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The “Adapt” Project

Goal: Improve the search performance through the 
automated tuning of solvers’ parameters

Expected result: Black-box, GO button

e.g. Improved usability, e-scientists, etc.

Technically:

A Meta-Learning problem
• Before the run → off-line learning
• During the run → on-line learning 
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Impact
• Publications 

– 12 journal papers
– 1 book + 6 book chapters
– 34 intl. conferences
– 4 PhD/HDR
– 10 invited conf.  talks
– 2 Workshops
– 7 TRs (+ BBOB)

• Awards
– 4 Best papers (LION’09, ICTAI’09, 

EvoBIO’09, ACM-GECCO'10)

– Silver Humies (ACM-GECCO'10)

– ManySAT
• Gold Medal SAT-Race 2008
• Gold, Silver, Bronze SAT-

Competition 2009
• Silver, Bronze, SAT-Race 2010

• Free software
– GUIDE – GUI for 

Evolutionary Algorithms
– CMA-ES – Covariance Matrix 

Adaptation Evolution 
Strategy + variants

– DomFD – add-on to Gecode 
(public domain CP solver)

– ManySAT – parallel SAT 
solver

• ManySAT→ Microsoft’s Z3 
– Internal, SAGE, 

Spec#/Boogie, Pex, Yogi, 
SLAM, F7, VS3, FORMULA, 
HAVOC and VCC

– External, Dassault Aviation, 
Airbus, Synopsis, etc.



Agenda

• Context
– Stochastic Search / Optimisation
– Heuristics and Meta-Heuristics
– Combinatorial, discrete, and continuous settings

• Overview
– Evolutionary Algorithms and Invariance Properties

* CMA-ES: Variants and Surrogates
* Adaptive Operator Selection

– Instance-based tuning for Constraint Programming
* Static Tuning (Protein Structure Prediction, AI Planning)
* Continuous Search



Evolutionary Algorithms

• Stochastic Optimization
– “Generate and test” 

stochastic algorithms

– Blind Variations + Survival of 
the fittest

• Variation Operators
– Determine the trajectory of 

the search 

– Problem-dependent (with 
initialisation … and evaluation)



Invariance and Search

• Source of Robustness
– Same parameter setting for whole equivalence class

• Comparison-based algorithms
– Invariance by monotonous transformations of the 

objective function

– Most Evolutionary Optimizers

– Generally lost with 'goodies' 
Surrogate Models, Adaptive Operators Selection, ...

• Adaptive encoding
– CMA-ES base principle

– Invariance w.r.t. coordinate tranformations
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Covariance Matric Adaptation

• Stochastic Evolutionary Search 
in continuous domain [Hansen et al. 94-01]

• Multi-variate Gaussian Mutation 
that adapts based on search path

• Won the most comprehensive benchmarking 
contests (vs all types of optimizers) [ACM-GECCO'09-10]

• Hundreds of applications in industry

Comparison-based and coordinate-independent
→ almost parameterless [Hansen & Ostermeier 2001]



CMA-ES: Contributions
• Generic Adaptive Encoding

• → make any algorithm coordinate-independent

• Proof of concept with Cauchy mutations [PPSN'08]

• Adaptive Coordinate Descent [ACM-GECCO'11]

• Active CMA-ES [ACM-GECCO'10] Best paper

• Use unsuccessful trials too

• Mirrored Sampling and
Sequential Selection [PPSN'10, FOGA'11]

• Try two oppposite directions

• Stop sampling if success
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Surrogates with CMA-ES
• nlmm-CMA-ES [EvoNum'10; ACM-GECCO'11]

• Build a quadratic local meta-model 
around the point to evaluate

• MM acceptance criterion based
on approximate ranking

• Can exploit partial separability

• ACM-ES [PPSN'10]

• Rank-SVM for ordinal regression

• With adaptive kernel

→ comparison-based surrogate
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Well placement  coll. IFP [ACM-GECCO'11]

W1 W2 W4
W5

W3

Reservoir Simulation

Production
curves for
each well

W1

W2

W320mn per simulation



Results

 Using partially-separable 
nlmm-CMA-ES 

→ 
 60% increase production

 20% less simulations

 All proposed configurations 
are  feasible (or close to 
feasible domain).
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Evolutionary Algorithms

• Stochastic Optimization
– “Generate and test» 

algorithms

– Blind Variations + Survival of 
the fittest

• Adaptive Operator 
Selection
– On-line choice of variation 

operator

– Based on results of previous 
applications



AOS: Contributions
• Bandit-based Selection Rules

– Choose operator j maximizing

• Dynamic context
• Page-Hinckley change detection test [ACM-GECCO'08]

• Sliding window [AMAI 2010]

• Extreme statistics 

– Extreme events more important than averages [PPSN'08]

Outperforms previous AOS [ACM-GECCO'09, CEC'09, LION'09]

Very sensitive to fitness-scaling hyper-parameters C



AUC-based AOS
• Rank the rewards 

sliding window

• Compute the Area Under 
the Curve
(1 op vs all others)

• Directly use in UCB

            [ACM-GECCO'10]
Ranked list: 212211[112]2112



Results - OneMax



Robustness - OneMax

• Replace F with Log(F), exp(F), F2



Results – DE on BBOB
[PPSN'10]

• Differential Evolution
– Implicitly self-adaptive population-based EA [Storn & Price 95]

– NP=100*dim; CR=1; F=0.5

– 4 possible mutation strategies

• Black-Box Optimization Benchmarking
– 24 functions x 15 instances with controlled difficulties

– Several dimensions (2, 3, 5, 10, 20, 40)
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Constraint Programming

Does not scale:

•Learn a single function that maps instance features 
and parameter settings to runtime
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Machine Learning for 
Adaptive Search

• Goal: Predict the best algorithm (or parameter 
set) for each instance

• Examples (actual runs) to learn the mapping

(Instance, algo/param) → Performance
or

Instance → Best algo/param

• Issues

- Features (describe the instances)

- Performance
  Time to given value vs Value in given time
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Protein Structure Prediction
[WCBMB'10]

• A Constraint Programming formulation:
Minimize energy for lattice configurations

• 4 efficient heuristics to choose from

• 105 domain-based features from literature

• Minimize energy after 5mn CPU time

• Supervised learning with decision trees (J48)

• Outperforms fixed strategies and SATzilla (on avg)



Evolutionary AI Planning 
coll. Thalès - ONERA

Divide-and-Evolve
• Decompose a planning problem into a sequence of 

(simpler?) sub-problems

• Each sub-problem is solved by a standard planner

• Evolution to optimize the sequence of intermediate 
states:
- Planning Heuristics used for
  * Initialisation 
  * Variation operators

Silver medal, Humies Awards, ACM-GECCO 2010



Parameter Tuning for DAE
• Performance: normalized makespan in 30mn CPU

• Standard Racing [ACM-GECCO'10]

- Computed for one instance, one domain, or
  across several domains
- Results as expected

• ML-based Learn-and-Optimize [ACM-GECCO'11]

- 14 features to describe an instance
- Learn the (Instance → best parameters) mapping
- Using an Artificial Neural Network
- Significant improvement over the default values
- Marginaly worse than best per-instance values
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Continuous Search in CP
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Continuous Search in CP

Langford numbers
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Continuous Search in CP

Experiments
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Symbolic Reasoning in the 
Cloud

Z3: MSR SMT’s solver
several reasoning engines, >256 parameters
Continuous Search: customer-based self tuning
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Perspectives

• Algorithm → Automatic tuning
– parameters

• Components → Algorithm Design
– Operators

– Neighborhoods

– Data Structures

• Components, System → Autonomic Computing
– Resources (very large scale)

– Self-healing (fault tolerance)
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