immediately conclude that the following prefix also yields z_1:

$$((\lambda x.x.l_1)(l_1 = y_1, l_2 = _ , else = _))[y_1 = z_1, y_2 = _, else = _]$$

Thanks to our definition of the prefix ordering, this prefix is equivalent to:

$$((\lambda x.x.l_1)(l_1 = y_1, else = _))[y_1 = z_1, else = _]$$

Suppose that, in our cache, we record this prefix with the associated result z_1; and suppose that later we are given the term:

$$((\lambda x.x.l_1)(l_1 = y_1, l_3 = y_{17}(y_{17}), else = w'])[y_{17} = z_1, y_1 = z_1, else = w']$$

This term matches the prefix in the cache entry, so we immediately deduce that it reduces to z_1.

As this example illustrates, the labelled reductions help us identify irrelevant components of substitutions and records. The prefix ordering and the use of $else$ then allow us to delete those irrelevant components and to add new irrelevant components.

In some applications, irrelevant components may be common. For example, in the context of Vesta, a large record may bundle compiler switches, environment variables, etc.; for many computations, most of these components are irrelevant. In such situations, the ability to detect and to ignore irrelevant components is quite useful—it means more cache hits.

5 Conclusions

We have developed techniques for caching in higher-order functional languages. Our approach relies on using dependency information from previous executions in addition to the outputs of those executions. This dependency information is readily available and easy to exploit (once the proper tools are in place); it yields results that could be difficult to obtain completely statically. The techniques are based on a labelled λ-calculus and, despite their pragmatic simplicity, benefit from a substantial body of theory.

Acknowledgements

We thank Tim Teitelbaum for discussions about his work with John Field; Allan Heydon, Jim Horning, Roy Levin, and Yuan Yu for discussions about Vesta; Alain Deutsch and Simon Peyton Jones for comments on strictness analysis; and Georges Gonthier for assorted remarks on a draft of this paper.

References

