Generalized Finite Developments

Jean-Jacques Lévy

INRIA, Microsoft Research-INRIA Joint Centre

Abstract. The Finite Development theorem (FD) is a fundamental theo-
rem in the theory of the syntax of the lambda-calculus. It gives sense to
parallel reductions by stating that one can contract any given set of (possi-
bly nested) redexes in any lambda term without looping and caring about
the order in which these redexes are contracted. This theorem can be used
to prove the Church-Rosser property, thus insuring determinism of reduc-
tions and uniqueness of normal forms. This paper explains how to extend
the FD theorem to a finite number of creations of new redexes, i.e. redexes
which do not exist in the initial term. This generalized theorem (gFD) also
provides a proof technique to show the completeness of various reduction
strategies. Finally it gives a natural intuition to the strong normalization
property of the standard first-order typed lambda-calculus. The results in
this article are not new, but were often mixed with other arguments; the
aim of this paper is to stress on this sole gFD theorem.

1 Introduction

The basic operation of the lambda-calculus [6] is beta-reduction
(Ax.A)B — A{x = B}

contracting any redex of the form (Az.A)B into its contractum A{z := B} where
every occurrence of the free variable x in A is replaced by B. Intuitively Az.A is
a function of x producing the term A and beta-reduction describes the passing of
the argument B to the function Az.A as in programming languages [4,13,19]. The
lambda-calculus enjoys the Church-Rosser property, also named full confluence or
simply confluence, which ensures the determinacy of results for beta-reductions.
For instance if we write A = Az.xz and I = Az.x, then we have

M = (Ia)(Ia) «— A(Ia) » Aa =N

and M — a(Ia) — aa < N. The common reduct aa of M and N can only be
reached by performing two steps from M since the Ia redex is duplicated in M.
The proof of the Church-Rosser theorem relies on an inductive argument on the
length of parallel reductions starting from a given initial term, namely reductions
whose parallel steps are of the form

ML

simultaneously contracting a set F of redexes in M. For instance, in the previous
example, we have

Miacu—N

where F is the set of the two Ia redexes in M and the usual reduction step — is
identified to the contraction of a singleton set of redexes.

The exact definition of these parallel steps is not straightforward. Tait and
Martin-Lof [3] axiomatize an anonymous parallel step as the contraction of a given
set of redexes in an inside-out way. Curry and Feys [7] use the finite development
(FD) theorem. This latter method is more ambitious since it shows that the notion
of parallel step is consistent whatever the order in which redexes are contracted. An
easy corollary of the FD theorem is the so-called lemma of parallel moves stating
that if 7 and F3 are two sets of redexes in the lambda-term A and if

M Az
there exists a lambda-term B such that
M2l N

The proof of the lemma just considers developments of F; UF,. Then full confluence
of the lambda-calculus follows easily.

In this article, we look more closely to the FD theorem and want to exhibit
the property which makes it hold. Traditionally, the FD theorem is divided into
two parts. Let F be a set of redexes in a given term M. Firstly any reduction
relative to F terminates; secondly all maximal reductions relative to F end with
the same term. In the previous statement, we say that a reduction is relative to F
iff it only contracts residuals of redexes of F. The FD theorem means that the set
of reductions relatives to F forms a canonical system, i.e. a set of confluent finite
reductions. This situation is analogous to the one of the (first-order or higher-order)
typed lambda-calculus where the set of all reductions from any given term also forms
a canonical system. The difference between the typed lambda-calculus and relative
reductions comes from the fact that in the latter case no redex is created. In the
untyped lambda-calculus, strong normalization is not valid since reductions may
be infinite as with AA where a new redex is always created. But in the typed case,
redexes may only be created in a limited form.

The main objective of this paper is to demonstrate that if there is no infinite
chain of creations of redexes, the FD theorem may be extended. Therefore we will
be able to characterize arbitrarily large canonical subsets of the reduction graph of
any lambda-term in the untyped lambda-calculus. It will therefore enlighten strong
normalization as the impossibility of producing infinite chains of redex creations.

Some technique will be necessary in stating this generalized FD theorem. The
notion of residual of redexes is subtle in the lambda-calculus since disjoint redexes
may have nested residuals (this is not happening in term rewriting systems). We
will also need the notion of permutation equivalence for reductions in order to define
redex families. In section 2, we introduce Hyland-Wadsworth lambda-calculus. In
section 3, we review definitions of residuals and finite developments. In section 4, we

define historical redexes and redex families. In section 5, we show the generalized
FD theorem and apply it to several lambda-calculi. Section 5 is the conclusion.

2 Hyland-Wadsworth lambda-calculus

Hyland-Wadsworth’s lambda-calculus has been used for characterizing Scott’s Do
model with Bohm trees. Here we use this calculus as a tool for proving termination
of the generalized FD theorem.

In this calculus, the set A, of terms is the usual set of lambda-terms but with
every subterm equipped with an integer exponent. Beta-conversion increments the
exponents on borders of contractums. The rest of the calculus follows the traditional
rules of the untyped lambda-calculus. We also assume that there is a global integer
constant L which defines a lambda-calculus up-to-L, that we call in short the hw(L)-
calculus, as follows:

m,n ::= integer number exponents (m,n > 0)
UV =z | (UV)” | (AzU)" terms
(Az.U)"V)™ — U{x = Vipg1] Hn1][m] beta-conversion

whenn < L
asﬁn =P projection
(UV)[T:R] = (UV)P where p = [m, n]

(Az.U), = (A2.U)P

o™{x =W} =Wy substitution
UV)Y{x =W} = Uz =W} V{z =W}H"
M. U){x =W} = (\y.U{z =W}

The calculus presented here is a slight variant of the exact rules defined by Hyland
and Wadsworth which followed rules of application in Scott’s Do, model where
application decrements exponents and a special rule exists for application of a
function with a null exponent. Here, we notice that any term is in normal form in
the hw(—1) calculus. If A,, = (A\z.(z°2°)°)" and 2, = (A, A,)", we have §2, in
normal form when n > L and (2,, — 2,11 whenn < L.

We define the degree of a redex R = ((Az.U)"V)™ to be the exponent n of its
function part. We write degree(R) = n. In the up-to-L lambda-calculus, a redex
is reducible if and only if its degree is not greater than L. Therefore by increasing
the global constant L one gives more power to the calculus and reductions may go
further. The reduction graph Ry (U) starting form a given term U get larger when
L increases. We have

R()(U) C Rl(U) C RL(U) C RL+1(U)"'
Theorem 1. hw(L) is a confluent and strongly normalizable calculus.

The proof is rather easy and follows Tait-Martin Lof (for confluence) and van Daalen
(for strong normalization). Q.E.D.

We also call canonical system a calculus which enjoys both confluence and strong
normalization. Therefore hw(L) is a canonical system for any L. It can also be
proved that hw(oco) is also confluent, but it may not terminate as in the usual
lambda-calculus.

Let the forgetful function ||U]|| be the lambda term obtained by erasing all
exponents in U. For a given M, we can consider the term U, with all exponents
equal to zero such that ||Up|| = M and we may wonder what these increasing chain
of sets Ry (Up) represent. They approximate the reduction graph R(M) of M with
an increasing set of canonical calculi.

3 Residuals and finite developments

Beta-reduction is written —. Several steps (maybe none) of beta-reduction are
written —. We give names p, o, ... to reductions and we write p : M — N to
specify the initial and final terms of reduction p. The reduction graph of any lambda
term M is written R(M). If two reductions p and o start from M, we call them
coinitial. Similarly, they are cofinal if they end on the same term N. Redexes may
be tracked over reductions. Let p € R(M) be the following reduction from M to N

p:M:MoﬁMlgj\@%...&;_,_Mn:N

contracting redex R; in M;_; at each step (1 < ¢ < n). Let R be a redex in M.
There could be several (may be none) residuals of R in N. We write R\p for the
set of residuals of R in M by reduction p € R(M). For instance, if we underline R
and its residuals, we have

c A(lz) — Az
7 A(lz) — (Iz)(Ix)

p: Alz) — (Iz) (Lz)

In the first case, Iz is copied by reduction p and has two residuals; in the second
case, A(Ix) is modified by o but is not copied by the contraction of an internal
redex, and there is a single residual; in the third case, there is no residual of the
contracted redex, since it disappeared. To define residuals precisely needs some
work. We can either speak of occurrences of subterms and consider occurrences of
both R and the redex contracted R; as in Curry&Feys [7]. An alternative method
is Barendregt’s underlined method [3]. We will refer to both methods here, and will
not define precisely residuals. Just notice that residuals depend upon the reduction
and that residuals of a redex may differ if we consider distinct reductions between
two same terms. For instance, take I(Iz) — Ix; then residuals are not the same if
one contracts the external or internal redex.

Residuals are defined in a similar way in the hw(L)-calculus, since exponents
do not modify the structure of terms. We first notice that residuals of a redex keep
the degrees in hw(L).

Lemma 1. Ifp: U — V and R = (Ax.A)"B)™ is a redex in U. Let R’ be a redex
in V such that R’ € R\p, then degree(R') = degree(R).

We consider now the hw(0)-calculus in which we can only contract redexes of
null degree. We also observe that there are only two cases for the creation of new
redexes in the lambda-calculus. We can either pass an abstraction to the left of
an application as in (Az.---a2B---)(Ay.A) or we can create a redex upward as in
(Axz.A)BD when we have (Az.A)B — Ay.C. In both cases, in the hw(L)-calculus,
we notice that the degree of the created redex is strictly greater than the one of the
contracted one. This is due to the increment used in the projection rules around
the contractum of the contracted redex.

Therefore in hw(0)-calculus, when p: U — V, a redex in V' with null degree is
a residual of a redex in the initial term U.

We can now state the finite development theorem with the proof used in [16].

Theorem 2 (Finite developments+). Let F be a set of redexes in M, consider
relative reductions which contract only residuals of redexes in F. Then:

1. there is no infinite reduction relative to F;

2. the developments of F (maximal relative reductions) end all at the same term;

3. let R be a redex in M (maybe not in F), then the residuals of R are the same
by all developments of F.

The proof is quite simple when using the Hyland-Wadsworth calculus. Consider
the term M, where all subterms are equipped with a null exponent except degrees
of redexes not in F which are equipped with degrees 2, 3, 4, etc. Then reductions
relative to F are exactly the one of My in hw(0), since redexes of null degree can
only be residuals of redexes in F. Now as hw(0) is a canonical system, one concludes
on items 1 and 2. Furthermore, new redexes in hw(0) can only have degree 1, and
therefore redexes of degrees 2, 3, 4, etc can only be residuals of redexes in Mj (not
in F). As the normal form is unique in hw(0), the residuals of redexes not in F are
the same by any development of F. Q.E.D.

One may notice the elegance of the previous proof since we escape the inspection
of multiple cases by working with hw(0) in which this inspection has been done in
a systematic way within the confluence proof.

The third item of the FD theorem is often skipped. In fact, it is an important
clause since it shows that the notion of residual is consistent with parallel steps. If
we simultaneously contract a set F of redexes, we can speak of residuals of redexes
without specifying the order in which redexes of F are contracted. We therefore
write R\F for the set of residuals of R by any (finite) development of F and we
are also free of writing

MEN
for the relation linking M to N by a development of F.
Going on with notations, when p: M — N and o : N — P, we write po for

the concatenation of these two reductions. Furthermore, we write o for the empty
reduction of length 0. Therefore we have po = p = op. We also write F for the

reduction consisting in a finite development of F, and we define F; LI F> as the
two-step long reduction F; U Fo = F1(Fo\F1). We finally forget braces when F is
a singleton {R}. We can write Rp or pR or R\S or R S or etc.

There are two well-known corollaries of the FD theorem which will be useful for
introducing the notion of redex history.

Lemma 2 (Parallel moves). Let F; and Fa be two sets of redexes in M. If

My i M 5 My, then there is a term N such that M, g N & My with G; = F1\Fa
and g2 = .7:2\F1.

With our new notations, an alternative statement of this lemma would be that
JF1 U Fy and Fo U Fy are cofinal. The proof is obvious by considering two devel-
opments of F; U Fa, one starting by contracting F; and then F3\Fi, the second
contracting Fo and then Fj\Fs.

M
/X
My Mo
7:2\‘7:&‘ /7:1\-7:2
N

(a)

Fig. 1. (a) Parallel moves; (b) Cube lemma.

The lemma of parallel moves can also be named the square lemma, since a second
corollary is the cube lemma which looks more closely to properties of residuals.

Lemma 3 (Cube lemma). Let Fy, Fy and F3 be three sets of redexes in M.
Then]:3\(.7:1 [.7:2) = .7:3\(.7:2 [.7:1)

This lemma is straightforward when we notice that F; U F, and Fs Ll Fp are
two developments of F; U Fo. This argument may be extended by permutation
on F5 and F3, or F3 and F;. We therefore get a nice cube whose each face is an
application of the parallel moves lemma.

4 Redex families

Redexes may be created by reductions when they are not residuals of redexes in
the initial term. The notion of redex family aims to relate created redexes. As the

reduction creating a redex interferes with its history, we define an historical redex
(hredex in short) to be a pair (p,R) when p : M — N and R is a redex in N.
Redexes in M with no history are of the form (o, R) where o is the empty reduction
from M. But history of redexes has to be consistent with permutations of reduction
steps, since the contraction of two independent redexes must be insensitive in the
creation history of a redex.

Definition 1. The permutation equivalence ~ on reductions in R(M) starting
from a given term M is defined inductively as follows:

(i) FrUFs ~Fo UF

(1) O ~0 and o ~
(iii) p ~ o implies Tp ~ To
(iv) p ~ o implies pT ~ oT
(v) p~o~T1 implies p~T.

Two reductions are equivalent if they differ by applying the lemma of parallel
moves. A reduction step contracting an empty set of redexes can be erased, i.e. it
is equivalent to the empty reduction. Permutation equivalence is also extended by
concatenation and by transitivity.

This relation is defined on parallel reductions, but it also relates regular reduc-
tions since their elementary steps can be considered as contracting singletons sets
of redexes. In fact, the same relation can be generated by restricted the first case
of the definition to be singleton sets.

Residuals of reductions can also be defined inductively as follows (see figure 2).

Definition 2. Let p and o be two reduction starting at M. The residual p\o of
reduction p by reduction o is inductively defined by:

1. if p=F and 0 = G, then p\o = F\G

2. p\(o102) = (p\o1)\o2
3. (p1p2)\o = (p1\o)(p2(a\p1)

When p and o are two coinitial reductions, we define p U o as for single-step
reductions by plio = p(c\p). We also write ()* for k steps of empty-set contractions.
The following properties hold for the permutation equivalence.

Lemma 4. Let p and o be two coinitial reductions (p,o € R(M)) :

(i) pUo~alp

(i) p~oiff VT e R(M) T\p=7\o
(iii) p ~ o iff p\o = 0% and o\p = 0*
(i) po ~ p1 iff o ~T

The proofs use simple algebraic arguments. Clearly (4) is true by definition. The
cube lemma gives (iéa) which is that p ~ ¢ implies 7\p = 7\o. Then (iia) implies
(iiia) since ¥ = p\p = p\o and o\p = o\o = 0. Conversely, when o\p = (¢, one

Fig. 2. p\o is residual of reduction p by reduction o.

gets p ~ p(c\p) = pUo since } ~ o. Similarly o ~ oUp as p\o = OF. We get p ~ &
by transitivity and applying (¢). Now to prove iib, if we have 7\p = 7\o for all 7,
we get 0¥ = p\p = p\o. Similarly for o\p = (. Therefore p ~ o by (iii). To prove
(iv), the right-to-left direction is implied by the definition of ~. Now let po ~ pr,
we have po\pr = (po\p)\T. But po\p = (p\p)(o\(p\p)) = 0*(a\(0¥)) = 00
Therefore po\pr = (0*c)\7 = 0*(o\7). Hence po\pr ~ o\7. Therefore by (iii), if
po ~ pt, we also have o ~ 7. Q.E.D.

The permutation equivalence has many properties, most of them are due to the
nice symmetry of the cube lemma. An interesting fact is that an upper semi-lattice
can be constructed (or a push-out in categorical terminology). This lattice of re-
ductions is derived by the following pre-ordering on coinitial reductions p < o iff
pT ~ o for some 7. The interested reader is refer to [16, 3,4, 11]. A permutation class
of reductions is also characterized by its unique standard reduction. The permuta-
tion equivalence can also be viewed as the analogous of parse trees in context-free
languages where several derivations equivalent by permutations correspond to the
same parse tree. In formal grammars, the notion of ambiguity reveals two different
parse trees corresponding to a same terminal sentence. In the lambda-calculus, this
ambiguity often arises.

Take for instance p: AA — AA and 0: AA - AA — AA. Then p and o are
coinitial and cofinal, but p % ¢. Similarly o % p. A more complex example is when
the initial term M is I((Ay.Iz)z). Then the reduction graph of M has no lattice
structure, but the corresponding ordered structure induced by the permutation
equivalence is indeed a lattice. Furthermore, the term M contains three redexes
R = I((Ay.Iz)z)), S = Iz and K = (A\y.Iz)z. When p and o are two reductions
defined by p : I((Ay.Ix)z) — (A\y.Jx)z — Iz and o : I((\y.Jx)z) — I((M\y.x)z) —
Iz, the hredex (p, Iz) is a residual of (o, S), but (o, Iz) is a residual of (o, R). This

kind of ambiguity cannot happen in the lattice of reductions where residuals are
consistent with history, thanks to the cube lemma.

I((\y.Ix)z)

(A\y.Ix)z I((\y.z)z) I(Iz) (Aydz)z&

The interconnection between two created hredexes (p, R) and (o, .S) is not obvi-
ous as demonstrated by the following example. Take M = A(IIx) which contains
two redexes A(IIx) and I1. When the latter is contracted, it creates the new redex
Iz which may appear in many reducts of M. One of them seems more represen-
tative, namely the one in A(Ix) where his history pg : M — A(Iz) is entirely
devoted to create the Iz redex. But to connect other instances of Iz in the reduc-
tion graph of M, it is necessary to close downward with residuals. For instance if

1: M — (ITx)(IIx) — (Iz)(I1z) and p; : M — (I1x)(IIx) — (I1z)(Ix), in
order to connect (p1,Ix) and (po, [z), one has to link them to (po,Ix) through
(p3, R1) and {p3, Ro) where p3 : M — (I[Iz)(IIz) — (Iz)(IIz) — (Iz)(Iz) (R is
left redex in (Iz)(Iz) and Ry is right redex in (Iz)(Ix)). More precisely (p1,Ix)
has residual (p3, R1) which is residual of (pg,z) which has (ps, R2) as residual
and this last one is residual of (ps, Ix). Therefore created redexes can be connected
by a zigzag of residuals related by consistent histories (i.e. using the permutation
equivalence).

z(I1z) x)(Iz) (IIz)x Az
NSNS
x(Ix) (Iz)x
\xx’/

We can now define formally the residual and family relations between hredexes.

Definition 3. Let two reductions p and o be coinitial. The hredex (o, S) is a resid-
ual of the hredex {p, R) iff there is a reduction T such that pr ~ o and S € R\T.
We write then {p, R) < (0, 5).

We say that the hredexes (p,R) and (0,S) are in the same family if they are
connected by the reflexive, symmetric and transitive closure of the previous residual
relation on hredexzes. We then write (p, R) = (0, S). Formally:

(1) {p, R) <
(ii) {p, R)
(iii) (p, R)
() (p, R)

(7, T) implies {p, R) = (1,T)

R)
; implies (0, S) = (p, R)
) implies (p, R) = {0, S)

999>
nnnx

N XX

9

We notice that the residual and family relations form respectively an ordering
and an equivalence. The notation for residuals of hredexes is consistent since when
pT ~ o ~ pr', we derive 7 ~ 7’ giving R\7 = R\7'. Therefore we may omit the
specific reduction 7 in the definition of residuals of hredexes. We can also see that
the family relation is consistent with permutation by equivalences on reductions,
since when p ~ o, one has (p, R) < (0, R) since po = p ~ ¢ and R € R\o and
therefore {p, R) ~ (o, R). Again, many properties can be shown on redex families,
one of the most striking is the connection with the labeled lambda-calculus. The
interested reader is referred to [16]. We just mention here that when (p, R) and (o, S)
have a common residual (7, T), then there is Ty such that the hredex (p U o, Tp) is
a residual of (p, R) and (o, S). An alternative way is to state that (p, R) < (7,T)
and (0, S5) < (7,T) implies there exists a (unique) (p U o,Tp) such that (p, R) <
(pUa,Ty) < (r,T) and (0,5) < (pU0c,Tp) < (1,T).

\ 1
\ I
\ 1
\ I
\ i
\ /
v
[
v

Fig. 3. (p,R) =~ (0, S) : the hredexes (p, R) and (o, S) belongs to the same family.

Now we consider the permutation equivalence and the family relation in the
hw(L)-lambda-calculus.

Lemma 5. Let p and o be two reductions starting at M. Let U be a any term such
that ||U|| = M. Let L be sufficiently large such that p and o can be performed in
hw(L). Then p ~ o implies that p and o are cofinal in hw(L).

The proof is easy since the parallel-moves lemma can be applied in the hw(L)-
lambda-calculus, since residuals keep redex degrees. Therefore, since p ~ o, we
have o\p = 0™ and p\o = 0™, which means p and ¢ are also cofinal in the hw(L)-
lambda-calculus. Q.E.D.

For the interested reader, the labeled lambda-calculus in [16] characterizes ex-
actly the permutation equivalence, i.e. two reductions are equivalent iff they are
coinitial and cofinal in the labeled lambda-calculus.

An easy corollary of this lemma is that residuals of hredexes are the same notion
in the standard lambda-calculus and in the hw(oo)-calculus. Therefore the notion
of redex families also coincide. A last remark is that if two redexes R and S are in
the same family, their degree are the same (since residuals keep degrees).

5 Generalized finite developments

The usual finite development theorem deals with redexes who are in the initial
term. Now created redexes can be taken into account with redex families.

Theorem 3 (GFD). Let F be a finite set of redex families in R(M), consider
relative reductions which contract only redezes belonging to a family in F. Then:

1. there is no infinite reduction relative to F;
2. the developments of F (mazimal relative reductions) end all at the same term;
3. if p and o are two developments of F, then p ~ o.

The proof is rather straightforward since the family relation is identical in the
usual lambda-calculus and in the hw(oco)-lambda-calculus. Let Uy be the term cor-
responding to M with all subterms with null exponents (||Up|| = M). Redexes in
each family have same degree. Let L be the largest degree for redexes in the finite
family set F. Then a reduction relative to F is inside the hw(L)-lambda-calculus.
As hw(L) is a canonical system, we know that these relative reductions cannot be
infinite. Therefore all reductions relative to F are finite.

Now, if two reductions p: M — N and o : M — P starting at M are complete
developments of F (i.e. maximum relative reductions to F), we notice that p U o
and o U p are also reductions relative to F by definition of the family relation. As
p and o are maximal, we have o\p = 0" and p\o = 0™. Therefore p ~ 7. Hence we
get N = P. But p ~ 7 also means that if 7 is another reduction starting at M, we
have 7\p = 7\o. Q.E.D.

Thus, the FD theorem has been extended to finite set of families. All develop-
ments of such a given finite set of redex families are equivalent by permutations,
and therefore the consistency of residuals w.r.t. developments holds for the usual
notion of redex residual and for residuals of reductions. It means that if a term
M can start an infinite reduction, this infinite reduction contracts an infinite set

of redex families. Hence a term can have an infinite reduction iff it can generates
infinitely new redex families. This can be formalized in the following way.

Definition 4. We say that the hredex (p, R) directly creates the hredex (o,S) iff
o ~ pR and the contraction of R creates S. We write (p, R) 4 {(0,S).

The hredex {(p, R) creates (0,S) if they are connected by transitive closure of
direct creation and residual. We then write (p, R) < (0,S). Formally:

(i) (o, B) < (0, 5) implies (p, B) <1 (0, 5)

(i1) {p, Ry < {p', R') < (0,S) implies {p, R) < (o, S)
(iii) (p, R) < (d’,8") < (0,S) implies (p, R) < (0,5)
() {p,R) < {(0,S) < (r,T) implies {p, R) < (1,T)

So (p, R) directly creates (o, .S) if the reduction o is equivalent by permutations

to a reduction M —» N <% P where the first part M — N is the reduction p and
the contraction of R creates the new redex S in P, i.e. S ¢ S’\R for any S in
N. Therefore the notion of creation is consistent with the equivalence ~. One also
easily checks that the creation relation is antisymmetric, since with the hw(c0)-
lambda-calculus we know that degrees of redexes are kept invariant by residuals
and increase in case of a direct creation. So the creation relation < is a strict
ordering. We would like to prove that a term which does not contain an infinite
chain of creations is strongly normalizable. Unfortunately this property seems to
need more advanced technical arguments. We will show a broader property relying
on the creation of families.

Definition 5. The family of the hredex {p, R) creates the family of the hredex (o, S)
if a hredex in the family of {p, R) creates a hredex in the family of (o, S). We write
(p, R) < (0,8). Formally:

(i) (p, R) < (0, S) implics (p, R) < (o, 5)
(ii) (p, R) ~ (g, R') < (0, 8) implies (p, B) < (5, S)
(iii) {p,R) < (¢’,5") = (0,S) implies (p, R) < (0, S)
(iv) (p,R) < {0,8) < (7, T) implies {p, R) < (1,T)
Clearly this relation with creation of families is broader than the previous re-
lation on creation of hredexes, since (p, R) =~ (0,S) when (p, R) < (0,S). It also
defines a strict ordering on families with the same argument as the one used for hre-
dex creation. With this new ordering, one can easily show that strong normalization
is induced by the absence of infinite chains of family creations.

Lemma 6. A term without infinite chains of family creations is strongly normal-
izable.

We consider the covering relation of the <« ordering (i.e. (p, R) < (0, S) when
there is no intermediate (7, T) between (p, R) and (o, S)). This relation induces a
directed acyclic graph with finite number of successors for each node. To see that

the out-degree of each node is finite, one can work by induction on the length from
the roots of this graph since for a given length n we know by the gFD theorem
that we have the strong normalization property and therefore a finite number of
redex families. Now if the total number of families (i.e. number of nodes in the dag)
is infinite, we get by Koenig lemma that there is an infinite path from the roots.
It means that there is an infinite chain of family creations, which is impossible by
hypothesis of the lemma. So the total number of families for the given term is finite.
By the gFD theorem, we get that this term strongly normalizes. Q.E.D.

As corollary, we get strong normalization for the first-order typed lambda-
calculus. In this calculus, we call degree of a redex the type of its function part.
We notice that a redex of degree @ — (can only creates redexes of type «a or 3
(this can be proved by case inspection as in the paragraph following lemma 1). Fur-
thermore, when two redexes are in the same family, their degrees are equal. Thus,
there are no infinite chains of family creations for any term of the first-order typed
lambda-calculus. By previous lemma, the calculus enjoys strong normalization.

6 Conclusion

The generalized Finite Development (gFD) theorem shows that relative reductions
w.r.t. a finite set of redex families cannot be infinite and that all developments end
with the same term.

The gFD theorem is an important tool in the understanding of strong normalisa-
tion. It defines arbitrary large canonical systems as subgraphs of the reduction graph
of any term. In this sense, it expresses the compactness of the lambda-calculus. It
was used in [15] for proving the completeness of inside-out reductions, i.e. for any p
there is an inside-out reduction ¢ and a (inside-out) reduction 7 such that p7 ~ 0.
But we can get completeness of many more reduction strategies with the gFD the-
orem as long as the strategy consists in reordering of contractions of redexes in the
same family set.

Furthermore, it is an argument for proving strong normalization as soon as one
can prove that there is no infinite chain of family creations. With the gFD theorem,
the proof of strong normalization is reduced to the proof of the non existence of
such infinite chains of creations. We took the example of the standard first-order
typed lambda-calculus, but some effort remains to be done in the understanding of
higher-order typed systems where we conjecture that such an argument must exist.
If correct, we could get illuminating proofs of strong normalization.

The gFD theorem also holds in other calculi. In fact, this theorem is true in
any calculus with some compactness property, i.e. nearly all calculi. In the lambda-
calculus, it is simple to express, but it can also be easily stated in orthogonal term
rewriting systems [11] or in combinatory reduction systems [12]. This theorem seems
also correct in calculi with critical pairs, where permutation equivalence is more
complex to define (see [5]) since the equivalence classes may be incompatibles due
to different choices around critical pairs. Then the permutation equivalence is very
close to event structures [20, 14].

Acknowledgements

Gilles Kahn has been a mentor in my research. He initiated me to denotational
semantics and Scott’s logic. Moreover he pointed to me the first (interesting) papers
I ever read about the lambda-calculus. His constant help and support made the
results of this paper and others possible.

References

1.

2.

3.

®© N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Amadio and P.-L. Curien. Domains and Lambda-calculi. Cambridge University
Press, 1998. ISBN 0-521-62277-8.

H. Barendregt. Handbook of Mathematical Logic, chapter The Type Free Lambda
Calculus. North-Holland, 1977. ISBN 0-7204-2285-X.

H. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North-Holland,
1984. ISBN-13: 978-0-444-87508-2.

G. Berry and J.-J. Lévy. Minimal and optimal computations of recursive programs.
JACM, 26(1):148-175, January 1979.

G. Boudol. Algebraic methods in Semantics, chapter Computational semantics of term
rewriting systems. Cambridge University Press, 1985.

A. Church. The Calculi of Lambda-Conversion. Princeton University Press — Oxford
University Press, 1941.

H. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, 1958.

H. Curry, R. Feys, and J. Seldin. Combinatory Logic, volume 2. North-Holland, 1972.
L. Damas and R. Milner. Principal type-schemes for functional programs. In POPL,
pages 207212, 1982.

R. Hindley. Basic Simple Type Theory. Cambridge University Press, 1997.

G. Huet and J.-J. Lévy. Computational Logic; Essays in Honor of Alan Robinson,
chapter Computations in Orthogonal Rewriting Systems I and II, pages 395-443. The
MIT Press, 1991.

J.-W. Klop. Combinatory reduction systems. Mathematical Centre Tracts 127, CWI,
Amsterdam, 1980. PhD thesis.

P. Landin. A correspondence between algol 60 and church’s lambda-notation. CACM,
8(2):89-101, 1965.

C. Laneve. Distributive evaluations of lambda-calculus. Fundamenta Informaticae,
20(4):333-352, June 1994.

J.-J. Lévy. An algebraic interpretation of the AB-calculus and a labeled A-calculus.
In C. Bohm, editor, Lambda-Calculus and Computer Science Theory, volume 37 of
Lecture Notes in Computer Science, pages 147-165. Springer, March 1975.

J.-J. Lévy. Réductions correctes et optimales dans le lambda calcul. PhD thesis,
Univ. of Paris 7, 1978. (In French).

J.-J. Lévy. To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism, chapter Optimal reductions in the lambda-calculus, pages 159-191. Academic
Press, 1980.

P.-A. Mellies. A factorisation theorem in rewriting theory. In Proceedings of the 7th
Conference on Category Theory and Computer Science, number 1290 in Lecture Notes
in Computer Science, pages 4968, Santa Margherita Ligure, 1997. Springer.

G. Plotkin. Call-by-name, call-by-value, and the lambda-calculus. Theoretical Com-
puter Science, 1, 1975.

G. Winskel. Event structure semantics for ccs and related languages. Technical report,
DAIMI — AARhus University, April 1983.

