Adaptive Combinatorial Search for e-Science

Youssef Hamadi (MSR) and Marc Schoenauer (INRIA)

The "Adapt" Project

Goal: Improve the search performance through the automated tuning of solvers' parameters

Expected result: Black-box, GO button

e.g. Improved usability, e-scientists, etc.

Technically:

A Meta-Learning problem

- Before the run \rightarrow off-line learning
- During the run \rightarrow on-line learning

Staff

Researchers:

- Anne Auger (TAO, INRIA Saclay)
- Youssef Hamadi (MSR)
- − Nikolaus Hansen (Joint lab → TAO, INRIA Saclay)
- Marc Schoenauer (TAO, INRIA Saclay)
- Michèle Sebag (TAO, CNRS LRI)

• Post-doc:

– Said Jabbour [→ Associate Pr. CRIL/CNRS]

• PhD students:

- Alejandro Arbelaez (planned defense in May 2011)
- Alvaro Fialho (defended Dec. 22, 2010)
 [→ post-doc OSD Microsoft CNRS Chaire]

Impact

Publications

- 12 journal papers
- 1 book + 6 book chapters
- 34 intl. conferences
- 4 PhD/HDR
- 10 invited conf. talks
- 2 Workshops
- 7 TRs (+ BBOB)

Awards

- 4 Best papers (LION'09, ICTAI'09, EvoBIO'09, ACM-GECCO'10)
- Silver Humies (ACM-GECCO'10)
- ManySAT
 - Gold Medal SAT-Race 2008
 - Gold, Silver, Bronze SAT-Competition 2009
 - Silver, Bronze, SAT-Race 2010

Free software

- GUIDE GUI for Evolutionary Algorithms
- CMA-ES Covariance Matrix
 Adaptation Evolution
 Strategy + variants
- **DomFD** add-on to Gecode (public domain CP solver)
- ManySAT parallel SAT solver

ManySAT→ Microsoft's Z3

- Internal, SAGE,
 Spec#/Boogie, Pex, Yogi,
 SLAM, F7, VS3, FORMULA,
 HAVOC and VCC
- External, Dassault Aviation, Airbus, Synopsis, etc.

Agenda

Context

- Stochastic Search / Optimisation
- Heuristics and Meta-Heuristics
- Combinatorial, discrete, and continuous settings

Overview

- Evolutionary Algorithms and Invariance Properties
 * CMA-ES: Variants and Surrogates
 * Adaptive Operator Selection
- Instance-based tuning for Constraint Programming
 * Static Tuning (Protein Structure Prediction, AI Planning)
 * Continuous Search

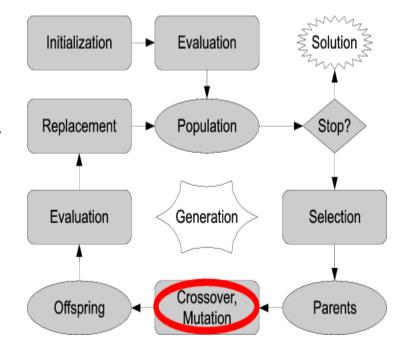
Evolutionary Algorithms

Stochastic Optimization

- "Generate and test" stochastic algorithms
- Blind Variations + Survival of the fittest

Variation Operators

- Determine the trajectory of the search
- Problem-dependent (with initialisation ... and evaluation)



Invariance and Search

Source of Robustness

Same parameter setting for whole equivalence class

Comparison-based algorithms

- Invariance by monotonous transformations of the objective function
- Most Evolutionary Optimizers
- Generally lost with 'goodies'
 Surrogate Models, Adaptive Operators Selection, ...

Adaptive encoding

- CMA-ES base principle
- Invariance w.r.t. coordinate tranformations

Agenda

Context

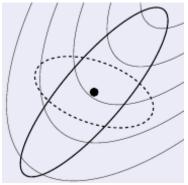
- Stochastic Search / Optimisation
- Heuristics and Meta-Heuristics
- Combinatorial, discrete, and continuous settings

Overview

- Evolutionary Algorithms and Invariance Properties
 * CMA-ES: Variants and Surrogates
 * Adaptive Operator Selection
- Instance-based tuning for Constraint Programming
 * Static Tuning (Protein Structure Prediction, AI Planning)
 * Continuous Search

Covariance Matric Adaptation

- Stochastic Evolutionary Search in continuous domain [Hansen et al. 94-01]
- Multi-variate Gaussian Mutation that adapts based on search path



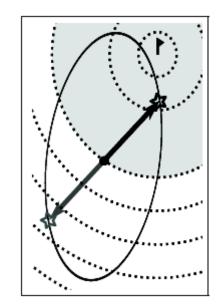
- Won the most comprehensive benchmarking contests (vs all types of optimizers) [ACM-GECCO'09-10]
- Hundreds of applications in industry

Comparison-based and coordinate-independent → almost parameterless [Hansen & Ostermeier 2001]

CMA-ES: Contributions

Generic Adaptive Encoding

- → make any algorithm coordinate-independent
- Proof of concept with Cauchy mutations [PPSN'08]
- Adaptive Coordinate Descent [ACM-GECCO'11]
- Active CMA-ES [ACM-GECCO'10] Best paper
 - Use unsuccessful trials too
- Mirrored Sampling and Sequential Selection [PPSN'10, FOGA'11]
 - Try two oppposite directions
 - Stop sampling if success

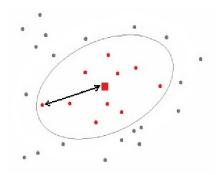


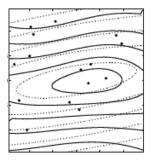
Surrogates with CMA-ES

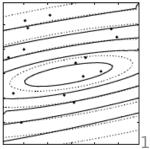
• **nImm-CMA-ES** [EvoNum'10; ACM-GECCO'11]

- Build a quadratic local meta-model around the point to evaluate
- MM acceptance criterion based on approximate ranking
- Can exploit partial separability
- ACM-ES [PPSN'10]
 - Rank-SVM for ordinal regression
 - With adaptive kernel

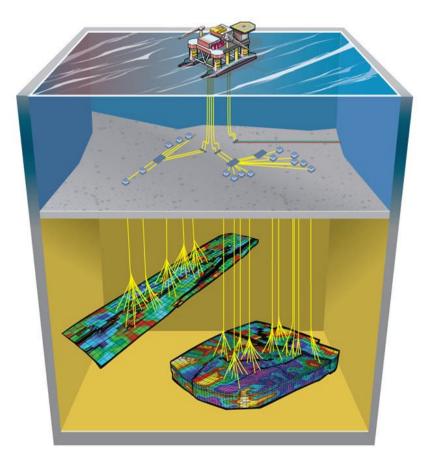
→ comparison-based surrogate



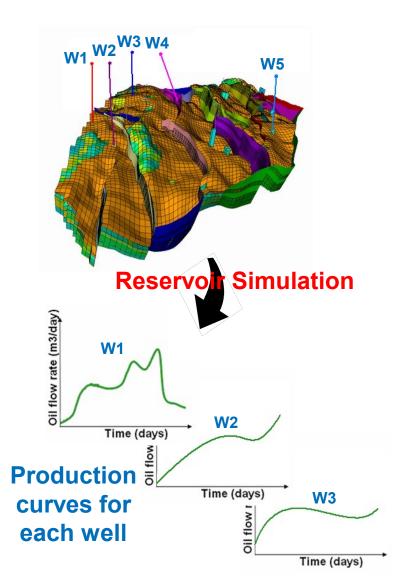




Well placement COIL IFP [ACM-GECCO'11]

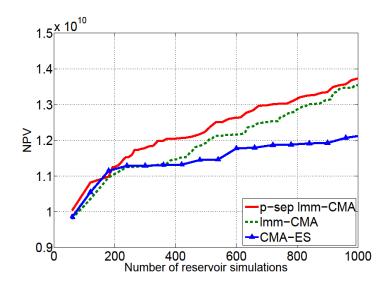


20mn per simulation



Results

 \rightarrow



- Using partially-separable nlmm-CMA-ES
 - 60% increase production
- 20% less simulations
- All proposed configurations are feasible (or close to feasible domain).

Agenda

Context

- Stochastic Search / Optimisation
- Heuristics and Meta-Heuristics
- Combinatorial, discrete, and continuous settings

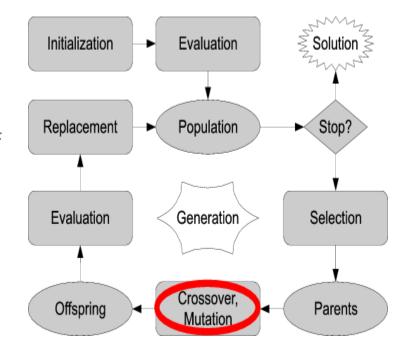
Overview

- Evolutionary Algorithms and Invariance Properties
 * CMA-ES: Variants and Surrogates
 - * Adaptive Operator Selection
- Instance-based tuning for Constraint Programming
 * Static Tuning (Protein Structure Prediction, AI Planning)
 * Continuous Search

Evolutionary Algorithms

Stochastic Optimization

- "Generate and test» algorithms
- Blind Variations + Survival of the fittest
- Adaptive Operator Selection
 - On-line choice of variation operator
 - Based on results of previous applications



AOS: Contributions

- Bandit-based Selection Rules
 - Choose operator i maximizing

$$\hat{p}_{j,t} + \mathcal{C}\sqrt{\frac{2\log\sum_k n_{k,t}}{n_{j,t}}}$$

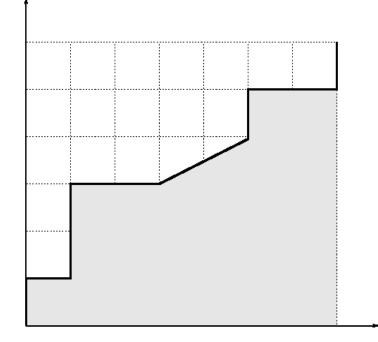
- Dynamic context
 - Page-Hinckley change detection test [ACM-GECCO'08]
 - Sliding window [AMAI 2010]
- Extreme statistics
 - Extreme events more important than averages [PPSN'08]

Outperforms previous AOS [ACM-GECCO'09, CEC'09, LION'09] Very sensitive to fitness-scaling hyper-parameters C

AUC-based AOS

- Rank the rewards sliding window
- Compute the Area Under the Curve (1 op vs all others)
- Directly use in UCB

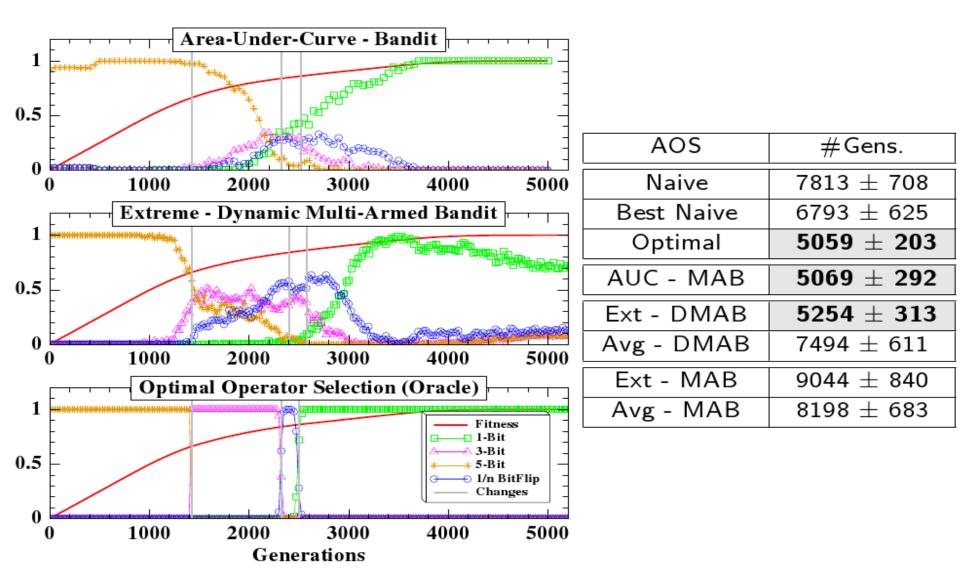
$$AUC_{j,t} + C\sqrt{\frac{2\log\sum_k n_{k,t}}{n_{j,t}}}$$



[ACM-GECCO'10]

Ranked list: 212211[112]2112

Results - OneMax



Robustness - OneMax

• Replace F with Log(F), exp(F), F²

(h-l)	$\mathcal{F} = \sum b_i$	$log(\mathcal{F})$	$\exp(\mathcal{F})$	\mathcal{F}^2	AOS tech.
485	5103/427	5195/430	5562/950	5588/950	AUC-MAB
807	5123/218	5431/223	5930/334	5792/382	<u>Ext</u> -AP
0	5726/399	5726/399	5726/399	5726/399	FAUC-MAB
2591	5376/285	7967/718	7722/2151	6138/516	Ext-DMAB
6971	6059/667	8863/694	13030/3053	12136/949	Ext-SLMAB
7052	9044/840	7947/1267	14999/0	14999/0	Ext-MAB

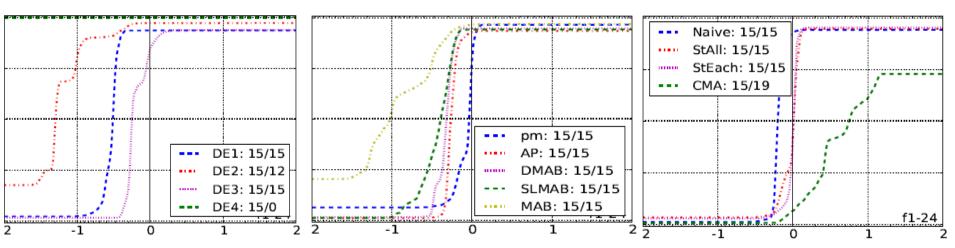
Results – DE on BBOB

Differential Evolution

- Implicitly self-adaptive population-based EA [Storn & Price 95]
- NP=100*dim; CR=1; F=0.5
- 4 possible mutation strategies

Black-Box Optimization Benchmarking

- 24 functions x 15 instances with controlled difficulties
- Several dimensions (2, 3, 5, 10, <u>20</u>, 40)



Agenda

Context

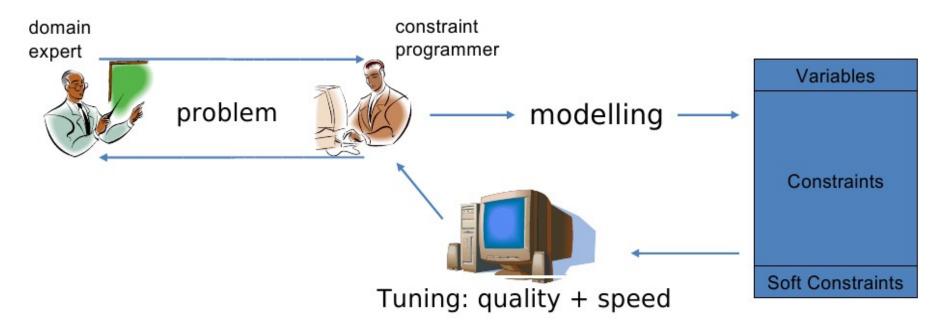
- Stochastic Search / Optimisation
- Heuristics and Meta-Heuristics
- Combinatorial, discrete, and continuous settings

Overview

- Evolutionary Algorithms and Invariance Properties
 * CMA-ES: Variants and Surrogates
 * Adaptive Operator Selection
- Instance-based tuning for Constraint Programming
 * Static Tuning (Protein Structure Prediction, AI Planning)
 * Continuous Search

Constraint Programming

Does not scale:



•Learn a single function that maps instance features and parameter settings to runtime

Monday, April 11, 2011

Adaptive Combinatorial Search -MSR-INRIA

Machine Learning for Adaptive Search

- **Goal**: Predict the best algorithm (or parameter set) for each instance
- Examples (actual runs) to learn the mapping (Instance, algo/param) → Performance or Instance → Best algo/param
- Issues
- Features (describe the instances)
- Performance

Time to given value vs Value in given time

Agenda

Context

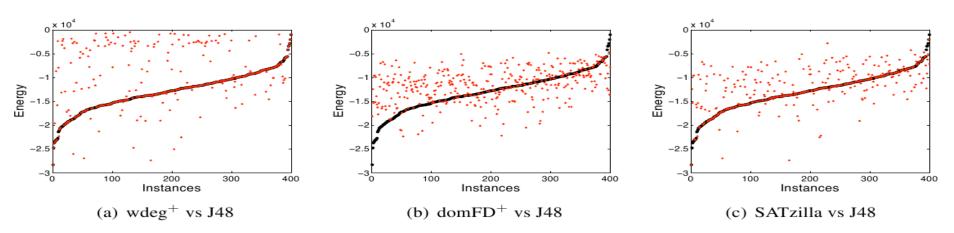
- Stochastic Search / Optimisation
- Heuristics and Meta-Heuristics
- Combinatorial, discrete, and continuous settings

Overview

- Evolutionary Algorithms and Invariance Properties
 * CMA-ES: Variants and Surrogates
 * Adaptive Operator Selection
- Instance-based tuning for Constraint Programming
 * Static Tuning (Protein Structure Prediction, Al Planning)
 * Continuous Search

Protein Structure Prediction

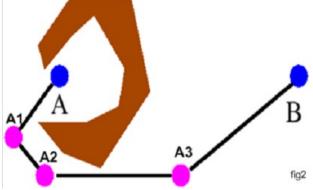
- A Constraint Programming formulation: Minimize energy for lattice configurations
- 4 efficient heuristics to choose from
- 105 domain-based features from literature
- Minimize energy after 5mn CPU time
- Supervised learning with decision trees (J48)
- Outperforms fixed strategies and SATzilla (on avg)



Evolutionary Al Planning coll. Thalès - ONERA

Divide-and-Evolve

- Decompose a planning problem into a sequence of (simpler?) sub-problems
- Each sub-problem is solved by a standard planner
- Evolution to optimize the sequence of intermediate states:
 - Planning Heuristics used for
 - * Initialisation
 - * Variation operators



Silver medal, Humies Awards, ACM-GECCO 2010

Parameter Tuning for DAE

- Performance: normalized makespan in 30mn CPU
- Standard Racing [ACM-GECCO'10]
 - Computed for one instance, one domain, or across several domains
 - Results as expected
- ML-based Learn-and-Optimize [ACM-GECCO'11]
 - 14 features to describe an instance
 - Learn the (Instance \rightarrow best parameters) mapping
 - Using an Artificial Neural Network
 - Significant improvement over the default values
 - Marginaly worse than best per-instance values

Agenda

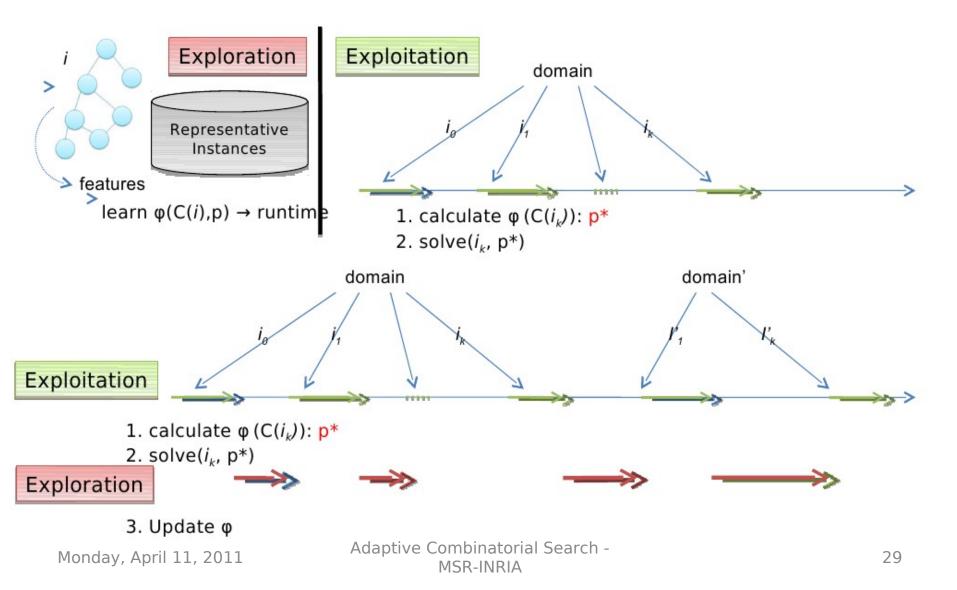
Context

- Stochastic Search / Optimisation
- Heuristics and Meta-Heuristics
- Combinatorial, discrete, and continuous settings

Overview

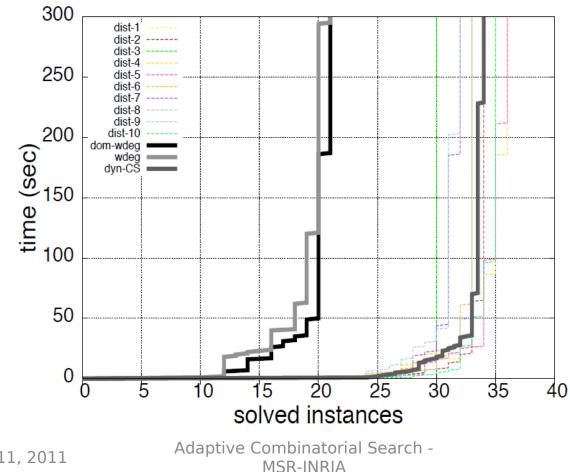
- Evolutionary Algorithms and Invariance Properties
 * CMA-ES: Variants and Surrogates
 * Adaptive Operator Selection
- Instance-based tuning for Constraint Programming
 * Static Tuning (Protein Structure Prediction, AI Planning)
 * Continuous Search

Continuous Search in CP



Continuous Search in CP

Langford numbers



Continuous Search in CP

Experiments

Problem	dom- $wdeg$		wdeg			dyn-CS			
	#sol	time(h)	avg-time(m)	#sol	time(h)	avg-time(m)	#sol	time(h)	avg-time(m)
nsp	68	3.9	2.34	88	2.6	1.56	77	2.9	1.74
bibd	68	1.8	1.37	68	1.8	1.37	65	2.0	1.44
js	76	4.9	2.26	73	5.1	2.35	73	5.2	2.4
lfn	21	5.2	3.75	21	5.3	3.83	33	4.1	2.96
geom	64	3.9	2.34	27	6.8	4.08	67	3.3	1.98
Total	297	19.7	2.39	274	21.6	2.61	315	17.5	2.11

Table 1. Total solved instances

Problem	#Sol	time (h)
lfn-bibd [‡]	23	5.3
$lfn-bibd^{\dagger}$	63	2.3

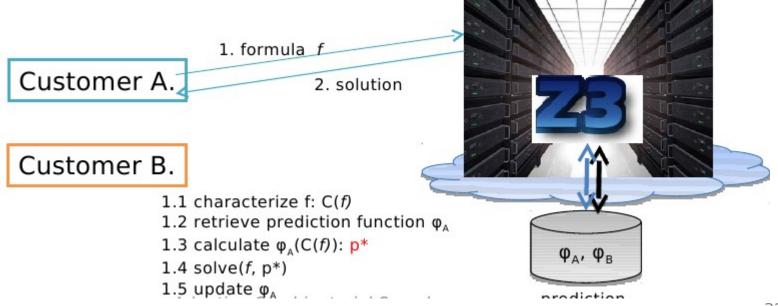
Monday, April 11, 2011

Adaptive Combinatorial Search - MSR-INRIA

Symbolic Reasoning in the Cloud

Z3: MSR SMT's solver

several reasoning engines, >256 parameters Continuous Search: customer-based self tuning



Perspectives

- Algorithm → Automatic tuning
 - parameters

Components → Algorithm Design

- Operators
- Neighborhoods
- Data Structures

Components, System → Autonomic Computing

- Resources (very large scale)
- Self-healing (fault tolerance)