
Explicit Substitutions

M. Abadi∗ L. Cardelli∗ P.-L. Curien† J.-J. Lévy‡

September 18, 1996

Abstract

The λσ-calculus is a refinement of the λ-calculus where substitu-
tions are manipulated explicitly. The λσ-calculus provides a setting
for studying the theory of substitutions, with pleasant mathematical
properties. It is also a useful bridge between the classical λ-calculus
and concrete implementations.

∗Digital Equipment Corporation, Systems Research Center.
†Ecole Normale Supérieure; part of this work was completed while at Digital Equipment

Corporation, Systems Research Center.
‡INRIA Rocquencourt; part of this work was completed while at Digital Equipment

Corporation, Systems Research Center and Paris Research Laboratory.

1

1 Introduction

Substitution is the éminence grise of the λ-calculus. The classical β rule,

(λx.a)b →β a{b/x}

uses substitution crucially though informally. Here a and b denote two
terms, and a{b/x} represents the term a where all free occurrences of x are
replaced with b. This substitution does not belong in the calculus proper,
but rather in an informal meta-level. Similar situations arise in dealing with
all binding constructs, from universal quantifiers to type abstractions.

A naive reading of the β rule suggests that the substitution of b for
x should happen at once, when the rule is applied. In implementations,
substitutions invariably happen in a more controlled way. This is due to
practical considerations, relevant in the implementation of both logics and
programming languages. The term a{b/x} may contain many copies of b
(for instance, if a = xxxx); without sophisticated structure-sharing mecha-
nisms [15], performing substitutions immediately causes a size explosion.

Therefore, in practice, substitutions are delayed and explicitly recorded;
the application of substitutions is independent, and not coupled with the
β rule. The correspondence between the theory and its implementations
becomes highly nontrivial, and the correctness of the implementations can
be compromised.

In this paper we study the λσ-calculus, a refinement of the λ-calculus [1]
where substitutions are manipulated explicitly. Substitutions have syntactic
representations, and if a is a term and s is a substitution then the term a[s]
represents a with the substitution s. We can now express a β rule with
delayed substitution, called Beta:

(λx.a)b →Beta a[(b/x) · id]

where (b/x) · id is syntax for the substitution that replaces x with b and
affects no other variable (“·” represents extension and id the identity substi-
tution). Of course, additional rules are needed to distribute the substitution
later on.

The λσ-calculus is a suitable setting for studying the theory of substi-
tutions, where we can express and prove desirable mathematical properties.
For example, the calculus is Church-Rosser and is a conservative extension
of the λ-calculus. Moreover, the λσ-calculus is strongly connected with the

1

categorical understanding of the λ-calculus, where a substitution is inter-
preted as a composition [5].

We propose the λσ-calculus as a step in closing the gap between the
classical λ-calculus and concrete implementations. The calculus is a vehi-
cle in designing, understanding, verifying, and comparing implementations
of the λ-calculus, from interpreters to machines. Other applications are
in the analysis of typechecking algorithms for higher-order languages and,
potentially, in the mechanization of logical systems.

When one considers weak reduction strategies, the treatment of substi-
tutions can remain quite simple—and then our approach may seem overly
general. Weak reduction strategies do not compute in the scope of λ’s.
Then, there arise neither nested substitutions nor substitutions in the scope
of λ’s. All substitutions are at the top level, as simple environments. An
ancestor of the λσ-calculus, the λρ-calculus, suffices in this setting [5].

However, strong reduction strategies are useful in general, both in log-
ics and in the typechecking of higher-order programming languages. In fact,
strong reduction strategies are useful in all situations where symbolic match-
ing has to be conducted in the scope of binders. Thus, a general treatment
of substitutions is required, where substitutions may occur at the top level
and deep inside terms.

In some respects, the λσ-calculus resembles the calculi of combinators,
including those of categorical combinators [4]. The λσ-calculus and the
combinator calculi all give full formal accounts of the process of computation,
without suffering from unpleasant complications in the (informal) handling
of variables. They all make it easy to derive machines for the λ-calculus
and to show the correctness of these machines. ¿From our perspective, the
advantage of the λσ-calculus over combinator calculi is that it remains closer
to the original λ-calculus.

There are actually several versions of the calculus of substitutions. We
start out by discussing an untyped calculus. The main value of the untyped
calculus is for studying evaluation methods. We give reduction rules that
extend those of the classical λ-calculus and investigate their confluence. We
concentrate on a presentation that relies on De Bruijn’s numbering for vari-
ables [2], and briefly discuss presentations with more traditional variable
names.

Then we proceed to consider typed calculi of substitutions, in De Bruijn
notation. We discuss typing rules for a first-order system and for a higher-
order system; we prove some of their central properties. The typing rules

2

are meant to serve in designing typechecking algorithms. In particular, their
study has been of help for both soundness and efficiency in the design of the
Quest typechecking algorithm [3].

We postpone discussion of the untyped calculi to section 3 and of the
typed calculi to sections 4 and 5. We now proceed with a general technical
overview.

2 Overview

The technical details of the λσ-calculus can be quite intricate, and hence a
gentle informal introduction seems in order. We start with a brief review of
De Bruijn notation, since most of our calculi rely on it. Then we preview
untyped, first-order, and second-order calculi of substitutions.

2.1 De Bruijn notation

In De Bruijn notation, variable occurrences are replaced with positive in-
tegers (called De Bruijn indices); binding occurrences of variables become
unnecessary. The positive integer n refers to the variable bound by the n-th
surrounding λ binder, for example:

λx.λy.xy becomes λλ2 1

In first-order typed systems, the binder types must be preserved, for exam-
ple:

λx:A.λy:B.xy becomes λA.λB. 2 1

In second-order systems, type variables too are replaced with De Bruijn
indices:

ΛA.λx:A.x becomes Λλ1.1

Although De Bruijn notation is unreadable, it leads to simple formal sys-
tems. Therefore, we use indices in inference rules, but variable names in
examples.

Classical β reduction and substitution must be adapted for De Bruijn
notation. In order to reduce (λa)b, it does not suffice to substitute b into
a in the appropriate places. If there are occurrences of 2, 3, 4, . . . in a,
these become “one off,” since one of the λ binders surrounding a has been

3

removed. Hence, all the remaining free indices in a must be decremented;
the desired effect is obtained with an infinite substitution:

(λx.a)b →β a{b/x} becomes (λa)b →β a{b/1, 1/2, 2/3, . . .}

When pushing this substitution inside a, we may come across a λ term
(λc){b/1, 1/2, 2/3, . . .}. In this case, we must be careful to avoid replacing
the occurrences of 1 in c with b, since these occurrences correspond to a
bound variable and the substitution should not affect them. Hence, we
must “shift” the substitution. Thus, we may try:

(λc){b/1, 1/2, 2/3, . . .}
?
= λc{1/1, b/2, 2/3, 3/4, . . .}

But this is not yet correct: now b has an additional surrounding binder, and
we must prevent capture of free indices of b. Suppose b contains the index
1, for example. We do not want the λ of (λc) to capture this index. Hence
we must “lift” all the indices of b:

(λc){b/1, 1/2, 2/3, . . .} = λc{1/1, b{2/1, 3/2, . . .}/2, 2/3, . . .}

This informal introduction to De Bruijn notation should suffice to give
the flavor of things to come.

2.2 An untyped calculus

We shall study a simple set of algebraic operators that perform all these
index manipulations—without . . .’s, even though we treat infinite substi-
tutions that replace all indexes. If s represents the infinite substitution
{a1/1, a2/2, a3/3, . . .}, we write a[s] for a with the substitution s. A term
of the form a[s] is called a closure. The change from { }’s to []’s emphasizes
that the substitution is no longer a meta-level operation.

The syntax of the untyped λσ-calculus is:

Terms a ::= 1 | ab |λa | a[s]
Substitutions s ::= id | ↑ | a · s | s ◦ t

This syntax corresponds to the index manipulations described in the
previous section, as follows:

• id is the identity substitution {1/1, 2/2, . . .}, which we may write
{i/i}.

4

• ↑ (shift) is the substitution {(i+1)/i}; for example, 1[↑] = 2. We need
only the index 1 in the syntax of terms; De Bruijn’s n+1 is coded as
1[↑n], where ↑n is the composition of n shifts, ↑◦ . . . ◦ ↑. Sometimes we
write ↑0 for id .

• i[s] is the value of the De Bruijn index i in the substitution s, also
informally written s(i) when s is viewed as a function.

• a · s (the cons of a onto s) is the substitution {a/1, s(i)/(i + 1)}; for
example,

a · id = {a/1, 1/2, 2/3, . . .}

and
1 · ↑ = {1/1, ↑(1)/2, ↑(2)/3, . . .} = id

• s ◦ t (the composition of s and t) is the substitution such that

a[s ◦ t] = a[s][t]

hence
s ◦ t = {s(i)/i} ◦ t = {s(i)[t]/i}

and, for example,

id ◦ t = {id(i)[t]/i} = {t(i)/i} = t

↑ ◦ (a · s) = {↑(i)[a · s]/i}

= {(i + 1){a/1, s(i)/(i + 1)}/i} = {s(i)/i} = s

At this point, we have shown most of the algebraic properties of the sub-
stitution operations. In addition, composition is associative and distributes
over cons (that is, (a ·s)◦ t = a[t] · (s◦ t)). Moreover, the last example above
indicates that ↑◦ s is the “rest” of s, without the first component of s; thus,
1[s] · (↑ ◦ s) = s.

Using this new notation, we can write the Beta rule as

(λa)b →Beta a[b · id]

To complement this rule, we can write rules to evaluate 1, for instance

1[c · s] → c

5

and rules to push substitution inwards, for instance

(cd)[s] → (c[s])(d[s])

In particular, we can derive an intriguing law for the distribution of substi-
tution over λ:

(λc)[s] = (λc){s(i)/i}
= λc{1/1, s(i){(i + 1)/i}/(i + 1)} (by previous discussion)
= λc{1/1, s(i)[↑]/(i + 1)} (by definition of ↑)
= λc[1 · {s(i)[↑]/i}] (by definition of ·)
= λc[1 · (s ◦ ↑)] (by definition of ◦)

that is,
(λc)[s] → λc[1 · (s ◦ ↑)]

This last rule uses all the operators (except id), and suggests that this choice
of operators is natural, perhaps inevitable. In fact, there are many possible
variations, but we shall not discuss them here.

Explicit substitutions complicate the structure of bindings somewhat.
For example, consider the term

(λ(1[2 · id]))[a · id]

We may be tempted to think that 1 is bound by λ, as it would be in a
standard De Bruijn reading. However, the substitution [2 · id] intercepts the
index, giving the value 2 to 1. Then, after crossing over λ, the index 2 is
renamed to 1 and receives the value a. One should keep these complica-
tions in mind in examining λσ formulas—for example, in deciding whether
a formula is closed, in the usual sense. A precise definition of bindings is as
follows.

First, we associate statically (without reduction) a length with each sub-
stitution. The length is actually a pair of two integers (m,n). For a substi-
tution of the form a1 · . . . · am · (↑ ◦ . . . ◦ ↑), we have that m is the number of
consed terms and n is the number of ↑’s. The full definition of the length is:

| id | = (0, 0)

| ↑ | = (0, 1)

| a · s | = (m + 1, n) where | s | = (m,n)

| s ◦ t | = (m + p − n, q) where | s | = (m,n), | t | = (p, q), p ≥ n

| s ◦ t | = (m, q + n − p) where | s | = (m,n), | t | = (p, q), p < n

6

Then, in order to find where a variable n is bound in an expression, we
go towards the root of the expression parse tree. We initialize a counter p
to n. We decrement it when we cross a λ. If it becomes 0, the λ is the
wanted binder. When we reach an a in a closure a[s], with | s | = (ms, ns),
we compare p with ms. If p ≤ ms, the variable is bound in s. Otherwise,
we continue upwards, setting the counter to p − ms + ns.

2.3 A first-order calculus

When we move to a typed calculus, we introduce types both in terms and
in substitutions. For the typed first-order λσ-calculus, the syntax becomes:

Types A ::= K |A → B
Environments E ::= nil |A,E
Terms a ::= 1 | ab |λA.a | a[s]
Substitutions s ::= id | ↑ | a:A · s | s ◦ t

The environments are used in the type inference rules, as is commonly
done, to record the types of the free variables of terms. Naturally, in this
setting, environments are indexed by De Bruijn indices. The environment
A1, A2, . . . , An,nil associates type Ai with index i. For example, the typing
axiom for 1 is:

A,E ` 1 : A

and the typing rule for λ abstraction is:

A,E ` b : B

E ` λA.b : A → B

In the λσ-calculus, environments have a further function: they serve as
the “types” of substitutions. We write s . E to say that the substitution s
“has” the environment E. For example, the typing rule for cons is:

E ` a : A E ` s . E′

E ` (a:A · s) . A,E′

The main use of this new notion is in typing closures. Since s provides the
context in which a should be understood, the approach is to compute the
environment E′ of s, and then type a in that environment:

E ` s . E′ E′ ` a : A

E ` a[s] : A

7

An instance of this rule is:

nil ` a:A · id . A,nil A,nil ` 1 : A

nil ` 1[a:A · id] : A

2.4 A second-order calculus

When we move to a second-order system, new subtleties appear, because
substitutions may contain types, and environments may contain place-
holders for types; for example,

(Bool ::Ty · id) . Ty,nil

The typing rules become more complex because types may contain type
variables, which must be looked up in the appropriate environments. (The
problem arises in full generality with dependent types [14], and some readers
may find it helpful to think about calculi of substitutions with dependent
types.) In particular, the typing axiom for 1 shown above becomes the rule:

E ` A :: Ty

A,E ` 1 : A[↑]

The extra shift is required because A is understood in the environment E
in the hypothesis, while it is understood in A,E in the conclusion. An
alternative (but heavy) solution would be to have separate index sets for
ordinary term variables and for type variables, and to manipulate separate
term and type environments as well.

Another instance of this phenomenon is in the rule for λ abstraction,
which we have also seen above:

A,E ` b : B

E ` λA.b : A → B

Notice that previously A must have been proved to be a type in the envi-
ronment E, while B is understood in A,E in the assumption. Then A → B
is understood in E in the conclusion. This means that the indices of B are
“one off” in A → B. The rule for application takes this into account; a
substitution is applied to B to “unshift” its indices:

E ` b : A → B E ` a : A

E ` b(a) : B[a:A · id]

8

The B[a:A · id] part is reminiscent of the rule found in calculi for dependent
types, and this is the correct technique for the version of such calculi with
explicit substitutions. However, since here we do not deal with dependent
types, B will never contain the index 1, and hence a will never be substituted
in B. The substitution is still necessary to shift the other indices in B.

The main difficulty in our second-order calculus arises in typing closures.
The approach described for the first order, while still viable, is not sufficient.
For example, if not is the usual negation on Bool, we certainly want to be
able to type the term

(λ1.not(1))[Bool · id]

or, in a more familiar notation,

Let X = Bool in λx:X.not(x)

(We interpret Let via a substitution, not via a λ.) Our strategy for the
first-order calculus was to type the substitution, obtaining an environment
(X :: Ty) · id , and then type the term λx:X.not(x) in this environment.
Unfortunately, to type this term, it does not suffice to know that X is a
type; we must know that X is Bool. To solve this difficulty in the second-
order system, we have rules to push a substitution inside a term and then
type the result. As in calculi with dependent types, the tasks of deriving
types and applying substitutions are inseparable.

Finally, as discussed below, surprises arise in writing down the precise
rules; for example the rule for typing conses has to be modified. Even the
form of the judgement E ` s . E′ must be reconsidered.

Higher-order systems, possibly with dependent constructions, are also
of theoretical and practical importance. We do not discuss them formally
below, however, for we believe that the main complications arise already at
the second order.

3 The untyped λσ-calculus

In this section we present the untyped λσ-calculus. We propose a basic set of
equational axioms for the λσ-calculus in De Bruijn notation. The equations
induce a rewriting system; this rewriting system suffices for the purposes of
computation. We show that the rewriting system is confluent, and thus pro-
vides a convenient theoretical basis for more deterministic implementations
of the λσ-calculus.

9

We also consider some variants of the axiom system. Restrictions bring
us closer to implementations, as they make evaluation more deterministic.
An extension of the system is suggested by Knuth-Bendix computations.
Finally, we discuss a λσ-calculus using variable names.

As in the classical λ-calculus, actual implementations would resort to
particular rewriting strategies. We discuss a normal-order strategy for λσ
evaluation. Then we focus on a more specialized reduction system, still
based on normal order, which provides a suitable basis for abstract λσ ma-
chines. We describe one machine, which extends Krivine’s weak reduction
machine [13] with strong reduction.

In her study of categorical combinators, Hardin proposed systems similar
to ours [8]. In particular, Hardin’s system E + (Beta) is the homomorphic
image of our basic system. We rely on some of her techniques to prove our
results, and not surprisingly we find confluence properties similar, but not
equivalent, to those she found. (We come back to this point below.)

The main difference between the approaches is that in Hardin’s work
there is a unique sort for terms and substitutions. The distinction between
terms and substitutions is central in our work. This distinction is important
to a simple understanding of confluence properties and to the practicality
of the λσ-calculus.

Simultaneously with our work, Field developed a system almost identical
to our basic system, too, and claimed some of the same results [7]. Thus,
we share a starting point. However, Field’s paper is an investigation of
optimality properties of reduction schemes, so for example Field went on
to consider a labelled calculus. In contrast, we are more concerned with
questions of confluence and with typechecking issues.

3.1 The basic rewriting system

The syntax of the untyped λσ-calculus is the one given in the informal
overview,

Terms a ::= 1 | ab |λa | a[s]
Substitutions s ::= id | ↑ | a · s | s ◦ t

Notice that we have not included metavariables over the sorts of terms and
substitutions—we consider only closed terms, and this suffices for our pur-
poses. (In De Bruijn notation, the variables 1, 2, . . . are constants rather
than metavariables.)

In this notation, we now define an equational theory for the λσ-calculus,

10

by proposing a set of equations as axioms. When they are all oriented
from left to right, the equations become rewrite rules and give rise to a
rewriting system. The equations fall into two subsets: a singleton Beta,
which is the equivalent of the classical β rule, and ten rules for manipulating
substitutions, which we call σ collectively.

Beta (λa)b = a[b · id]

VarId 1[id] = 1

VarCons 1[a · s] = a

App (ab)[s] = (a[s])(b[s])

Abs (λa)[s] = λ(a[1 · (s ◦ ↑)])

Clos a[s][t] = a[s ◦ t]

IdL id ◦ s = s

ShiftId ↑ ◦ id = ↑

ShiftCons ↑ ◦ (a · s) = s

Map (a · s) ◦ t = a[t] · (s ◦ t)

Ass (s1 ◦ s2) ◦ s3 = s1 ◦ (s2 ◦ s3)

As usual, the equational theory follows from these axioms together with
the inference rules for replacing equals for equals.

Our choice of presentation is guided by the structure of terms and substi-
tutions. The Beta rule eliminates λ’s and creates substitutions; the function
of the other rules is to eliminate substitutions. Two rules deal with the eval-
uation of 1. The next three deal with pushing substitutions inwards. The
remaining five express substitution computations. We prove below that the
substitution rules always produce unique normal forms; we denote the σ
normal form of a by σ(a).

The classical β rule is not directly included, but it can be simulated,
as we now argue. The precise definition of β reduction, in the style of De
Bruijn [2], is as follows:

(λa)b →β a{b/1, 1/2, . . . n/n+1, . . .}

11

where the meta-level substitution {. . .} is defined inductively by using the
rules:

n{a1/1, . . . , an/n, . . .} = an

a{a1/1, . . . , an/n, . . .} = a′ b{a1/1, . . . , an/n, . . .} = b′

(ab){a1/1, . . . , an/n, . . .} = a′b′

ai{2/1, . . . ,n+1/n, . . .} = a′i a{1/1, a′1/2, . . . , a
′
n/n+1, . . .} = a′

(λa){a1/1, . . . , an/n, . . .} = λa′

If a1, . . . , an, . . . is a sequence of consecutive integers after some point (the
only useful case), then the meta-level substitution {a1/1, . . . , an/n, . . .} cor-
responds closely to an explicit substitution:

Proposition 3.1 If there exist m and p such that am+q = p+q for all q ≥ 1,
and a{a1/1, . . . , an/n, . . .} = b is provable in the formal system presented
above, then σ(a[a1 · a2 · . . . · am · ↑p]) = b.

Proof The argument is by induction on the length of the proof of
a{a1/1, . . . , an/n, . . .} = b; we strengthen the claim, and argue that all in-
termediate terms in the proof satisfy the hypothesis. We omit the easy
application case.

Case n{a1/1, . . . , an/n, . . .} = an: If n ≤ m, then n[a1 ·a2 · . . . ·am ·↑p] →∗
σ

an; if n > m, then n[a1 · a2 · . . . · am · ↑p] →∗
σ n − m + p. But by hypothesis

an = an−m+m = n − m + p.
Case (λa){a1/1, . . . , an/n, . . .} = λa′: By induction on the ai’s (choosing

m and p to be 0 and 1), we get by induction σ(ai[↑]) = a′i. This allows us
to apply induction on a for m + 1 and p + 1:

σ(a[1 · a′1 · . . . · a
′
m · ↑p+1]) = a′

On the other hand our desired conclusion reduces to showing

σ(a[1 · ((a1 · . . . · am · ↑p) ◦ ↑)]) = a′

which holds since

(a1 · . . . · am · ↑p) ◦ ↑ →∗
σ a1[↑] · . . . · am[↑] · ↑p+1

2

Therefore, the simulation of the β rule consists in first applying Beta
and then σ until a σ normal form is reached.

12

As usual, we want a confluence theorem for the calculus. This theorem
will guarantee that all rewrite sequences yield identical results, and thus
that the strategies used by different implementations are equivalent:

Theorem 3.2 Beta + σ is confluent.

The proof does not rely on standard rewriting techniques, as Beta + σ
does not pass the Knuth-Bendix test (but σ does). We come back to this
subtle point below.

Instead, the proof relies on the termination and confluence of σ, the con-
fluence of the classical λ-calculus, and Hardin’s interpretation technique [8].

First we show that σ is noetherian (that is, σ reductions always termi-
nate) and confluent.

Proposition 3.3 σ is noetherian and confluent.

Proof We have an indirect proof of noetherianity, as follows. The λσ-
calculus translates into categorical combinators [6], by merging the two sorts
of terms and substitutions and collapsing the operations [] and ◦ into one.
Under this translation, a one-step rewriting in σ is mapped to a one-step
rewriting of a system SUBST of categorical rewriting rules (the exact trans-
lation of the largest variant considered in 3.2). Hardin and Laville have
established the termination of SUBST [9].

Noetherianity simplifies the proof of confluence. By a well-known lemma,
local confluence suffices [11]; it can be checked by examining critical pairs,
according to the Knuth-Bendix test. For example, for the critical pair

(1[id])[s] → 1[s] and (1[id])[s] → 1[id ◦ s]

local confluence is ensured through the IdL rule. 2

Since σ is noetherian, let us examine the form of σ normal forms. A
substitution in normal form is necessarily in the form

a1 · (a2 · (. . . (am · U) . . .))

where U is either id or a composition ↑ ◦ (. . . (↑ ◦ ↑) . . .). A term in normal
form is entirely free of substitutions, except in subterms such as 1[↑n], which
codes the De Bruijn index n+1. Thus, a term in normal form is a classical
λ-calculus term (modulo the equivalence of 1[↑n] and n+1).

13

In summary, the syntax of σ normal forms is:

Terms a ::= 1 | 1[↑n] | ab |λa
Substitutions s ::= id | ↑n | a · s

After these remarks on σ, we can apply Hardin’s interpretation technique
to show that the full λσ system is confluent.

First, we review Hardin’s method. Let X be a set equipped with two
relations R and S. Suppose that R is noetherian and confluent, and denote
by R(x) the R normal form of x; that SR is a relation included in (R ∪ S)∗

on the set of R normal forms; and that, for any x and y in X, if S(x, y) then
S∗

R(R(x), R(y)). An easy diagram chase yields that if SR is confluent then
so is (R ∪ S)∗.

In our case, we take R to be the relation induced by the σ rules; that is,
R(x, y) holds if x reduces to y with the σ rules. We take SR to be classical
β conversion; that is, SR(x, y) holds if y is obtained from x by replacing a
subterm of the form (λa)b with σ(a[b · id]).

Thus the proof of confluence reduces to the two following lemmas:

Lemma 3.4 β is confluent on σ normal forms.

Proof Notice that, on terms, β reduction is the original β reduction, by
Proposition 3.1. As for substitutions, since only normal forms are involved,
the β reductions are independent β reductions on the components of the
substitutions. 2

Lemma 3.5

1. If a →Beta b then σ(a) →∗
β σ(b).

2. If s →Beta t then σ(s) →∗
β σ(t).

Proof We proceed by induction on the structure of a and s, together.
If a is an application a1a2 and if the Beta redex is in a1 or a2, then

the result follows easily from the induction hypothesis, since σ(a1a2) =
σ(a1)σ(a2). We proceed likewise if a is an abstraction λa1.

If the Beta redex is a = (λa1)a2, then b = a1[a2 · id], and then σ(a) =
(λσ(a1))σ(a2) By definition of β, we have

σ(a) →β σ(σ(a1)[σ(a2) · id])

that is,
σ(a) →β σ(b)

14

The last case for terms is a = a1[s1]. Since σ(a1[s1]) = σ(σ(a1)[σ(s1)]),
the induction hypothesis reduces our problem to the familiar substitution
lemma. De Bruijn proved the following substitution lemma:

If a →β a′ then a{a1, a2, . . .} →β a′{a1, a2, . . .}. If ai →β a′i then
a{a1, . . . , ai−1, ai, ai+1, . . .} →∗

β a{a1, . . . , ai−1, a
′
i, ai+1, . . .}.

By Proposition 3.1, this lemma reads, in our notation,

Suppose a and s are in σ normal form. If a →β a′, then
σ(a[s]) →β σ(a′[s]). If s →β s′, then σ(a[s]) →∗

β σ(a[s′]).

Thus the lemma settles this case.
The cases for β reductions in substitutions are analogous to those for

terms. The case of a1 · s1 is identical to the one for λa1. The case of s1 ◦ s2

is similar to the one for a1[s1]. It suffices to consider the normal forms of s1

and s2 for reducing our problem to the substitution lemma, once more. 2

3.2 Variants

Some subsystems of σ are reasonable first steps to deterministic evaluation
algorithms. We can restrict σ in three different ways. The rule Clos can be
removed. The inference rule

s = s′ t = t′

s ◦ t = s′ ◦ t′

can be removed, and the inference rule for the closure operator can be re-
stricted to

s = s′

1[s] = 1[s′]

These restrictions (even cumulated) do not prevent us from obtaining σ nor-
mal forms and confluence. A general result enables us to derive confluence
for these subsystems:

Lemma 3.6 If S is a subrelation of a noetherian and confluent relation
R, and if S normal forms are R normal forms, then S is also confluent.
Moreover, the smallest equivalence relations containing R and S coincide.

Proof If S∗(a, b) and S∗(a, c) then b and c have the same R normal form d,
since S ⊆ R. However, an S normal form of b (or c) is also an R normal form

15

of b, and thus coincides with d. An almost identical argument establishes
the second claim. 2

Here we take R and S to be the relations induced by σ and by σ’s
restriction, respectively. Thus, we easily obtain that the restricted substitu-
tion rules are noetherian and confluent, and we can apply the interpretation
technique, through exactly the same steps as before. (In fact, the lemmas
proved above apply directly, with no modification.)

Confluence properties suggest a second kind of variant. Although Beta +
σ is confluent, when we view it as a standard rewriting system on first-order
terms it is not even locally confluent. The subtle point is that we have proved
confluence on closed λσ terms, that is, on terms exclusively constructed
from the operators of the λσ-calculus. In contrast, checking critical pairs
involves considering open terms over this signature, with metavariables (that
is, variables x and u ranging over terms and substitutions, different from De
Bruijn indexes 1, 2, . . .).

Consider, for example, the critical pair:

((λa)b)[u] →? a[b[u] · u]

((λa)b)[u] →? a[b[u] · (u ◦ id)]

For local confluence, we would want the equation (s ◦ id) = s, but this
equation is not a theorem of σ. Similar critical pair considerations suggest
the addition of four new rules:

Id a[id] = a

IdR s ◦ id = s

VarShift 1 · ↑ = id

SCons 1[s] · (↑ ◦ s) = s

These additional rules are well justified from a theoretical point of view.
However, confluence on closed terms can be established without them, and
they are not computationally significant. Moreover, some of them are ad-
missible (that is, every closed instance is provable). More precisely Id and
IdR are admissible in σ, and SCons is admissible in σ + VarShift.

We should particularly draw attention to the last rule, SCons. It ex-
presses that a substitution is equal to its first element appended in front

16

of the rest. This rule is reminiscent of the surjective-pairing rule, which
deserved much attention in the classical λ-calculus. Klop has shown that
surjective pairing destroys confluence for the λ-calculus [12].

Similarly, we conjecture that the system σ + Id + IdR + VarShift +
SCons is not confluent when we have metavariables for both terms and sub-
stitutions, although it is locally confluent. The following term, inspired by
Klop’s counterexample [12], seems to work as a counterexample to conflu-
ence:

Y (Y (λλx[1[u ◦ (1 · id)] · (↑ ◦ (u ◦ ((21) · id)))]))

where Y is a fixpoint combinator, x is a term metavariable, and u is a
substitution metavariable. Some work has to be done to check the details.
Let us just recall the informal argument. Call b = Y (c) the term above. It
reduces to both x[u ◦ ((cb) · id)] and c(x[u ◦ ((cb) · id)]). To get a common
reduct of these two terms, we need to apply SCons at some stage, and
this requires finding a common reduct of the very same terms. Klop uses
standardization to turn this informal circularity argument into a reductio
ad absurdum, starting with a minimal length standard reduction to such a
common reduct.

The reader may wonder what thwarts the techniques used in the last
subsection. The point is that in Lemma 3.5, our reduction to the classical
substitution lemma depended crucially on the syntax of substitutions in nor-
mal form, which is not so simple any more. (The syntax allows in particular
expressions of the form u ◦ (1 · id), as in the suggested counterexample.)

We can go half way in adding metavariables. If we add only term
metavariables, the syntax of substitution σ normal forms is unchanged. This
protects us from the claimed counterexample. There are two additional cases
for term σ normal forms, the cases for metavariables:

Terms a ::= 1 | 1[↑n] | ab |λa | x | x[s]

We believe that confluence can be proved in this case by the interpre-
tation technique. Confluence on normal forms would be obtained through
an encoding of the normal forms in the λ-calculus extended with constants,
which is known to be confluent (x becomes a constant; x[s] becomes a con-
stant applied to the elements of s).

Hardin’s results on confluence bear some similarity with ours. In [8],
Hardin has shown that various systems are confluent on a set D of closed
terms, which includes the representation of all the usual λ expressions; she
found problems with confluence for non-closed terms, too. However, her

17

difficulties and ours differ somewhat, and in particular the counterexamples
to confluence differ.

Recently, Hardin and Lévy have succeeded in obtaining confluence with
metavariables for both terms and substitutions, by slightly changing the
syntax and the set of equations. Their results are reported in [10].

3.3 The λσ-calculus with names

Let us discuss a more traditional formulation of the calculus, with variable
names x, y, z, . . . , as a small digression. Two ways seem viable.

In one approach, we consider the following syntax:

Terms a ::= x | ab |λx.a | a[s]
Substitutions s ::= id | (a/x) · s | s ◦ t

The corresponding theory includes equations such as:

Beta (λx.a)b = a[(b/x) · id]

Var1 x[(a/x) · s] = a

Var2 x[(a/y) · s] = x[s] (x 6= y)

Var3 x[id] = x

App (ab)[s] = (a[s])(b[s])

Abs (λx.a)[s] = λy.(a[(y/x) · s]) (y occurs in neither a nor s)

The rules correspond closely to the basic ones presented in De Bruijn nota-
tion. The Abs rule does not require a shift operator, but involves a condition
on variable occurrences. (The side condition could be weakened, from y not
occurring at all in a and s, to y not occurring free, in a precise technical
sense that we do not define here.) The consideration of the critical pairs
generated by the previous rules immediately suggests new rules, such as:

OccT a[(b/x) · t] = a[t] (x does not occur in a)

OccS s ◦ ((a/x) · t) = (a/x) · (s ◦ t) (x does not occur in s)

Comm (a/x) · ((b/y) · s) = (b/y) · ((a/x) · s) (x 6= y)

Alpha λx.a = λy.(a[(y/x) · id]) (y does not occur in a)

18

This is an unpleasant set of rules. The Comm rule destroys the existence of
substitution normal forms and the Alpha rule expresses renaming of bound
variables. Intuitively, we may take this as a hint that this calculus with
names does not really enjoy nice confluence features. In this respect, the
calculus in De Bruijn notation seems preferable.

There is an alternative solution, with the shift operator. The syntax is
now:

Terms a ::= x | ab |λx.a | a[s]
Substitutions s ::= id | ↑ | (a/x) · s | s ◦ t

In this notation, intuitively, x[↑] refers to x after the first binder. The
equations are the ones of the λσ-calculus in De Bruijn notation except for:

Beta (λx.a)b = a[(b/x) · id]

Var1 x[(a/x) · s] = a

Var2 x[(a/y) · s] = x[s] (x 6= y)

Var3 x[id] = x

Abs (λx.a)[s] = λx.(a[(x/x) · (s ◦ ↑)])

This framework may be useful for showing the differences between dynamic
and lexical scopes in programming languages. The rules here correspond
to lexical binding, but dynamic binding is obtained by erasing the shift
operator in rule Abs.

3.4 A normal-order strategy

As usual, we want a complete rewriting strategy—a deterministic method
for finding a normal form whenever one exists. Here we study normal-
order strategies, that is, the leftmost-outermost redex is chosen at each
step. Completeness is established via the completeness of the normal-order
strategy for the λ-calculus.

The normal-order algorithm naturally decomposes into two parts: a rou-
tine for obtaining weak head normal forms, and recursive calls on this rou-
tine. In our setting, weak head normal forms are defined as follows:

Definition 3.7 A weak head normal form (whnf for short) is a λσ term of
the form λa or na1 · · · am.

19

As a starting point, we take the classical definition of (one step) weak
normal-order β reduction

n
→β in the λ-calculus:

(λa)b
n
→β σ(a[b · id])

a
n
→β a′

ab
n
→β a′b

There are several possibilities for implementing recursive calls, in order to
obtain full normal forms; the simplest one consists in adding two rules:

ai
n
→β a′i (aj in normal form for j < i)

na1 . . . ai . . . am
n
→β na1 . . . a′i . . . am

a
n
→β a′

λa
n
→β λa′

We do not include these rules, and from now on focus on weak head normal
forms—though it is routine to extend the results below to normal forms.

The analogous reduction mechanism for the λσ-calculus is:

(λa)b
n
→ a[b · id]

a
n
→ a′

ab
n
→ a′b

1[id]
n
→ 1

1[a · s]
n
→ a

s
n
→ s′

1[s]
n
→ 1[s′]

(ab)[s]
n
→ (a[s])(b[s])

(λa)[s]
n
→ λ(a[1 · (s ◦ ↑)])

a[s][t]
n
→ a[s ◦ t]

id ◦ s
n
→ s

20

↑ ◦ id
n
→ ↑

↑ ◦ (a · s)
n
→ s

s
n
→ s′

↑ ◦ s
n
→ ↑ ◦ s′

(a · s) ◦ t
n
→ a[t] · (s ◦ t)

(s ◦ s′) ◦ s′′
n
→ s ◦ (s′ ◦ s′′)

Clearly,
n
→β and

n
→ are closely related:

Proposition 3.8 If a
n
→ b then either σ(a)

n
→β σ(b) or σ(a) and σ(b) are

identical. The
n
→ reduction of a terminates (with a weak head normal form)

iff the
n
→β reduction of σ(a) terminates.

Proof As for the first part, let a
n
→ b. If the underlying redex is a

σ redex, then obviously σ(a) = σ(b). If the underlying redex is a Beta
redex, then a is of the form (λa1)a2 . . . an, and from σ((λa1)a2 . . . an) =
(λσ(a1))σ(a2) . . . σ(an) we can derive σ(a)

n
→β σ(b).

As for the second part, notice that a
n
→ reduction stops exactly when a

weak head normal form is reached. Thus, for the “if” part of the claim, it

suffices to check that the
n
→ reduction of a terminates. We define

n
→

1

β as the

reflexive closure of
n
→β. Let

a
n
→ a1

n
→ . . . ak

n
→ . . .

be a
n
→ reduction sequence. Then

σ(a)
n
→

1

β σ(a1)
n
→

1

β . . .
n
→

1

β σ(ak)
n
→

1

β . . .

is a
n
→

1

β reduction sequence, which cannot have infinitely many consecutive
reflexive steps because these reflexive steps correspond to σ reductions.

Conversely, suppose that b is a weak head normal form, then σ(b) is a
weak head normal form. 2

Corollary 3.9
n
→ is a complete strategy.

21

Proof This follows from the completeness of the
n
→β strategy. (See [1] for

a proof in the classical notation.) 2

With the same approach, we can also define a system
wn
→, which incor-

porates some slight optimizations (present also in our abstract machine,
below). In

wn
→, the rule

((λa)[s])b
wn
→ a[b · s]

replaces the rules
(λa)b

n
→ a[b · id]

(λa)[s]
n
→ λ(a[1 · (s ◦ ↑)])

The new rule is an optimization justified by the σ + IdR reduction steps

((λa)[s])b → (λ(a[1 · (s ◦ ↑)]))b → a[1 · (s ◦ ↑)][b · id]

→ a[(1 · (s ◦ ↑)) ◦ (b · id)] →? a[b · s]

which is not allowed in
n
→.

Both
n
→ and

wn
→ are weak in the sense that they do not reduce under λ’s.

In addition,
wn
→ is also weak in the sense that substitutions are not pushed

under λ’s. In this respect,
wn
→ models environment machines, while

n
→ is

closer to combinator reduction machines.
We do not exactly obtain weak head normal forms—in particular,

wn
→

does not reduce even (λ11)(λ11) or (1[(λ11) · id])(λ11). This motivates
a syntactic restriction which entails no loss of generality: we start with
closures, and all conses have the form a[s] · t. Under this restriction, we
cannot start with (λ11)(λ11), but instead have to write ((λ11)(λ11))[id],
which has the expected, nonterminating behavior. The correctness of

wn
→

with respect to normal-order weak head normal form reduction in the λ-
calculus can now be proved as in Proposition 3.8.

Proposition 3.10 If a
wn
→ b then either σ(a)

n
→β σ(b) or σ(a) and σ(b) are

identical. The
wn
→ reduction terminates (with a term of the form (λa)[s] or

na1 . . . am) iff the
n
→β reduction of σ(a) terminates.

Proof The proof goes exactly as in Proposition 3.8. The only slight diffi-
culty is in establishing that the

wn
→ reduction terminates exactly on the terms

of the form indicated in the statement. The following invariant of the
wn
→

reduction is useful:
For each term b in the

wn
→ reduction sequence starting from a[s],

22

1. b is a term of the restricted syntax, that is, all subexpressions b′′ in
contexts b′′ · s′′ are closures;

2. the first node on the spine of b (the leftmost branch of the tree rep-
resentation of b) that is not an application can only be a closure b′[s]
or 1, and all the right arguments of the application nodes above are
closures.

We first prove this invariant. We show that if the properties stated hold for
b and b

wn
→ c then they hold for c. Notice that the properties are proved

together. If the node mentioned in the claim is 1, then the
wn
→ reduction is

terminated. If it is a closure b′[s], the proof goes by cases on the structure
of b′, and if b′ is 1 by cases on the structure of s. We detail only two crucial
cases, one for each part of the claim. When b′[s] has the form (λa′)[s]
and is not the root of b, then its immediate context in b has the form
((λa′)[s])(a′′[s′′]) (by induction hypothesis), and becomes a′[a′′[s′′]·s]. When
b′[s] has the form 1[a′[s′] · t], then c is b where b′[s] is replaced with a′[s′],
another closure. (The restriction on the syntax is crucial here.)

Now we derive the claim about
wn
→ normal forms. Suppose that b and

b′[s] are as in the statement of the invariant, and that moreover b is not
reducible by

wn
→. An easy checking of the rules allows us to exclude the

possibility that b′ be an application or a closure. It can be 1 only if s′ is not
further

wn
→ reducible and is not a cons, which forces s′ to have the form ↑k.

Finally, b′ can be an abstraction only if b = b′[s]. 2

3.5 Towards an implementation

As a further refinement towards an implementation, we adapt
wn
→, to ma-

nipulate only expressions of the forms a[t] and s ◦ t. The substitution t
corresponds to the “global environment,” whereas substitutions deeper in a
or s correspond to “local declarations.” In defining our machine, we take
the view that the linear representation of a can be read as a sequence of
machine instructions acting on the graph representation of t.

In this approach, some of the original rules are no longer acceptable,
since they do not yield expressions of the desired forms. For example, the
reduct of the App rule, (a[s])(b[s]), is not a closure. In order to reduce
(ab)[s], we have to reduce a[s] to a weak head normal form first. In the
machine discussed below, we use a stack for storing b[s].

The following reducer whnf () embodies these modifications to
wn
→. The

reducer takes a pair of arguments, the term a and the substitution s of a

23

closure, and returns another pair, of the form (na1 · · · am, id) or (λa′, s′). To
compute whnf (), the following axioms and rules should be applied, in the
order of their listing. We proceed by cases on the structure of a, and when
a is n by cases on the structure of s, and when s is a composition t ◦ t′ by
cases on the structure of t.

whnf (λa, s) = (λa, s)

whnf (a, s) = (λa′, s′)

whnf (ab, s) = whnf (a′, b[s] · s′)

whnf (a, s) = (a′, id) (a′ not an abstraction)

whnf (ab, s) = (a′(b[s]), id)

whnf (n, id) = (n, id)

whnf (n, ↑) = (n+1, id)

whnf (1, a[s] · t) = whnf (a, s)

whnf (n+1, a · s) = whnf (n, s)

whnf (n, s ◦ s′) = whnf (n[s], s′)

whnf (n[id], s) = whnf (n, s)

whnf (n[↑], s) = whnf (n+1, s)

whnf (1[a · s], s′) = whnf (a, s′)

whnf (n+1[a · s], s′) = whnf (n[s], s′)

whnf (n[s ◦ s′], s′′) = whnf (n[s], s′ ◦ s′′)

whnf (a[s], s′) = whnf (a, s ◦ s′)

A simple extension of these rules yields full normal forms:

whnf (a, s) = (λa′, t)

nf (a, s) = λ(nf (a′, 1 · (t ◦ ↑)))

whnf (a, s) = (n(a1[s1]) . . . (am[sm]), id)

nf (a, s) = n(nf (a1, s1)) . . . (nf (am, sm))

The precise soundness property of whnf () is:

Proposition 3.11 The equation whnf (a, s) = (a′, s′) is provable if and only
if σ(a′[s′]) is the weak head normal form of σ(a[s]).

24

Proof It is routine to check the correctness of whnf () with respect to
wn
→.

Specifically, whnf (n, s) = (a′, s′) is provable iff a′[s′] is the
wn
→ normal form

of 1[(↑ ◦ (. . . (↑ ◦ s) . . .))] (with n − 1 ↑’s); whnf (n[t], s) = (a′, s′) is provable
iff a′[s′] is the

wn
→ normal form of 1[(↑ ◦ (. . . (↑ ◦ (t ◦ s)) . . .))] (with n − 1 ↑’s);

in all other cases, whnf (a, s) = (a′, s′) is provable iff a′[s′] is the
wn
→ normal

form of a[s]. 2

The last step we consider is the derivation of a transition machine from
the rules for whnf (). One basic idea is to implement the recursive call on
a[s] during the evaluation of (ab)[s] by using a stack to store the argument
b[s]. Thus, the stack contains closures.

The following table represents an extension of Krivine’s abstract ma-
chine [13, 5]. The first column represents the “current state,” the second
one represents the “next state.” Each line has to be read as a transition
from a triplet (Subst, Term, Stack) to a triplet of the same nature. To
evaluate a program a in the global environment s, the machine is started in
state (s, a, 〈 〉), where 〈 〉 is the empty stack. The machine repeatedly uses
the first applicable rule. The machine stops when no transition is applicable
any more. These termination states have one of the forms (id , n, a1 · · · · ·am)
and (s, λa, 〈 〉), which represent na1 · · · am and (λa)[s], respectively.

Subst Term Stack Subst Term Stack
↑ n S id n+1 S
a[s] · t 1 S s a S
a · s n+1 S s n S
s ◦ s′ n S s′ n[s] S
s ab S s a b[s] · S
s λa b[t] · S b[t] · s a S
s n[id] S s n S
s n[↑] S s n+1 S
s′ 1[a · s] S s′ a S
s′ n+1[a · s] S s′ n[s] S
s′′ n[s ◦ s′] S s′ ◦ s′′ n[s] S
s′ a[s] S s ◦ s′ a S

The machine can be restarted when it stops, and then we have a full
normal form λ reducer. Specifically, when the machine terminates with the

25

triplet (s, λa, 〈 〉), we restart it in the initial state (1 · (s◦↑), a, 〈 〉), and when
the machine terminates with the triplet (id , n, a1[s1] · . . . · an[sn] · 〈 〉), we
restart n copies of the machine in the states (s1, a1, 〈 〉), . . . , (sn, an, 〈 〉).

The correctness of the machine can be stated as follows (we omit the
simple proof).

Proposition 3.12 Starting in the state (s, a, 〈 〉), the machine terminates
in (id , n, a1 · . . . · am) iff whnf (a, s) = (na1 . . . am, id), and terminates in
(s, λa, 〈 〉) iff whnf (a, s) = (λa, s).

By now, we are far away from the wildly nondeterministic basic rewriting
system of Section 3.1. However, through the derivations, we have managed
to keep some understanding of the successive refinements and to guarantee
their correctness. This has been possible because the λσ-calculus is more
concrete than the λ-calculus, and hence an easier starting point.

4 First-order theories

In the previous section, we have seen how to derive a machine that can be
used as a sensible implementation of the untyped λσ-calculus, and in turn
of the untyped λ-calculus. Different implementation issues arise in typed
systems. For typed calculi, we need not just an execution machine, but
also a typechecker. As will become apparent when we discuss second-order
systems, explicit substitutions can also help in deriving typecheckers. Thus,
we want a typechecker for the λσ-calculus.

At the first order, the typechecker does not present much difficulty. In
addition to the usual rules for a classical system L1, we must handle the
typechecking of substitutions. Inspection of the rules of L1 shows that this
can be done easily, since the rules are deterministic.

In this section we describe the first-order typed λσ-calculus. We prove
that it preserves types under reductions, and that it is sound with respect to
the λ-calculus. We move on to the second-order calculus in the next section.

We start by recalling the syntax and the type rules of the first-order
λ-calculus with De Bruijn’s notation.

Types A ::= K | A → B
Environments E ::= nil | A,E
Terms a ::= n | λA.a | ab

26

Definition 4.1 (Theory L1)

(L1-var) A,E ` 1 : A

(L1-varn)
E ` n : B

A,E ` n+1 : B

(L1-lambda)
A,E ` b : B

E ` λA.b : A → B

(L1-app)
E ` b : A → B E ` a : A

E ` ba : B

We do not include the β rule, because we now focus on typechecking—rather
than on evaluation.

The first-order λσ-calculus has the following syntax:

Types A ::= K |A → B
Environments E ::= nil |A,E
Terms a ::= 1 | ab |λA.a | a[s]
Substitutions s ::= id | ↑ | a:A · s | s ◦ t

The type rules come in two groups, one for giving types to terms, and one
for giving environments to substitutions. The two groups interact through
the rule for closures.

Definition 4.2 (Theory S1)

(S1-var) A,E ` 1 : A

(S1-lambda)
A,E ` b : B

E ` λA.b : A → B

(S1-app)
E ` b : A → B E ` a : A

E ` ba : B

(S1-clos)
E ` s . E′ E′ ` a : A

E ` a[s] : A

27

(S1-id) E ` id . E

(S1-shift) A,E ` ↑ . E

(S1-cons)
E ` a : A E ` s . E′

E ` a:A · s . A,E′

(S1-comp)
E ` s′′ . E′′ E′′ ` s′ . E′

E ` s′ ◦ s′′ . E′

In S1, we include neither the Beta axiom nor the σ axioms.
Clearly, typechecking is decidable in S1. Furthermore, the fact that we

can separate typing of terms from typing of substitutions is quite pleasant;
as we have seen, this property does not extend to the second order.

We proceed to show that S1 is sound. As a preliminary, we prove two
lemmas. The first lemma relies on the notion of σ normal form, which was
defined in the previous section. We use a modified version of the σ rules, in
order to deal with typed terms; four of the rules change.

VarCons 1[a:A · s] = a

Abs (λA.a)[s] = λA.(a[1:A · (s ◦ ↑)])

ShiftCons ↑ ◦ (a:A · s) = s

Map (a:A · s) ◦ t = a[t]:A · (s ◦ t)

The typed version of σ enjoys the properties of the untyped version.
A term in σ normal form is typeable in S1 iff it is typeable in L1:

Lemma 4.3 (Same theory on normal forms) Let a be in σ normal
form. Then E S̀1 a:A iff E L̀1 a:A.

Proof The argument is an easy induction on the length of proofs. The
only delicate case is the one that deals with the rules L1-varn and S1-clos.

First, we assume that A,E L̀1 n+1 : B, and show that A,E S̀1 n+1 : B.
Since A,E L̀1 n+1 : B, it must be that E L̀1 n : B. By induction
hypothesis, E S̀1 n : B. Unless n is 1 (a trivial case), the last rule in the
S1 proof could only be S1-clos, and then it must be that E S̀1 ↑n−1 . E′

28

and E′
S̀1 1 : B for some E′. In fact, it must be that E S̀1 ↑n−1 . B,E′′

and B,E′′
S̀1 1 : B for some E′′. Then S1-shift and S1-comp yield

A,E S̀1 ↑n . B,E′′, and S1-clos yields A,E S̀1 1[↑n] : B, the desired
result.

For the converse, we assume that E S̀1 n+1 : B, in order to show that
E L̀1 n+1 : B. Since E S̀1 n+1 : B, it must be that E S̀1 ↑n . E′ and
E′

S̀1 1 : B for some E′ (unless n is 1, a trivial case). Further analysis
shows that E must be of the form C,E′′ and that E′′

S̀1 ↑n−1 : B,E0, and
hence E′′

S̀1 n : B. The proof of this last theorem is shorter than the proof
of E S̀1 n+1 : B. By induction hypothesis, it follows that E′′

L̀1 n : B,
and then C,E′′

L̀1 n+1 : B, that is, E L̀1 n+1 : B. 2

Let →σ denote one-step reduction with the σ rules; σ reductions preserve
typings in S1.

Lemma 4.4 (Subject reduction) If a →σ a′ and E S̀1 a : A, then
E S̀1 a′:A. Similarly, if s →σ s′ and E′

S̀1 s . E′′, then E′
S̀1 s′ . E′′.

Proof We inspect the σ rules one by one; we abbreviate S̀1 as ` .

Var : Let 1[b:B · s] →σ b. Suppose E ` 1[b:B · s] : A. By S1-clos,
E ` b:B · s . E1 and E1 ` 1:A, for some E1. Furthermore, by
S1-cons, E ` b:B · s . B,E2, with E1 = B,E2, with E ` b:B, and
with E ` s . E2. By S1-var, B,E2 ` 1:A implies B = A, and thus
E ` b:A.

App: Let ba[s] →σ (b[s])(a[s]). Suppose (ba)[s] : B. By S1-clos, E ` s.E1
and E1 ` ba : B, and hence E1 ` b : A → B and E1 ` a : A. By
S1-clos, moreover, E ` b[s] : A → B and E ` a[s] : A. Therefore,
E ` (b[s])(a[s]) : B.

Abs: Let (λA.b)[s] →σ λA.(b[1 :A · (s ◦ ↑)]). Suppose (λA.b)[s] : C. By
S1-clos, E ` s . E1 and E1 ` λA.b : C. By S1-lambda, C = A → B
and A,E1 ` b : B. Now, we apply S1-shift and S1-comp to obtain
A,E ` ↑ . E. and then A,E ` s ◦ ↑ . E1. Since A,E ` 1 : A
by S1-var, S1-cons gives us A,E ` 1:A · s ◦ ↑ . A,E1. Finally, since
A,E1 ` b : B, S1-clos yields A,E ` b[1:A · s ◦ ↑] : B, and therefore,
λA.(b[1:A · (s ◦ ↑)]) : A → B by S1-lambda.

Clos: Let (b[s])[t] →σ b[s◦ t]. Suppose E ` (b[s])[t] : B. Then E ` t .E1
and E1 ` b[s] : B, that is, E1 ` s . E2 and E2 ` b : B. S1-comp
tells us E ` s ◦ t . E2, and then E ` b[s ◦ t] : B by S1-clos.

29

IdL: Let id ◦ s →σ s. Suppose E ` id ◦ s . E′. Then E ` s . E′′ and
E′′ ` id.E′, by S1-comp, and E′′ = E′ by S1-id. Finally, E ` s.E′.

ShiftCons: Let ↑ ◦ (a:A · s) →σ s. Suppose E ` ↑ ◦ (a:A · s) . E′. Then
E ` a:A ·s.E′′ and E′′ ` ↑.E′, by S1-comp. S1-cons says E ` a:A
and E ` s . E1, with E′′ = A,E1. By S1-shift, we have E′′ = A,E′.
Therefore, E1 = E′ and E ` s . E′.

Ass: Let (s1 ◦ s2) ◦ s3 →σ s1 ◦ (s2 ◦ s3). To solve this case, we simply use
S1-comp twice.

Map: Let (a :A · s) ◦ t →σ A[t] · (s ◦ t). Suppose E ` (a :A · s) ◦ t . E′.
Then E ` t . E′′ and E′′ ` a :A · s . E′, by S1-comp. Hence, by
S1-cons, E′′ ` a : A and E′′ ` s . E1, with E′ = A,E1. Then
E ` s ◦ t . E1 by S1-comp, and E ` a[t] :A by S1-clos. Finally,
E ` a[t]:A · (s ◦ t) . A,E1, by S1-cons.

IdR: Let s ◦ id →σ s. This case is similar to the case for IdL.

Id : Let a[id] →σ a. Suppose E ` a[id] : A. Then E ` id . E′ and
E′ ` a:A by S1-clos. S1-id implies E′ = E. Thus, E ` a:A.

VarShift : Let 1 :A · ↑ →σ id. Suppose E ` 1 :A · ↑ . E′. By S1-cons,
E ` 1:A and E ` ↑.E′′, with E′ = A,E′′. S1-var yields E = A,E1,
and S1-shift yields E1 = E′′. Finally, by S1-id, A,E1 ` id : A,E1,
that is, E : id . E′.

SCons: Let (1:A)[s] · (↑ ◦ s) →σ s. This case is similar to the previous one.
2

Together, the two lemmas immediately give us soundness:

Proposition 4.5 (Soundness) If E S̀1 a : A, then E L̀1 σ(a) : A.

One may wonder whether a completeness result holds, as a converse to
our soundness result. Unfortunately, the answer is no. For instance, if L1
gives a type to a but not to b, then S1 cannot give a type to 1[a:A ·(b:B ·id)],
while L1 gives a type to σ(1[a:A · (b:B · id)]), that is, to a.

However, if L1 gives types to both a and b, then S1 can give a type to
1[a :A · (b :B · id)]. Conversely, if S1 can give a type to 1[a :A · (b :B · id)],
then L1 can give types to both a and b.

These observations suggest a reformulation of the soundness and com-
pleteness claim. Informally, one would like to show that S1 can give a type

30

to a term iff L1 can give a type to the normal forms of the term and of some
subterms that σ normalization discards.

5 Second-order theories

Type rules and typecheckers are also needed for second-order calculi. Unfor-
tunately, the situation is more complex than at the first order, because types
include binding constructs (quantifiers). These interact with substitutions
in the same subtle ways in which λ interacts with substitutions. (We have
no equivalent of β reduction here, but this too reappears in higher-order
typed systems.)

In implementing a typechecker (or proofchecker) for the second or higher
orders, we face the same concerns of efficient handling of substitution and
correctness of implementation that pushed us from the untyped λ-calculus
to the untyped λσ-calculus. These are important concerns in typechecking
Quest programs, for example. It is nice to discover that we can apply the
same concept of explicit substitutions to tackle typechecking problems as
well.

In order to carry out this plan, we must first obtain a second-order system
with explicit substitutions, which already incurs several difficulties. Then
we must refine the system, and obtain an actual typechecking algorithm.
During this long enterprise, where many steps are interesting for their own
sake, we should keep in mind the goal of deriving an algorithm that is correct
and close to a sensible implementation by virtue of handling substitutions
explicitly.

Second-order theories are considerably more complex than untyped or
first-order theories, both in number of rules and in subtlety. The compli-
cation is already apparent in the De Bruijn formulation of the ordinary
second-order λ-calculus (L2, below). The complication intensifies in the
second-order λσ-calculus (S2) because of unexpected difficulties. (We have
mentioned some of them in the informal overview.)

We begin with a description of L2, then we define S2 and prove that it
is sound with respect to L2. Unlike L1, L2, and even S1, the new system S2
is not deterministic. Therefore, we also define a second-order typechecking
algorithm S2alg, and prove that it is sound with respect to S2.

31

The syntax for the second-order λ-calculus is:

Types A ::= n | A → B | ∀A
Environments E ::= nil | A,E | Ty, E
Terms a ::= n | λA.a | Λa | ab | aB

The system L2 consists of the type rules for the second-order λ-calculus:

Definition 5.1 (Theory L2)

(L2-nil) ` nil env

(L2-ext)
` E env E ` A :: Ty

` A,E env

(L2-ext2)
` E env

` Ty, E env

(L2-tvar)
` E env

Ty, E ` 1 :: Ty

(L2-tvarn)
E ` n :: Ty E ` A :: Ty

A,E ` n+1 :: Ty

(L2-tvarn2)
E ` n :: Ty

Ty, E ` n+1 :: Ty

(L2-tfun)
E ` A :: Ty A,E ` B :: Ty

E ` A → B :: Ty

(L2-tgen)
Ty, E ` B :: Ty

E ` ∀B :: Ty

(L2-var)
E ` A :: Ty

A,E ` 1 : A{↑}

(L2-varn)
E ` n : B E ` A :: Ty

A,E ` n+1 : B{↑}

32

(L2-varn2)
E ` n : B

Ty, E ` n+1 : B{↑}

(L2-lambda)
A,E ` b : B

E ` λA.b : A → B

(L2-Lambda)
Ty, E ` b : B

E ` Λb : ∀B

(L2-app)
E ` b : A → B E ` a : A

E ` b(a) : B{a:A · id}

(L2-App)
E ` b : ∀B E ` A :: Ty

E ` b(A) : B{A::Ty · id}

We now move on to the S2 system, with the following syntax:

Types A ::= 1 | A → B | ∀A | A[s]
Environments E ::= nil | A,E | Ty, E
Terms a ::= 1 | λA.a | Λa | ab | aB | a[s]
Substitutions s ::= id | ↑ | a:A · s | A::Ty · s | s ◦ t

In the previous section, we have seen how to formulate a first-order λσ-
calculus (S1) by adding one closure rule and a group of substitution rules
to the first-order λ-calculus (L1). Unfortunately, this approach fails for
second-order systems, as it would not provide a satisfactory treatment of
definitional equality. In L1, we can simply define a let construct in terms of
either abstraction and application, or substitution:

let x:A = a in b =def (λx:A.b)a or b{a/x}

In L2, we can accept this definition of let, and also define a Let construct
for giving names to types, by substitution:

Let X = A in b =def b{A/X}

However, it is not adequate to define Let as an abbreviation for ab-
straction and application. For instance, recall the example given in the
informal overview: Let X = Bool in λx:X.not(x) cannot be typed if it is

33

interpreted as (ΛX.λx :X.not(x))Bool . Here the body of Let can only be
typechecked by knowing that X = Bool ; it does not suffice to have X ::Ty.
Thus, we must interpret Let with a substitution.

Unfortunately, this strategy does not carry over to S2. First, we cannot
define Let in S2 with a meta-level substitution, because the whole point of
S2 is to deal with explicit substitutions. Second, if we define Let with an
explicit substitution, we obtain:

Let X = A in b =def b[(A::Ty/X) · id]

and, for example,

Let X = Bool in λx : X.not(x) =def (λx:X.not(x))[(Bool ::Ty/X) · id]

We still cannot type the body of Let independently, before pushing the
substitution into it. We are in no better shape than with the encoding of
Let via Λ. Hence, it does not suffice to deal with terms and substitutions
separately, as we did in the S1-clos rule of the previous section. The task
of deriving types cannot be separated from the task of applying substitu-
tions. The rules of S2 described below are structured in such a way that
substitutions are automatically pushed inside terms during typechecking, so
that typing can occur as expected in the example above. The unfortunate
side effect is a small explosion in the number of rules. We do not include an
analogue for S1-clos (in fact, we conjecture that it is admissible).

After having settled on a general approach, let us discuss the form of
judgments. The theory S2 is formulated with equivalence judgments, for
example judgments of the form E ` a ∼ b : A. This judgment means
that in the environment E the terms a and b both have type A and are
equivalent. We can recover the standard judgments, with definitions such
as

E ` a : A =def E ` a ∼ a : A

In S2, equivalence judgments are needed because it is not always possible
to prove directly E ` a : A, but only E ` b : A for a term b that is
σ-equivalent to a (as in the example above). Formally, in order to prove
E ` a ∼ a : A, we first prove E ` a ∼ b : A, and then use symmetry and
transitivity. Similarly, it is not always possible to prove directly E ` a : A,
but instead we may have to prove E ` a : B for a type B that is σ-
equivalent to A, and then we need to “retype” a from B to A.

34

We have seen in section 2 how the typing axiom for 1 has to be modified.
Similar considerations show that the rule for conses, S1-cons, needs to be
modified as well, and suggest the following, tentative rule:

E ` a ∼ b : A[s] E ` s ∼ t . E′ E ` A[s] ∼ B[t] :: Ty

E ` (a:A · s) ∼ (b:B · t) . A,E′

Note that, in the hypothesis, we require that a have type A[s] rather than A:
the reason is that A is well-formed in E′ rather than in E. Furthermore, we
require that s and t be equivalent substitutions of type E′, but in truth their
type is irrelevant. This suggests a new approach: we deal with judgments
of the form

E ` s ∼ t substp

where p records the length | E′ | of E′. (The precise relation between envi-
ronment lengths, and substitutions sizes, as defined in section 2, obeys the
invariant: if E ` s substp and | s | = (m,n) then p = m + | E | − n ≥ 0.)

In fact, we could hardly do more than keep track of the lengths of sub-
stitutions. As the following example illustrates, the type of a substitution
cannot be determined satisfactorily. In the tentative rule above, let E = nil ,
s = t = Bool ::Ty · id , a = b = true, A = 1, and B = Bool . We obtain

nil ` (true :1 · s) ∼ (true :Bool · t) . (1::Ty,nil)

where we would more naturally expect the type Bool ::Ty, nil. The informa-
tion that 1 is Bool is not found in the environment: the substitution s has
to be used to check that 1 is indeed Bool . It seems thus that the type of a
substitution cannot be intrinsically defined.

With these explanations in mind, the reader should be able to approach
the rules of the theory S2 (though some may find it preferable to understand
S2alg at the same time).

Definition 5.2 (Theory S2) See appendix 7.

We now prove the soundness of S2 with respect to L2.

Proposition 5.3 (Soundness)

1. If E S̀2 a ∼ b : A
then σ(E) L̀2 σ(a) : σ(A) and σ(a) = σ(b).

35

2. If E S̀2 A ∼ B :: Ty
then σ(E) L̀2 σ(A) :: Ty and σ(A) = σ(B).

3. If S̀2 E ∼ E′ env
then L̀2 σ(E) env and σ(E) = σ(E′).

4. If E S̀2 s ∼ s′ substp

then there exist m and n such that

• σ(s) = G1 · . . . · Gm · ↑n and σ(s′) = G′
1 · . . . · G′

m · ↑n,

• for all q ≤ m, either Gq=G′
q=A::Ty and σ(E) L̀2 A :: Ty for

some A, or Gq = a :A, G′
q = a :A′, σ(A[↑q ◦ s]) = σ(A′[↑q ◦ s′]),

and σ(E) L̀2 a : σ(A[↑q ◦ s]) for some a, A, and A′,

• p = m + | E | − n.

.

Proof The proof is by induction on the rules of S2. We omit the checking
of the numeric invariant in the last part of the claim. The cases for the
EqReenving rules are trivial. The symmetric character of the claim settles
the cases for the Symm and Trans rules, as well as that for EqRetyping.
Other easy cases are those for rules that express typing through rewrit-
ing, and where one of the sides of the underlying rewrite rule appears in
the premise. This concerns EqTyClosVarId, EqTyClosPi, EqTyClosClos,
EqClosVarId, EqClosApp, EqClosAbs, EqClosClos, EqCompId, EqComp-
ShiftId, EqCompShiftCons, EqCompCons, EqCompComp, and their vari-
ants (such as EqClosApp2). Now we briefly examine the remaining cases:

EqTyVar: by the induction hypothesis and L2-tvar.

EqTyPi: by the induction hypothesis, L2-tfun, and the observation that
σ(A → B) = σ(A) → σ(B).

EqTyPi2, EqTyClosVarShift, EqVar, EqAbs, EqApp, EqClosVarShift,
EqNil, EqExt, and their variants (such as EqTyClosVarShiftN2): sim-
ilar to EqTyVar and EqTyPi.

EqTyClosVarCons: by the induction hypothesis (with q = 1).

EqTyClosVarCong: we exploit the induction hypothesis on the first
premise. There are two cases. If m = 0, then s and s′ coincide,
and the conclusion is identical to the second premise. If m > 1 and

36

σ(s) = G·s1, then G cannot have the form a:A, because we would get a
contradiction from the induction hypothesis (on the second premise).
Hence, G = A :: Ty, and the conclusion follows from the induction
hypothesis on the first premise (with q = 1).

EqClosVarCons: similar to EqTyClosVarCons, noting that σ(A[s]) =
σ(A[↑ ◦ (a:A · s)]).

EqClosVarCong: similar to EqTyClosVarCong, except that the second
premise forces G to have now the other form a:A.

EqId, EqShift, EqShift2: since in these cases s and s′ coincide and m = 0,
the property holds vacuously for the conclusion.

EqCons, EqCons2: by the induction hypothesis, noting that σ(a:A · s) =
σ(a):σ(A) · σ(s).

EqCompShiftCong: we exploit the induction hypothesis on the premise.
If m = 0, then s and s′ coincide, and we can use the argument of
case EqId. If m > 0, the conclusion follows immediately from the
assumption, since σ(↑ ◦ s) = σ(s1), where σ(s) = G · s1 for some G.

2

As for S1, we speculate that the soundness claim for S2 can be strength-
ened, and that a converse completeness result then holds.

We now provide a typechecking algorithm S2alg for the second-order
calculus. The algorithm is formulated as a set of inference rules, for easy
comparison with S2. As we will see, each rule of S2alg is an admissible rule
for S2; this shows the soundness of S2alg.

For terms that are not closures, S2alg and L2 operate identically. How-
ever, these are the least interesting cases: an actual implementation would
manipulate only closures (as in subsection 3.5). In order to typecheck a
term a[s], the basic strategy is to analyze simpler and simpler components
of a while accumulating more and more complex substitutions in s. When
we finally reach an index, we extract the relevant information from the sub-
stitution or from the environment.

Informally, the algorithmic flow of control for each rule is: start with the
given parts of the conclusion, recursively do what the assumptions on top
require, accumulate the results, and from them produce the unknown parts
of the conclusion. For example, if we want to type a in the environment E,

37

we select an inference rule of S2alg by inspecting the shape of its conclusion.
Then we move on to the assumptions of this rule, recursively; we solve
the typing problems presented by each of them, and collect the results to
produce a type for the original term a.

Some of the rules involve tests for type equivalence; two auxiliary “re-
duction” judgments are used for this:

E ` s ; s′ substp and E ` A ; A′::Ty

In these judgments, s′ and A′ are in a sort of weak head normal form,
namely: s′ is never a composition and if A′ is a closure then it has the form
1[↑n].

Definition 5.4 (Algorithm S2alg) See appendix 8.

To show that S2alg really defines an algorithm, we first notice that only
one rule can be applied bottom-up in each situation. For the judgments
E ` A ::Ty and E ` A ; A′ ::Ty, we test applicability by cases on A;
when A = B[s], by cases on B; and when B = 1 by cases on the reduction of
s. For E ` a : A, we proceed by cases on a; when a = b[s], by cases on b; and
when b = 1 by cases on the reduction of s. For E ` s substp, we proceed
by cases on s, and when s = t ◦ u by cases on t. For E ` s ; s′ substp,
we proceed by cases on s; when s = t ◦ u, by cases on t; and when t = ↑ by
cases on the reduction of u. Finally, E ` A ↔ B :: Ty is handled by cases
on the reductions of A and B.

The following invariants can be used to show that the algorithm considers
all the cases that may arise when the input terms are well-typed:

If E ` s ; s′ substp then s′ is one of

id
↑n (n ≥ 1)
a:A · t (for some a, A, and t)
A::Ty · t (for some A and t)

If E ` A ; A′ :: Ty then A′ is one of
1

1[↑n] (n ≥ 1)
B → C (for some B and C)
∀B (for some B)

38

Finally, the algorithm can be shown to always terminate, with success
or failure, because every rule either reduces the size of terms or moves terms
towards a normal form.

The algorithm S2alg is sound with respect to S2:

Proposition 5.5

1. If E S̀2alg A :: Ty then E S̀2 A ∼ A :: Ty.

2. If E S̀2alg a : A then E S̀2 a ∼ a : A.

3. If E S̀2alg s substp then E S̀2 s ∼ s substp.

4. If E S̀2alg s ; s′ substp then E S̀2 s ∼ s′ substp.

5. If E S̀2alg A ; A′ :: Ty then E S̀2 A ∼ A′ :: Ty.

6. If E S̀2alg A ↔ A′ :: Ty then E S̀2 A ∼ A′ :: Ty.

7. If S̀2alg E env then S̀2 E ∼ E env.

Proof The proof is a simple case analysis, with an extensive use of the
Symm and Trans rules. 2

We conjecture that the algorithm is also complete, in the following sense:

Conjecture 5.6

1. If E S̀2 A ∼ A′ :: Ty then E S̀2alg A :: Ty.

2. If E S̀2 a ∼ b : A
then E S̀2alg a : A′ and E S̀2alg A′ ↔ A :: Ty for some A′.

3. If E S̀2 s ∼ s′ substp then E S̀2alg s substp.

4. If S̀2 E ∼ E env then S̀2alg E env.

Unfortunately, it seems unlikely that one could simply prove the conjec-
ture by induction on proofs (for example, the presence of A′ ↔ A in the
second part of the statement gives rise to complications).

39

6 Conclusion

The usual presentations of the λ-calculus discreetly play down the handling
of substitutions. This helps in developing the meta-theory of the λ-calculus,
at a suitable level of abstraction. We hope to have demonstrated the benefits
of a more explicit treatment of substitutions, both for untyped systems and
typed systems. The theory and the manipulation of explicit substitutions
can be delicate, but useful for correct and efficient implementations.

Acknowledgements We have benefited from discussions with P. Crégut,
T. Hardin, E. Muller, A. Rı́os, and A. Suárez, and from C. Hibbard’s edito-
rial help.

40

Acknowledgements We have benefited from discussions with P. Crégut,
T. Hardin, E. Muller, A. Rı́os, and A. Suárez, and from C. Hibbard’s edito-
rial help.

41

7 Appendix: Theory S2

7.1 Type equivalence

(TypeSymm)
E ` A ∼ B :: Ty

E ` B ∼ A :: Ty

(TypeTrans)
E ` A ∼ B :: Ty E ` B ∼ C :: Ty

E ` A ∼ C :: Ty

(EqTyVar)
` E env

Ty, E ` 1 ∼ 1 :: Ty

(EqTyPi)
E ` A ∼ A′ :: Ty A,E ` B ∼ B′ :: Ty

E ` A → B ∼ A′ → B′ :: Ty

(EqTyPi2)
Ty, E ` B ∼ B′ :: Ty

E ` ∀B ∼ ∀B′ :: Ty

(EqTyClosVarId)
` E env

E ` 1[id] ∼ 1 :: Ty

(EqTyClosVarShift)
E ` 1 :: Ty E ` A :: Ty

A,E ` 1[↑] ∼ 1[↑] :: Ty

(EqTyClosVarShift2)
E ` 1 :: Ty

Ty, E ` 1[↑] ∼ 1[↑] :: Ty

(EqTyClosVarShiftN)
E ` 1[↑n] :: Ty E ` A :: Ty

A,E ` 1[↑n+1] ∼ 1[↑n+1] :: Ty

(EqTyClosVarShiftN2)
E ` 1[↑n] :: Ty

Ty, E ` 1[↑n+1] ∼ 1[↑n+1] :: Ty

42

(EqTyClosVarCons)
E ` A::Ty · s substp

E ` 1[A::Ty · s] ∼ A :: Ty

(EqTyClosVarCong)
E ` s ∼ s′ substp E ` 1[s′] :: Ty

E ` 1[s] ∼ 1[s′] :: Ty

(EqTyClosPi)
E ` A[s] → B[1:A.(s ◦ ↑)] :: Ty

E ` (A → B)[s] ∼ A[s] → B[1:A · (s ◦ ↑)] :: Ty

(EqTyClosPi2)
E ` ∀(B[1 :: Ty · (s ◦ ↑)]) :: Ty

E ` (∀B)[s] ∼ ∀(B[1::Ty · (s ◦ ↑)]) :: Ty

(EqTyClosClos)
E ` A[s ◦ t] :: Ty

E ` A[s][t] ∼ A[s ◦ t] :: Ty

(EqTypeReenving)
E ` A ∼ B :: Ty ` E ∼ E′ env

E′ ` A ∼ B :: Ty

7.2 Term equivalence

(TermSymm)
E ` a ∼ b : A

E ` b ∼ a : A

(TermTrans)
E ` a ∼ b : A E ` b ∼ c : A

E ` a ∼ c : A

(EqVar)
E ` A :: Ty

A,E ` 1 ∼ 1 : A[↑]

(EqAbs)
E ` A ∼ A′ :: Ty A,E ` b ∼ b′ : B

E ` λA.b ∼ λA′.b′ : A → B

(EqAbs2)
Ty, E ` b ∼ b′ : B

E ` Λb ∼ Λb′ : ∀B

43

(EqApp)
E ` b ∼ b′ : A → B E ` a ∼ a′ : A

E ` b(a) ∼ b′(a′) : B[a:A · id]

(EqApp2)
E ` b ∼ b′ : ∀B E ` A ∼ A′ :: Ty

E ` b(A) ∼ b′(A′) : B[A::Ty · id]

(EqClosVarId)
E ` 1 : A

E ` 1[id] ∼ 1 : A

(EqClosVarShift)
E ` 1 : A E ` B :: Ty

B,E ` 1[↑] ∼ 1[↑] : A[↑]

(EqClosVarShift2)
E ` 1 : A

Ty, E ` 1[↑] ∼ 1[↑] : A[↑]

(EqClosVarShiftN)
E ` 1[↑n] : A E ` B :: Ty

B,E ` 1[↑n+1] ∼ 1[↑n+1] : A[↑]

(EqClosVarShiftN2)
E ` 1[↑n] : A

Ty, E ` 1[↑n+1] ∼ 1[↑n+1] : A[↑]

(EqClosVarCons)
E ` a:A · s substp

E ` 1[a:A · s] ∼ a : A[s]

(EqClosVarCong)
E ` s ∼ s′ substp E ` 1[s′] : A

E ` 1[s] ∼ 1[s′] : A

(EqClosAbs)
E ` λA[s].b[1:A · (s ◦ ↑)] : B

E ` (λA.b)[s] ∼ λA[s].b[1:A · (s ◦ ↑)] : B

(EqClosAbs2)
E ` Λ(b[1::Ty · (s ◦ ↑)) : B

E ` (Λb)[s] ∼ Λ(b[1::Ty · (s ◦ ↑)]) : B

(EqClosApp)
E ` (b[s])(a[s]) : A

E ` b(a)[s] ∼ (b[s])(a[s]) : A

44

(EqClosApp2)
E ` (b[s])(A[s]) : B

E ` b(A)[s] ∼ (b[s])(A[s]) : B

(EqClosClos)
E ` a[s ◦ t] : A

E ` a[s][t] ∼ a[s ◦ t] : A

(EqRetyping)
E ` a ∼ b : A E ` A ∼ B :: Ty

E ` a ∼ b : B

(EqTermReenving)
E ` a ∼ b : A ` E ∼ E′ env

E′ ` a ∼ b : A

As in S1, we do not include Beta rules in S2:

(Beta)
E ` a : A A,E ` b : B

E ` (λA.b)(a) ∼ b[a:A · id] : B[a:A · id]

(Beta2)
E ` A :: Ty Ty, E ` b : B

E ` (Λb)(A) ∼ b[A::Ty · id] : B[A::Ty · id]

7.3 Substitution equivalence

(SubsSymm)
E ` s ∼ t substp

E ` t ∼ s substp

(SubsTrans)
E ` s ∼ t substp E ` t ∼ u substp

E ` s ∼ u substp

(EqId)
` E env

E ` id ∼ id subst |E|

(EqShift)
E ` A :: Ty

A,E ` ↑ ∼ ↑ subst |E|

(EqShift2)
` E env

Ty, E ` ↑ ∼ ↑ subst |E|

45

(EqCons)

E ` s ∼ t substp E ` A[s] ∼ B[t] :: Ty
E ` a ∼ b:A[s]

E ` a:A · s ∼ b:B · t substp+1

(EqCons2)
E ` A ∼ B :: Ty E ` s ∼ t substp

E ` A::Ty · s ∼ B::Ty · t substp+1

(EqCompId)
E ` s ∼ s′ substp

E ` id ◦ s ∼ s′ substp

(EqCompShiftId)
E ` ↑ substp

E ` ↑ ◦ id ∼ ↑ substp

(EqCompShiftCons)
E ` s ∼ s′ substp E ` a : A[s]

E ` ↑ ◦ (a:A · s) ∼ s′ substp

(EqCompShiftCons2)
E ` s ∼ s′ substp E ` A :: Ty

E ` ↑ ◦ (A::Ty · s) ∼ s′ substp

(EqCompShiftCong)
E ` s ∼ s′ substp+1

E ` ↑ ◦ s ∼ ↑ ◦ s′ substp

(EqCompCons)
E ` a[t]:A · (s ◦ t) substp

E ` (a:A · s) ◦ t ∼ a[t]:A · (s ◦ t) substp

(EqCompCons2)
E ` A[t]::Ty · (s ◦ t) substp

E ` (A::Ty · s) ◦ t ∼ A[t]::Ty · (s ◦ t) substp

(EqCompComp)
E ` s ◦ (t ◦ u) substp

E ` (s ◦ t) ◦ u ∼ s ◦ (t ◦ u) substp

(EqSubstReenving)
E ` s ∼ t substp ` E ∼ E′ env

E′ ` s ∼ t substp

46

7.4 Environment equivalence

(EnvSymm)
` E ∼ E′ env

` E′ ∼ E env

(EnvTrans)
` E ∼ E′ env ` E′ ∼ E′′ env

` E ∼ E′′ env

(Eqnil) ` nil ∼ nil env

(EqExt)
` E ∼ E′ env E ` A ∼ B :: Ty

` A,E ∼ B,E′ env

(EqExt2)
` E ∼ E′ env

` Ty, E ∼ Ty, E′ env

47

8 Appendix: Algorithm S2alg

8.1 Inference for types

(TyVar)
` E env

Ty, E ` 1 :: Ty

(TyPi)
E ` A :: Ty A,E ` B :: Ty

E ` A → B :: Ty

(TyPi2)
Ty, E ` B :: Ty

E ` ∀B :: Ty

(TyClosVarId)
Ty, E ` s ; id substp

Ty, E ` 1[s] :: Ty

(TyClosVarShift)
E ` 1 :: Ty E ` A :: Ty

A,E ` 1[↑] :: Ty

(TyClosVarShift2)
E ` 1 :: Ty

Ty, E ` 1[↑] :: Ty

(TyClosVarShiftN)
E ` 1[↑n] :: Ty E ` A :: Ty

A,E ` 1[↑n+1] :: Ty

(TyClosVarShiftN2)
E ` 1[↑n] :: Ty

Ty, E ` 1[↑n+1] :: Ty

(TyClosVarCons)
E ` s ; A::Ty · t substp

E ` 1[s] :: Ty

(TyClosVarCong)
E ` s ; ↑n substp E ` 1[↑n] :: Ty

E ` 1[s] :: Ty

48

(TyClosPi)

E ` A[s] :: Ty
A[s], E ` B[1 : A · (s ◦ ↑)] :: Ty

E ` (A → B)[s] :: Ty

(TyClosPi2)
Ty, E ` B[1::Ty · (s ◦ ↑)] :: Ty

E ` (∀B)[s] :: Ty

(TyClosClos)
E ` A[s ◦ t] :: Ty

E ` A[s][t] :: Ty

8.2 Inference for terms

(Var)
E ` A :: Ty

A,E ` 1 : A[↑]

(Abs)
E ` A :: Ty A,E ` b : B

E ` λA.b : A → B

(Abs2)
Ty, E ` b : B

E ` Λb : ∀B

(App)
E ` b : A → B E ` a : A

E ` b(a) : B[a:A · id]

(App2)
E ` b : ∀B E ` A :: Ty

E ` b(A) : B[A::Ty · id]

(ClosVarId)
A,E ` s ; id substp

A,E ` 1[s] : A[↑]

(ClosVarShift)
E ` 1 : A E ` B :: Ty

B,E ` 1[↑] : A[↑]

(ClosVarShift2)
E ` 1 : A

Ty, E ` 1[↑] : A[↑]

49

(ClosVarShiftN)
E ` 1[↑n] : A E ` B :: Ty

B,E ` 1[↑n+1] : A[↑]

(ClosVarShiftN2)
E ` 1[↑n] : A

Ty, E ` 1[↑n+1] : A[↑]

(ClosVarCons)
E ` s ; a:A · t substp

E ` 1[s] : A[t]

(ClosVarCong)
E ` s ; ↑n substp E ` 1[↑n] : A

E ` 1[s] : A

(ClosAbs)
A[s], E ` b[1 : A · (s ◦ ↑)] : B

E ` (λA.b)[s] : A[s] → B

(ClosAbs2)
Ty, E ` b[1::Ty · (s ◦ ↑)] : B

E ` (Λb)[s] : ∀B

(ClosApp)

E ` b[s] : A → B E ` a[s] : A′

E ` A ↔ A′ :: Ty

E ` (b(a))[s] : B[a[s] : A · id]

(ClosApp2)
E ` b[s] : ∀B E ` A[s] :: Ty

E ` (b(A))[s] : B[A[s]::Ty · id]

(ClosClos)
E ` a[s ◦ t] : A

E ` a[s][t] : A

8.3 Inference for substitutions

(Id)
` E env

E ` id subst |E|

(Shift)
E ` A :: Ty

A,E ` ↑ subst |E|

50

(Shift2)
` E env

Ty, E ` ↑ subst |E|

(Cons)

E ` a : B E ` s substp

E ` A[s] ↔ B :: Ty

E ` a : A · s substp+1

(Cons2)
E ` A :: Ty E ` s substp

E ` A::Ty · s substp+1

(CompId)
E ` s substp

E ` id ◦ s substp

(CompShift)
E ` s substp+1

E ` ↑ ◦ s substp

(CompCons)
E ` a[t] : A · (s ◦ t) substp

E ` (a : A · s) ◦ t substp

(CompCons2)
E ` A[t]::Ty · (s ◦ t) substp

E ` (A::Ty · s) ◦ t substp

(CompComp)
E ` s ◦ (t ◦ u) substp

E ` (s ◦ t) ◦ u substp

8.4 Substitution reduction

(RedId)
` E env

E ` id ; id subst |E|

(RedShift)
E ` A :: Ty

A,E ` ↑ ; ↑ subst |E|

(RedShift2)
` E env

Ty, E ` ↑ ; ↑ subst |E|

51

(RedCons)

E ` A[s] :: Ty E ` a : B
E ` B ↔ A[s] :: Ty E ` s substp

E ` a : A · s ; a : A · s substp+1

(RedCons2)
E ` A :: Ty E ` s substp

E ` A::Ty · s ; A::Ty · s substp+1

(RedCompId)
E ` s ; s′ substp

E ` id ◦ s ; s′ substp

(RedCompShiftId)
E ` s ; id substp+1

E ` ↑ ◦ s ; ↑ substp

(RedCompShiftShiftN)
E ` s ; ↑n substp+1

E ` ↑ ◦ s ; ↑n+1 substp

(RedCompShiftCons)

E ` s ; a : A · s′ substp+1

E ` s′ ; s′′ substp

E ` ↑ ◦ s ; s′′ substp

(RedCompShiftCons2)

E ` s ; A::Ty · s′ substp+1

E ` s′ ; s′′ substp

E ` ↑ ◦ s ; s′′ substp

(RedCompCons)
E ` a[t] : A · (s ◦ t) substp

E ` (a : A · s) ◦ t ; a[t] : A · (s ◦ t) substp

(RedCompCons2)
E ` A[t]::Ty · (s ◦ t) substp

E ` (A::Ty · s) ◦ t ; A[t]::Ty · (s ◦ t) substp

(RedCompComp)
E ` s ◦ (t ◦ u) ; v substp

E ` (s ◦ t) ◦ u ; v substp

52

8.5 Type reductions

(RedTyVar)
` E env

Ty, E ` 1 ; 1 :: Ty

(RedTyPi)
E ` A :: Ty A,E ` B :: Ty

E ` A → B ; A → B :: Ty

(RedTyPi2)
Ty, E ` B :: Ty

E ` ∀B ; ∀B :: Ty

(RedTyClosVarId)
Ty, E ` s ; id substp

Ty, E ` 1[s] ; 1 :: Ty

(RedTyClosVarShiftN)
E ` s ; ↑n substp E ` 1[↑n] :: Ty

E ` 1[s] ; 1[↑n] :: Ty

(RedTyClosVarCons)

E ` s ; A::Ty · s′ substp

E ` A[s′] ; B :: Ty

E ` 1[s] ; B :: Ty

(RedTyClosPi)

E ` A[s] :: Ty
A[s], E ` B[1 : A · (s ◦ ↑)] :: Ty

E ` (A → B)[s] ; A[s] → B[1 : A · (s ◦ ↑)] :: Ty

(RedTyClosPi2)
Ty, E ` B[1::Ty · (s ◦ ↑)] :: Ty

E ` (∀B)[s] ; ∀(B[1::Ty · (s ◦ ↑)]) :: Ty

(RedTyClosClos)
E ` A[s ◦ t] ; B :: Ty

E ` A[s][t] ; B :: Ty

8.6 Type equivalence

(EqTyVar)
E ` A ; 1 :: Ty E ` A′

; 1 :: Ty

E ` A ↔ A′ :: Ty

53

(EqTyPi)

E ` A ; B → C :: Ty
E ` A′

; B′ → C ′ :: Ty
E ` B ↔ B′ :: Ty

B,E ` C ↔ C ′ :: Ty

E ` A ↔ A′ :: Ty

(EqTyPi2)

E ` A ; ∀B :: Ty E ` A′
; ∀B′ :: Ty

Ty, E ` B ↔ B′ :: Ty

E ` A ↔ A′ :: Ty

(EqTyClos)
E ` A ; 1[↑n] :: Ty E ` A′

; 1[↑n] :: Ty

E ` A ↔ A′ :: Ty

8.7 Inference for environments

(Nil) ` nil env

(Ext)
` E env E ` A :: Ty

` A,E env

(Ext2)
` E env

` Ty, E env

54

55

References

[1] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics,
North Holland, 1985.

[2] N. De Bruijn, Lambda-calculus Notation with Nameless Dummies, a
Tool for Automatic Formula Manipulation, Indag. Mat. 34, pp. 381–
392, 1972.

[3] L. Cardelli, Typeful Programming, SRC Report No. 45, Digital Equip-
ment Corporation, 1989.

[4] H.P. Curry and R. Feys, Combinatory Logic, Vol. 1, North Holland,
1958.

[5] P.-L. Curien, The λρ-calculi: an Abstract Framework for Closures, un-
published (preliminary version printed as LIENS report, 1988).

[6] P.-L. Curien, Categorical Combinators, Sequential Algorithms and
Functional Programming, Pitman, 1986.

[7] J. Field, On Laziness and Optimality in Lambda Interpreters: Tools for
Specification and Analysis, in the Conference Record of the Seventeenth
Annual ACM Symposium on Principles of Programming Languages,
pp. 1–15, San Francisco, January 1990.

[8] T. Hardin, Confluence Results for the Pure Strong Categorical Combi-
natory Logic CCL: λ-calculi as Subsystems of CCL, Theoretical Com-
puter Science 65, pp. 291–342, 1989.

[9] T. Hardin, A. Laville, Proof of Termination of the Rewriting System
SUBST on CCL, Theoretical Computer Science 46, pp. 305–312, 1986.

[10] T. Hardin, J.-J. Lévy, A Confluent Calculus of Substitutions, France-
Japan Artificial Intelligence and Computer Science Symposium, Izu,
December 1989.

[11] G. Huet, D.C. Oppen, Equations and Rewrite Rules: A Survey, in
Formal Languages Theory: Perspectives and Open Problems (R. Book,
editor), pp. 349–393, Academic Press, 1980.

[12] J.W. Klop, Combinatory Reduction Systems, Mathematical Center
Tracts 129, Amsterdam, 1980.

56

[13] J.-L. Krivine, unpublished.

[14] P. Martin-Löf, Intuitionistic Type Theory, notes by G. Sambin of a
series of lectures given in Padova in 1980, Bibliopolis, 1984.

[15] C.P. Wadsworth, Semantics and Pragmatics of the Lambda Calculus,
Dissertation, Oxford University, 1971.

57

