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Constructive Security

* Goal: enable programmers to express and enforce
strong security with a reasonable amount of effort

1. We develop verification tools

for programs using cryptography
F7 CertiCrypt; also Fine ProVerif CryptoVerif

2. We build & verify reference implementations

for security protocols and libraries
WS* TLS CardSpace DKM

3. We design & prototype security compilers
for secure multiparty sessions;
for distributed information flows (this talk)
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Programming with Partial Trust

e Security should hold even if the environment is partly compromised
— Classic: the opponent controls the network
— Modern: the opponent controls parts of the program



Programming with Partial Trust

e Security should hold even if the environment is partly compromised
— Classic: the opponent controls the network
— Modern: the opponent controls parts of the program

 Example: Web Apps
— The network is untrusted

— Service security
should not depend
on code on the client

— Client security should
not depend on services
(nor their interaction)




Programming with Partial Trust

e Security should hold even if the environment is partly compromised
— Classic: the opponent controls the network
— Modern: the opponent controls parts of the program

e A solution: Trusted Computing

— Trusted Platform Modules
provide HW isolation
from Apps, OS, drivers,...

— Can support secure subsystems
(e.g. BitLocker)

— Can boot short-lived kernels

— Not used much
No programming tools?




Security By Construction (Goal)

* Goal: enable programmers
global program
+ security policies to express and enforce
+ distribution application security with a
reasonable amount of effort

 We design and prototype
“security compilers” that
yield verified local code

e Cryptographic mechanisms
are essential, and tricky




CFLOW: A Cryptographic Compiler

1. We relate two notions of security
global program ]
+ security policies — One simple and abstract, based on

+ distribution information flows in programs

— Another more concrete,
based on cryptography &
hardware assumptions for

distributed shared memory

2. We compile source programs to
cryptographic distributed code

3. We show that all source security
properties are preserved




Towards Minimal TCBs

Security should depend on a minimal trusted computing base (TCB)

— Less critical code, easier to secure & verify

NET

. |

. |

Internet Explorer

Windows

X86

~ 108 LOCs
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Towards Minimal TCBs

* Security should depend on a minimal trusted computing base (TCB)
— Less critical code, easier to secure & verify

~ 108 LOCs

NET

~10°% LOCs

minimal
kernel

Windows (root) ~10° LOCs

X86




Booting Virtual Hosts with a TPM

* We can compile small, secure programs for each host

* TPMs & HyperV can provide strong isolation for them (and attest it)

NET

Windows (root)

~ 108 LOCs

my code

minimal
kernel

HyperV

X86

~10°% LOCs

~10° LOCs
~10° LOCs



Booting Virtual Hosts with a TPM

1. We model TPM capabilities
(this involves code as data)

2. We use CFLOW (as before)
to compile programs with
highly-trusted virtual hosts

3. We transform the resulting
code to securely boot hosts

4. We adapt CFLOW to generate
small, statically-link C code

SKINIT, SEAL, UNSEAL, EXTEND, ...

chient thgh (= client + server) Qserver

4 3 3

cl’client[SKINIT<(1’high>:I Q’server

* Theorem: the “virtual host” transform does not enable new attacks

 We are experimenting with XCG (MSR Redmond)
using custom builds of HyperV to run minimal TCBs



Information-Flow Security (Examples)

Q Q
Secrecy flow O,é( o,b
(type error) o (}
<.
. email %
bug_report := email + details;
\l bug
report
{{6 &
: 0@ &
Integrity flow \Q\' @
(type error) 6@5
N group
if group = "admin" then last _login := now; Iast/




Cryptographic Mechanisms

* Intuitively:
— Encryption can help preserve information secrecy
— Signatures and MACs can help preserve information integrity

* We compose standard mechanisms, and obtain security
under standard (computational) assumptions

— Programs and adversaries are probabilistic polynomial commands

— Correctness is relative to a security parameter,
holds only with overwhelming probability

— Proofs involve game-based reductions
(simpler, more abstract models would hide crypto side channels)



Computational Cryptography

 We prove security under standard, realistic assumptions on cryptography

* Two verification approaches have been successfully applied to
protocols and programs that use cryptography

Symbolic approach (Needham-Schroeder, Dolev-Yao, ... late 70’s)
— Structural view of protocols, using formal languages and methods
— Compositional, good tools, scales to large systems
— Too abstract for information flows (cryptographic side channels)
Computational approach (Yao, Goldwasser, Micali, Rivest, ... early 80’s)
— More concrete, algorithmic view

— Adversaries range over probabilistic Turing machines
Cryptographic materials range over bitstrings

— More accurate, more widely accepted
— Delicate (informal) reduction proofs; scalability issues



Computational Soundness

* We need soundness for a general class of programs
so that our compiler can produce efficient code
— We developed a type system for computational cryptography
— We prove global correctness for each stage of the compiler

» Selected cryptographic difficulties:
— Side channels via the usage of cryptography

* The adversary may detect writes by observing re-encryptions

* The adversary may detect reads by injecting bad signatures

— Cross-dependencies between integrity and secrecy
 Signing keys must have sufficient secrecy
* Decryption keys must have sufficient integrity

— Limitations on key usage (encryption cycles, key generation)
— No information-security for keys

* Keys need to be shared and communicated
* Keys may be partially leaked by signing/encrypting



Cryptographic Assumptions

Our language is expressive enough to code the algorithms, oracles,
adversaries, and games of computational cryptography

— This is the formal basis for proofs by program transformations

We assume that all commands are polynomial

— We use a global security parameter ~

Computational security properties are of the form
“the command A wins a game only with negligible probability

14

f : N — Ris negligible when V¢ > 0, dn., Vn > n., f(n) < n~°.



IMPERATIVE CODE WITH
INFORMATION FLOWS
& DYNAMIC LINKING



Information-Flow Policies

Security policies specify the S c%
permitted flows of information “% Y%
o
— Each variable has a security level / \ 2 S
4‘
— Secret variables do not leak °

— Tainted variables do not
influence trusted variables

to public variables \ /

secure
information

Two complications (not for this talk)
flows up

— Most useful programs still need to
selectively declassify secrets and

endorse tainted values
— Secrecy and integrity are interdependent



This Talk

Information flow security (example)
A core language with dynamic linking
Modelling TPM-based secure instructions

Our compiler
1. Generate local code for all hosts (including trusted virtual hosts)
2. Bootstrap trusted virtual hosts using secure instructions

Implementation examples



Information-Flow Policies

Security levels are ordered @ d "%
. . . & ,(\\e QC"/, o
by relative secrecy and integrity \@Q & & o
N\ 2
. - . &d .
Security policies specify the \@6‘ / \ %

permitted flows of information

— Each variable has a security level '\ '\ /

— Secret variables do not leak
to public variables

— Tainted variables do not secure

i i information
influence trusted variables ormatio
flows up



Active Adversaries

Security levels are ordered S
1 I i ) ‘(\\e QC‘/- QO
by relative secrecy and integrity ,&Q’ & & Yo
\0 06 ‘17./ o, C}
Security policies specify the \@e‘ / % %,
permitted flows of information %‘9
y
— Each variable has a security level '\ ?7&
— Secret variables do not leak 't%'

to public variables

— Tainted variables do not secure

i i information
influence trusted variables ormatio
flows up

An adversary is specified
as a compromise level
— Can read/write shared memory

— Can control code at lower-level hosts



Applying for a Loan (Example)

result, , result, := f( secret, ,secret_)

|

|

|

|
result,, result, := |
f(secret,, secret,)

(4) result,

result,,

esult, secret),
(1) secret,, secret,




Core Language and Security Types
e =ux|ople,..., en)
P:=x=e|x:=f(x1,..., :cﬂ)|skip|P;P
|if e then P else P | while e do P | linke [P] ¢ | X



Core Language and Security Types
e=ux|opler,...,e,)
P:::a::=e]:c:=f(gc1,...,:cﬂ) | skip | P; P
|if e then P else P | while e do P | linke [P] ¢ | X

(TSuBC) (TFUN) (TSEQ)
-P0 <t -7 D(x) ~P:0 Pt (TSKIP)
FP: Fai=f(y) : I'(x) PPt = skip @ T
(TCOND) (TWHILE)
el FP:l P el RP: (TVAR)
~if e then Pelse P’ : ¢ ~ while edo P : ¢ -X:(Le.Tr)
(TASSIGN STRICT) (TLINK STRICI)
Fe:l'(x e/l FP:(Le. T
Strict rules: e: (@) ‘ — (e, T1)
Fxi=e:l'(x) Flinke [P]¢: 0
Lax rules:
(TASSIGN ENDORSE) (TASSIGN ROBUST) (TLINK PRIYVILEGED)
Fe:(e,.) c¢<C(x) Fe:(e,.) & C(x) el FP:l </

~

Fri=e:1(x) Fx:=e:I'(x)1(Te,R(c)) = linke [P] ¢ : ¢



Core Language and Security Types

x| op(er,...,en)
P:i=ux:=c|x:=f(x1,...,xp) | skip | P; P
|if e then P else P | while e do P | linke [P] ¢ | X

o
|

_________________________________________________________ -
(TSuBC) (TFUN) (TSEQ) :
FPl O <¢ -5 [(x) P4 P/ (TSkip) |

pEEE——|
FP: /¢ Fai=f(y) : I'(x) - P;P : ¢ = skip: T !
(TCOND) (TWHILE) | ';'_:'-'::'-'::'-'::I
Fe:¢ +FP:f FP ¢ Fe:¢  Fp:e! | (TVAR) :
—if e then Pelse P : ¢ FwhileedoP: ¢ 1 | FX:(Le,Tr)
|
T T T e - —— |
(TASSIGN STRICT) : + 1 (TLINK STRICI) |
, Fe: () Ul beit FP:i(Le,Tr) '
Strict rules: I I - I
Fxi=e:l'(x) ! I Flinke [P]: 0 :
_______________________________ e o e o o e e mmm——
Lax rules:
(TASSIGN ENDORSE) (TASSIGN ROBUST) (TLINK PRIYVILEGED)
Fe:(e,.) e<C(x) Fe:(e,) ¢ C(x) Fe:l FP:l </

~

Fxi=e:'(x) Fx:=e:'(x)(Te,R(c)) = linke [P] ¢ : ¢



Core Language and Security Types
e=ux|opler,...,e,)
P:::a::=e]a::=f(x1,...,a:n) | skip | P; P
|if e then P else P | while e do P | linke [P] ¢ | X

Fxi=e:'(x) Fx:=e:I'(z)(Tc,R(c)) I—]inke[ﬁ]é’:E

e
| (TSUBC) (TFUN) (TSEQ) I
FP:t < -5 : I(2) -p:¢ P .e  (TSKIP)
= el |
: FP: /¢ Faxi=f(y)  ['(x) - P;P : ¢ l—sklp:T:
' (TCOND) (TWHILE) :
' be:l FP:t FP:¢ Fe:l FP:4 (TVAR) |
: ~if e then Pelse P’ : ¢ ~ while edo P : ¢ -X:(Le, T1) |
| e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e - - — - ———
(TASSIGN STRICT) (TLINK STRICI)
Fe:l'(x Fe:/l FP:(Le. T
Strict rules: e: (@) ‘ — (e, T1)
Fxi=e:l'(x) Flinke [P]¢: 0
__________________________________________________________ .
: Lax rules: :
|
I |
| (TASSIGN ENDORSE) (TASSIGN ROBUST) (TLINK PRIVILEGED) :
- 7 1
le:(c,) c<C(x) Fe:(e,) ¢ C(x) Fe:l FP:0 </ |
: |
| |



Security Types



Linking with Privileged Code

[[e]](N,u) =(P) FP:/

(link e [P] £, 1) ~1 (P[P/X], )

e The link command

— Turns data (e) into executable code (P)
— Dynamically checks that code
— Runs that code linked with subcommands

 Example: PIN-based access control

c:=0;
link a[if ¢ < 3 && guess = pwd then r .= secret else c++] LL

— The adversary can read/write a, guess, r but not pwd, c, secret

— The command runs adversary code,
which may try to guess the password at most three 3 times.



TPM-Based Secure Instructions (1/2)

Monotonic Counters (for linearity)

INC = c:=c+l I'(c) =ty

Platform Configuration Registers (for boot integrity)

EXTEND; = I := H(h|identity) — T'(h;) = Chpy,

Secure Late Boots (for small, short-lived kernels)

SKINIT = &y~ := H(kernel): link kernel[TPM] (! - hy7 =0

‘system?

Remote Attestation
Sealing & unsealing



TPM-Based Secure Instructions (2/2)

Monotonic Counters (for linearity)

Platform Configuration Registers (for boot integrity)
Secure Late Boots (for small, short-lived kernels)
Remote Attestation (for the current configuration)

ATTEST; = tag := S(ilh;|plain, k1py,)
VERIFY,; = if V(i|source|plain, tag, k7p),) then X

Sealing & unsealing (for keeping private state)

SEAL; = enc:= SE(plain,s.ke); mac := M(i|h;|target|enc,s.ka);
cipher := enc|mac; enc := 0; mac := 0

UNSEAL; = enc|mac := cipher,
if Vaq(i|source|h;|enc, mac, s.ka)
then plain := SD(enc,s.ke) else plain := 0;
enc :=0;mac =0



Probabilistic Semantics

* A standard WHILE language with shared memory
e n=x|v|op(er,...,en)
P i=x:=¢|x:=f(x1,...,25) |
P; P | if e then P else P | while e do P | skip

e A probabilistic semantics between configurations (Markov chains)
/ /
(P ) —p (P, 1)

— SO programs can represent cryptographic algorithms



Probabilistic Semantics

* A standard WHILE language with shared memory
e n=x|v|op(er,...,en)
P i=x:=¢|x:=f(x1,...,25) |
P; P | if e then P else P | while e do P | skip

e A probabilistic semantics between configurations (Markov chains)

(P ) —p <P,3/L,>

— SO programs can represent cryptographic algorithms

— in particular, we use a “fair coin-tossing” function:

(2 := {0,1}; P, u) —3 (P, pla = b)) for b= 0,1



Probabilistic Semantics

ASSIGNS SEQS
[el(p) = v (P, p) ~p (Pr, p1) Py #/
(x = e, ) ~1 (V, p{z = v}) (P; P’y p) ~p (Pr; P’ )
SEQT SKIPS STABLE
(P, 1) ~p (Vs p1)

PP o, (P ke o) Vo) (Vo)

CONDTRUE CONDFALSE
[e](n) = true [e](r) # true
(if e then P else P, u) ~+1 (P, i) (if e then P else P, p) ~»1 (P’ p)
WHILETRUE WHILEFALSE
[e](n) = true [e](n) # true
(while e do P, 1) ~»1 (P;while e do P, 1) (while e do P, i) ~1 (v/, i)
FUN

p=[fI(u(y1), ..., u(yn))(@)  p>0
(@ = f(Y1,-- s yn)s 1) ~p (Vs T — U})




Secrecy

(Definition)
N
&\"\A
>
4, Q
/(Q
/.GQ
(o'
&I'f/;& ¢
QQO'
N
< S
% > &\0
‘629 a b a b S
Q (Po)®; —3(P2)%; —3(P3)%; —5(Py)%; ... 5 8
1. Pick two initial 2. Run (twice) the same 3. Do we obtain
memories with program interleaved the same

same public values with any adversary code public results?



Computational Secrecy Games
(Definition)

For all commands I/, By, B, /T, T (...), run

b« {0,1};I;
if b then By else By; P|A]; T
e
A4
>
&1‘{{& epb &
> 3l
& &‘.(‘zo

P preserves secrecy when Pr(b=g) < % + €(n)



Integrity

(Definition)
?‘»%(
GQ,/
%, 0
/(Q
/b‘?
(o'
&I'f/;& ¢
QQO'
&,
% e;%{
2 a b a b QQ'/‘?
s (Po); =3(FP2)%: —3(Ps)" —3(Pa)% - ¥
1. Pick two initial 2. Run (twice) the same 3. Do we obtain
memories with program interleaved the same

same trusted values with any adversary code trusted results?



Integrity
(Definition)

%,
/’Q
~
(J)
9
(%
Yy @
(J
Py’
(J)
h Y

1. Pick two initial 2. Run (twice) the same
memories with the program interleaved

same trusted values with any adversary code

J‘(Q

A

%,

3. Do we obtain the
same trusted results?



Sample Source Code

(xi=1)%_;(ifrtheny :=2elsey := 2)% _; (y:=y + 1)%_

low-level code Z remains secret and finallyy =3
(no access to x,y,z)

* High-level variables are protected by the memory policy j

* Inaless abstract implementation,
host a must pass x securely to host b; then
host b must pass y securely to host a; ...



Sample Implementation

We implement  (if x then y := 2 else y := z)b

x is shared via low X, contains x’s X,, contains x,’s To read x, we verify

level variables x, x,, l§ encrypted value crypto MAC the MAC...

_ . ... then we decrypt x, into
if Verlf}’(:lfe, Lm s km) then ( a local secure variable x?

b = Decrypt(:ce, ke)?

if ¥ then y° := 2 else y* := 2°;

Ye = Encrypt(yba ke); Ym — MAC(y67 km))

* Which crypto primitives? Which keys?
Does it provide the same security?
 When to run this code?



Sample Implementation

We implement  (if x then y := 2 else y := z)b

x is shared via low X, contains x’s X,, contains x,’s To read x, we verify

level variables x, x,, encrypted value crypto MAC the MAC...

_ . ... then we decrypt x, into
if Verlfy(xe, Lm s km) then ( a local secure variable x?

b = Decrypt(:ce, k6)3

if ¥ then y° := 2 else y* := 2°;

Ye = Encrypt(yba ke); Ym — MAC(y67 km))

* Here, we cannot use the same key for MACing x and y
— the adversary code vy, := x.;ys := x5 can achieve y := x.



Sample Implementation

We implement  (if x then y := 2 else y := z)b

x is shared via low X, contains x’s X,, contains x,’s To read x, we verify

level variables x, x,, l§ encrypted value crypto MAC the MAC...

_ . ... then we decrypt x, into
if Verlfy(:z:e, Lm s km) then ( a local secure variable x?

2l = Decrypt(z., kq);

if ¥ then y° := 2 else y* := 2°;

Yo 1= Encrypt(yb, ke); v := MAC(ye, km))

* Here, we cannot rely on the same key for protecting x and y

— If we insert the code y. := x.: vy, := =, between b and a, we achieve y = 2

* Besides, the adversary can “break” integrity using =5 := 0



Accommodating Runtime Errors

* [Integrity non-interference (rightfully) excludes implicit flows

P[,Q] = 1:=4;_;ifl=4thenh:=10else Q

After running P[skip, h := 5| we have h = 10
After running P[l := 0, h := 5], we have instead h = 5 (implicit flow from [ to h)

* Any dynamic checks create “implicit” flows!
— E.g. we dynamically check whether a signature is correct

e We refine our model to accommodate runtime errors

— If the program completes, then it guarantees integrity

— The command context |-, skip] is well-typed, as it preserves
the integrity of h (or leaves h uninitialized)



INFORMATION-FLOW SECURITY (REVIEW)
CRYPTOGRAPHIC PROTECTION FOR SHARED MEMORY
A LANGUAGE FOR COMPUTATIONAL CRYPTOGRAPHY

OUR PROTOTYPE COMPILER



Cryptographic Assumptions: CPA

An encryption scheme is any triple

of probabilistic polytime functions %Wﬁ)%‘bﬂ%’ﬁ%ﬁ?&? Decrypt)

Correctness:
Decrypt(Encrypt(x, k.); kq) = x
Security e.g. against chosen-plaintext attacks (CPA):
a probabilistic polytime game
—  The adversary (_) passes any pair of values to an encryption oracle
The encryption oracle (E) encrypts either the first value, or the second value

—  The adversary knows this ciphertext and the encryption key
—  The adversary wins if it guesses which value is encrypting

In our language:

CPA =b:={0,1}; E=ifb
ke, kq == KeyGen; then z := zg
else r := x1;

z. := Encrypt(z, k)
1
Pr(CPAsb = g) < 5 +¢(n)



if b
then x := xg
else x := x,

Tom= O

T 12
b:={0,1} z. := Encrypt(z, k)

g=1

k. :== KeyGen()

In our language: : :
CPA = b := {0,1}; E=ith

ko, kg = KeyGen: then z := z
. else r := xq;
— Ly Te 1= Encrypt(ﬂia ke)

1
Pr(CPA;b = g) < 5 + (1)



Secrecy for a Single Encryption

if b
then x := x
else x := 1
g .- — 5
X1 = 2
b0, 1} 75, — (o
g1
ke'="9()
Pr(b=



Cryptographic Assumptions (Sample)

* An encryption scheme is a triple of probabilistic polynomial
. s &] & Dg
functions expressible in the target fanguage.

We rely on a (command-based) standard security assumption:

Definition 12 (IND-CCAZ2 security) Consider the commands

E =ifb=0then m := E(xg, k) else m := E(x1, ke );
log := log +m
D = ifm € log then z := 0 else x := D(m, ky)
CCA =b:={0,1};log := nil; ke, kq := Ge(); A[E, D]

(Ge, €, D) provides indistinguishability under adaptive chosen-ciphertext attacks
when |Pr[CCA; b = g] — 1| is negligible for any polynomial command context A

with b, kg & rv(A) and b, kg, ke, n,log ¢ wu(A).

We similarly rely on integrity properties for signatures and MACS



INFORMATION-FLOW SECURITY (REVIEW)
CRYPTOGRAPHIC PROTECTION FOR SHARED MEMORY
MODELLING COMPUTATIONAL CRYPTOGRAPHY
PROTOTYPE COMPILER



Source Language: Adding Locality

. S(?urce cor.nmands are ar?notated P = (P)a ‘ o
with locations representing
principals, machines ,etc
* Asecurity policy | maps every variable to an information level
* A program consists of code fragments
— Running on different hosts
— Sharing the memory

(Po)®; (P1)¢ 5 (Po; (P3)*; Pa)b; ...



Active Adversaries & B
\Q,Q @
. ” AN
An adversary is specified 09\"’
as a compromise level ¢
— Can read/write shared memory
— Can control code at lower-level hosts (e.g. c)

After specifying the adversary,
we erase lower level code

(Po)® 5 (FP1)°; (P2§(P3)Q;P4)b; -
~ (Po)® 5(P2)% -3 (Ps)*; _5(Pa)"s - ..

(ll ”

stands for any adversary code)



The CFLOW Compiler

* It takes a source program . 2 ...
with locality annotations P = (P) J -

... and yield a series C( P )

of local commands

Qo; Qa;Qy; i i

1. Compiled code behave
as the source when fairly scheduled

3. Compiled code is

as secure as the source QO! A[Qa, Qb, . :]

when controlled by the adversary



The Compiler Extension

e |t takes a series
of local commands with Q — QO! Qa; Qb! = nny Ly
— One command marked

to be implemented with
hardware capabilities

— A set of variables local to
this command to protect

... and yield a new series
of commands whereQv ask

for less privileges C(Q) — ng Q(a)! ng oo Qe



Compiler (Definition)

* A compiler takes P = (P)a |
a source program with
locality annotations

... and yield a series C(P)=Qo,Qu,Qp, ..

of local commands

* These commands can N[Q.,Qy] =
be explicitly scheduled,

_ _ next := start;
e.g. in a round-robin

while next # stop do {Q.; Qp}



Compiler (Theorems)

Compiled code C(P) = Qo, Q4, Qp

behaves as the source when fairly scheduled:

— For all initial memories,
final memories after running I have the same distribution as
final memories after running Qo; NV |[Q., Q]

Compiled code is as secure as the source
when controlled by the adversary

— If, for any two initial memories,
P preserves confidentiality for all ® adversaries, then also
Qo; _|Qa, Qp| preserves confidentiality for all ® adversaries

(and similarly for integrity)



Cryptographic Compilation

(X’ = y; Zi= 0)server ;




1. Split the program

Cryptographic Compilation into local threads.
Each thread:
* has a fixed

" integrity level

(X = y; 2:= 0)server ;

[]
see)

* is parameterized
by loop indexes
(+1 for each loop)

* runs just once
at every index
(for anti-replay)

thread o ed b
client,(i) thread server,(i) = IS called by
=\ o at most one
X:=vy; z:=0
remote thread
thread (for integrity

client,(i) enforcement)




1. Split the program into

Cryptographic Compilation local threads

2. Secure control flow

using program
counters

(x :=y; 2:= 0)emver; (one shared PC at

[]
see)

each integrity level)

Before running

a thread:
thread server, (i) =  check that PCs
check (pcy = ("client",i)); have their
thread check (i > last,); expected values
client,(i) last. = i: :
2= 1 * test & increment
pc,, := ("server,",i) local anti-replay
thread x:=y;z2:=0 counter
client,(i) * update PC at the
thread integrity




1. Split the program into

Cryptographic Compilation = loc!threact

Secure control flow,
using program counters

3. Split shared variables

(x := y; z:= Q)server into
local replicas

(single, static assign)

[]
see)

[]
see)

We use a variant of
SSA to track writers
(fixpoint computation)

thread server, (i) =

check (pcy, = (“client,",i)); We allocate a replica

cfizrr?ta((ji) Chec'f_('f last,); for each thread that
: last, := i; accesses the variable
pcy, = ("server,",i) We explicitly
thread X =Y1;2,:=0 propagate updates

client,(i) between hosts




1. Split the program into

Cryptographic Compilation local threads

2. Secure control flow,
using program counters

" . Split shared variables
(x :=y; z:= Q)server , into local replicas

. Cryptographically

protect reads and
writes

encrypt and/or sign
at each remote call

thread server, (i) =
Verify ("client,." + i+ ".pc,." + pc,yy) PChm K15

use auxiliary keys

Y, := Decrypt (y, ,k.,); (greedy allocation)

check (pcy, = ("client,",i));

check (i > last,);

last, :=i; All replicas shared
e [ " replicas snare

PCya = HISUEl /) betwé)en threads

X;:=Y1;2,:=0;

N S . have low integrity
pc,,, := MAC ("server,." +i+".pc,." + pcy,) K..1; and confidentiality

use long-lived PKI
only for bootstrapping




Cryptographic Compilation

(X’ = y; Zi= 0)server ;

[]
see)

thread
client,(i)

thread
client,(i)

Split the program into
local threads

Secure control flow,
using program counters

Split shared variables
into local replicas

Cryptographically
protect reads and writes

Generate untrusted
code for scheduling
and synchronization



Experimental Results

Program LOC 1/t crypto keys Time

empty 21102 |1 (1+0) | 0/0 00 0/0 | 159 | 1.63
running 18 | 464 | 3 (5+3) | 2/2 4/4 172 | 1.58 | 1.71
rpc 11 | 321 | 2 (343) | 2/2 4/4 1/1 | 1.63 | 2.58
guess 52 | 912 | 7(13+3) | 2/2 | 13/16 | 2/3 | 1.69 | 1.98
hospital |33 [ 906 | 5 (94+0) | 4/4 | 11/11 | 4/8 | 1.70 | 1.84
taxes 551946 | 4 (7+2) | 8/8 | 16/16 | 4/6 | 1.71 | 1.77

Our compiler is parameterized by a security lattice

— we coded simple lattices and Myers’ decentralized labels

Source and target languages are subsets of F#

— .NET libraries for communications and cryptography

— Trusted configuration file for bootstrapping




1. Compile for a Global program

(virtual) trusted machine + security policy
+ locality annotations

Client
code

Shared Untrusted Memory (aka Public Network)



1. Compile for a
(virtual) trusted machine

bi{xy:=ep}s c{ye = ec}ivi{wy, ye = fwp, ye) b: br {print(ay)}: e {print(yc) }

AN

Qo= ky.ky =G0 ky k=G0

Qbi if cp=1then { cp++; xpi=ep; o = E(ap, k) v 1= S(xe, kb_)}
else if ¢;, = 2 then { cp++; if V(2! 2/, L+) thenprmt(D(I k, )}

if c.=1 then { c.++; y. := e, } else if ¢.=2 then { c.++; print(yl) }

O
||

Q, = ifc,=Ithen
{ cpt+;if V(ze, x5, AEL) then { z, := D(xe, k) 20yl := f(xw, ye)s
xl = E(xl k) ) x —S(Ie )}



2. Generate code for
dynamically booting Global program
+ security policy

and attesting the , _
, + locality annotations

trusted machine

using the client TPM

Client

code




2. Generate code for
dynamically booting
and attesting the
trusted machine
using the client TPM

Global program

+ security policy
+ locality annotations

A ay
# “expected E
code hash
unter

sealed
local state

including fresh

private key

Client

code




2. Generate code for
dynamically booting
and attesting the
trusted machine
using the client TPM

Qo = ky k) =GO kpypskgpy = GO ¢:= 0;
Q, = if cp=1then { cp++; zpi= ey
if VERIFY(H((K,)).k;, cert,)
[b.k) =kl xe i =E(ap, k) )s w5 :=S(we, ky ) 1}
else if ¢p=2 then { cp++; if V(xL, 2, k") then print(D(x, k; ) }

Global program

+ security policy
+ locality annotations

er sy v

Q.= ifc.=1then { co++; y. = e. } elseif c.=2 then { print(y.) }
Q, = kernel := (K,); SKINIT
K, = if c=0 then

LINC; k;, k" = G.0):; cert, := ATTEST(k,"); key := SEAL(k,, ,h) }

else if c=1 qt)hen
{ INC; k- := UNSEAL(key,h):
if V(xe, xs, k;) then { z, := D(xe, k) 20yl := f(xw,ye)s
wy = E(a, ky )y ol =Sl ky ) )



Theorems

 The compiler extension
takes a series of local Q QO; Qay yueuy Qv

commands
... and yields a new series 0 0 0 0
of commands using the C(Q) — Qo; Qa; Qb; ceny Qv

secure hardware primitives

. Securlty For every adversary A’, there eX|sts anA such that



Loan.dwl

TPMlib.h

Lib.h

Crypto.h

TPM.c
&




TPNEE R oo |
Crypto.h

;0_

[ R
°~b

)

$ g 9
>N D

Q




Experimental Results

Program LOC 1/t crypto keys Time

empty 2 (102 |1 (1+0) | 0/0 00 0/0 | 1.59 | 1.63
running 18 | 464 | 3 (5+3) | 2/2 4/4 172 | 1.58 | 1.71
rpc 1T | 321 | 2 (3+3) | 2/2 4/4 /1 | 1.63 | 2.58
guess 52 1912 | 7(13+3) | 2/2 | 13/16 | 2/3 | 1.69 | 1.98
hospital | 33 | 906 | 5 (94+0) | 4/4 | 11/11 4/8 | 1.70 | 1.84
taxes 551946 | 4 (7+2) | 8/8 | 16/16 | 4/6 | 1.71 | 1.77




Summary

We compile programs + security policies

— With overwhelming probability,
All information secrecy and integrity properties
of the source program still hold in the implementation

We account for active adversaries that control
parts of the computation

We target software/hardware minimal TCBs,
relying on TPM-based secure instructions when available

We rely on program transformations and standard
(computational) cryptographic assumptions

http://www.msr-inria.inria.fr/projects/sec/cflow
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Other Ongoing Projects

* We verify reference implementations
for existing cryptographic protocols

— Using refinement types [CSF'08] & cryptographic model extraction |[...]
— Case study: TLS 1.0 [CCS’08], CardSpace [ASIACCS’08]

* We generate cryptographic protocol code from security specs
— Shared-memory information flows [POPL'08]
— Multiparty sessions (communication graphs) [CSF'07]



Information-Flow Security (Review)

OO
* Valid flows of information {@ /),;,
given as a security lattice \(.\@g ST %/)
of confidentiality/integrity 2, % R %
. g % Q///
labels (:) [Denning’76] 4«%6;\& 2 & 4@ 2
N % VP
* Lattices enable flexible e <
. . pe . Q
(multiparty) specification HH %, % LL

of information flow policies

: K %, Q&
E.g. DLM [Myers Liskov’98] Qs 7 <®
\9/};&‘ °<60

e Security policies

i(x) level of variable x T T T T
® level of the adversary

secure info flows



A Typability-Preserving Compiler

* We systematically translate all accesses to selected variables X

* We have both functional correctness and security guarantees

Theorem S (Computational soundness of the translation)

Let o € L, T a source policy and X C dom(T).
Let S = (Py)°;...; (P,)™ annotated source system.

Assume S writes any variable in X before reading it.
Assume Py,.. ., P, exclusively assign {z | I(x) <; I(a)} \ X in S.

IfT F S, then [ S] is computationally non-interferent against a-adversaries.



A Typability-Preserving Compiler

* We systematically translate all accesses to selected variables X

Inits(ks, ky) = ks, ky == G4();
Init.(ke, kq) = ke, ka := Ge();
Read(:B — 3363338737;7 ka, kvat)[P] = va(t T Ze, Ts; kv) then
(2l := xe; 2 :=D(x,, kq); P)

&

Write(zs,xe < x,2., ke, ks, t) = 2. := E(x, k.);
s =St +xl,ks);we :=1);

* We have both functional correctness and security guarantees

Theorem S (Computational soundness of the translation)

Let o € L, T a source policy and X C dom(T").

Let S = (P)°;...; (P,)™ annotated source system.

Assume S writes any variable in X before reading it.

Assume P,.. ., P, exclusively assign {x | I(z) <; I(a)} \ X in S.

IfT = S, then [S] is computationally non-interferent against a-adversaries.



Computational Non-Interference

Definition 10 (Computational non-interference, passive case)
P is computationally non-interferent on V', U when for all polynomial commands

o [writing V\U: wv(l) CV\U;

e By forb= 0,1 writing outside VU U: wv(By) N (VUU) = (;

e T reading V, writing g: rv(T) C V; g ¢ wv(I, By, By, /T)
and some variable b ¢ v(I, By, By, P,T) in the game

CNI =b:={0,1};
I;if b =0 then By else By;
P;T

the advantage |Pr[CNI; b = g] — 3| is negligible.



Computational Non-Interference

Definition 11 (Computational non-interference against active adversaries)

Let P be a polynomial command context, I' a policy for its variables, and o € L.
P is CNI when, for both V.U = V.S 0 and V,U = VI VI nwv(P), and for all

o [writingV\U: wv(l) CV\U;

e By for b= 0,1 writing outside V UU: wv(By) N (VUU) = 0;
o A a-adversaries;

o T reading V, writing g: rv(T) C V; g ¢ wv(l, By, By, A);

and b ¢ v(I, By, By, P, A, T') in the game

CNI = b :={0,1};
I;if b = 0 then By else By;
PA];T

if Pr[CNE N o7y © # L] = 1, then | Pr[CNI; b = g] — 5| is negligible.



Computational Non-Interference

Definition 10 (Computational non-interference, passive case)
P is computationally non-interferent on V', U when for all polynomial commands

o [writing V\U: wv(l) CV\U;

e By forb= 0,1 writing outside VU U: wv(By) N (VUU) = (;

e T reading V, writing g: rv(T) C V; g ¢ wv(I, By, By, /T)
and some variable b ¢ v(I, By, By, P,T) in the game

CNI =b:={0,1};
I;if b =0 then By else By;
P;T

the advantage |Pr[CNI; b = g] — 3| is negligible.



Non-Interference

Definition 1 (Memory indistinguishability)
Let V' be a set of variables.
Lo ~v 1, when x € V implies po(x) = pq(x).

Definition 2 (Non-interference on 1)
P is non-interferent on V- when, for all memories 1y and i1,

if pro ~v pa and (P, pp) | puy, for b= 0,1, then pig ~v p5.



Non-Interference

We set a policy j for all variables in the program
We set a level ® for the adversary

Definition 3 (Non-interference at o, passive case)
Let I' be a memory policy and o € L a security label. Let

Vo ={z|C(C(z)) <c Cla)} Vi ={z[I((z)) <1 I(a)}

P preserves confidentiality at o when it is non-interferent on V.¢;
P preserves integrity at oo when it is non-interferent on V!

In the active case,

®-adversaries can read insidevC and write outsidevI
(0% (8%



Non-Interference
with ®-Adversaries

Confidentiality

HL

LH

Integrity



Non-Interference (take 2)

Definition 4 (Weak memory indistinguishability)
Memories g and 1 are weakly indistinguishable on V', written L NXJ; 41,
when x € V implies po(x) = p1(x), or po(z) = L, or pui(x) = L.

Definition 5 (Weak non-interference on V')
P is weakly non-interferent on V', U when, for all memories g and 11,

if/l,o Né M1, and <P, :U'b> 4 ,U,;)fOrb =0, 1, then :u() Né :ull

Definition 8 (Exclusive assignments)
Py, ..., P, exclusively assign V in command P[Py, ..., P,| when,
for every i = 1..n, P; is not in any loop and V N wv(P;) Nwvu(P, Pj|+;) = 0.



Non-Interference as a Game

Definition 7 (Non-interference against active adversaries)
P is non-interferent against cc-adversaries when,

for both V,U = VS 0 and V,U = VI VI nwv(P), and for all commands
o [writingV\U: wv(l) CV\U;
e By for b= 0,1 writing outside VU U: wv(By) N (VUU) =0

e A «-adversaries;

o

e T reading V, writing g: rv(T) C V; g ¢ wv(I, By, B1,A);
the value of g after running command
Gy = I; By; P[A];T

does not depend on b:
if (G, i) b py and N\ oy 15(2) # L for b= 0,1 then p15(g) = pi(9)-



Non-Interference as a Game
I; By; P|A|; T

Confidentiality Game

HL
@’bb
%’G /
A Test
4, % LL es
%
/.QQQ, \
LH
Integrity Game %
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Writing secure code?

e Security relies on a precise mapping from goals to mechanisms, but
— high-level security goals are often left informal

— low-level enforcement mechanisms are complex
and hidden in system implementations (cryptography, network stack)

* Programming frameworks don’t help much
— Language designs and implementations predate security concerns
— Implicit trust in the execution environment (TCB)
 What if remote hosts are corrupted?



Provable Cryptography

* Cryptography may help, but...
— Interesting properties (privacy, integrity) depend on the application
* These properties must be clear to the programmer
— Modern applications dynamically select and reconfigure their protocols
» e.g. Web services, grid computing; flexibility is great but not for security
— Hence, experts can’t verify security without knowing the application
* Transparent security is a myth



Information-Flow between
Partially-Trusted Hosts

Security
source policy
code + Target

architecture




Motivation and Goals

Need for simple programming language abstractions for security
and their robust crypto implementation

Need for stronger connections between high-level security goals
and the usage of crypto protocols

A compiler that implements cryptographic and distribution
issues (transparent to the programmer)

The programmer specifies a high-level security policy
(confidentiality and integrity of data)

If the source program is typable for one policy, our compiler
generates low-level, well-typed cryptographic code
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Two Models for Cryptography

 Models are needed to design and analyze protocols;
models may hide important flaws of real systems.

* Two approaches have been successfully applied to
protocols and programs that use cryptography

Formal, or symbolic approach (Needham-Schroeder, Dolev-Yao, ... late 70’s)

— Structural view of protocols, using simple formal languages,
and methods from logic, programming languages, concurrency

— Compositional, good tools, scales to large systems (IPSEC, Web Services)
— Too abstract?
Computational approach (Yao, Goldwasser, Micali, Rivest, ... early 80’s)
— Concrete view: messages are ensembles of bitstrings
— Adversaries range over probabilistic Turing Machines
— More accurate, more widely accepted
— Delicate (informal) reduction proofs; scalability issues



Formal Computational Cryptography

How to get the best of both worlds?
— We need some combination to verify large crypto-based systems
— Can we carry over results and tools from one model to the other?

Soundness property (desired)

“If a security property can be proved in a formal model,
then it holds in a computational model”

Computational soundness of formal cryptography

— Active research, both positive and negative results

Instead, we design cryptographically sound abstractions
for high-level security programming
— For languages, type systems, communications, sessions...

— Not directly for formal cryptography:
We care about security properties (not implementation details)



Information-Flow Security

Information flow provides a clean specification of security
— Secret inputs do not leak to public outputs
— Tainted inputs do not influence trusted outputs

... but its enforcement in concrete systems is delicate

We compile imperative programs with information-flow policies
down to cryptographic (probabilistic) distributed programs

— Secrecy by encryptions, integrity by digital signatures

Soundness relies on a new type system

— Types capture mutual dependencies between secrecy and integrity
levels for all keys and payloads used in our code

— Well-typed programs are computationally non-interferent:
probabilistic polynomial-time adversaries
gain illegal information only with negligible probability
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. explicit control flow
between machines
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e) policy
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Secure control flow,
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Target hosts (shared, high integrity)

Split shared variables
into local replicas
(single, static assign)

[]
sse)
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protect reads and writes

* encrypt and/or sign
. use auxiliary keys

. use long-lived PKI
local for bootstrapping

thread 5. Verify our code against
extended policy

e all shared variables
are public & tainted

except for long-term
verification keys




1. Split the program into

Cryptographic Compilation local threads

. explicit control flow
between machines
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Split shared variables
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[]
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4. Cryptographically
protect reads and writes

If pc = 2 then *  encrypt and/or sign

{x:=y+1; «  use auxiliary keys
pc:=3} . use long-lived PKI

local for bootstrapping

thread 5. Verify our code against
extended policy

e all shared variables
are public & tainted

except for long-term
verification keys




1. Split the program into

Cryptographic Compilation local threads

. explicit control flow
between machines

Security
e) policy
(X o= y+1)server ; .

Secure control flow,
using program counters
Target hosts (shared, high integrity)

Split shared variables
into local replicas
(single, static assign)

[]
sse)

4. Cryptographically
protect reads and writes

If pc® = 2 then *  encrypt and/or sign

{y?:=v} e use auxiliary keys
X 1= Y+l . long-lived PKI
ocii=3) use long-live

local for bootstrapping

thread 5. Verify our code against
extended policy

e all shared variables
are public & tainted

except for long-term
verification keys




Cryptographic Compilation

L]
°

(X = y+1)server .

[]
sse)

Security
policy
Target hosts

local
thread

ki = ...
if verify(pc, | y;.,k;;) then
if pc! = 2 then
{y? := decrypt(y,.,kq);
X2 1= y2+1;
pcl:=3;
(...)

1. Split the program into
local threads

. explicit control flow
between machines

Secure control flow,
using program counters
(shared, high integrity)

Split shared variables
into local replicas

(single, static assign)

4. Cryptographically
protect reads and writes

*  encrypt and/or sign

. use auxiliary keys

. use long-lived PKI
for bootstrapping

5. Verify our code against
extended policy

e all shared variables
are public & tainted

except for long-term
verification keys



1. Split the program into

Cryptographic Compilation local threads

. explicit control flow
between machines

Security
e) policy
(X o= y+1)server : .

Secure control flow,
using program counters
Target hosts (shared, high integrity)

Split shared variables
into local replicas
(single, static assign)

[]
sse)

4. Cryptographically
protect reads and writes

*  encrypt and/or sign
Ky = ... e use auxiliary keys
if verify(pc, | y;.,k;;) then * use long-lived PKI
if pc! = 2 then for bootstrapping

{ YZ2 = dzecrypt(yle); 5. Verify our code against
X® = y+l; extended policy
pcl:=3;

(...)

local
thread

e all shared variables
are public & tainted

except for long-term
verification keys




Typing Expressions and Commands

Theorem 1 (Simple Soundness)
Let I be a security policy and o € L a security label.
If ' = P, then P is non-interferent at c.



Typing Command Contexts

Theorem 2

Let I be a policy and o € L a security label.
Assume I' = P and

all P’ in (if e then P’) typed by CHECK exclusively assign V..

The command context P satisfies non-interference against c-adversaries.



Typing Probabilistic Programs

 We develop a type system for command contexts
with rules for probabilistic functions and cryptography

Theorem (Computational Soundness by Typing)
Let o a security label.

Let I' a policy .

Let P a well-typed, safe, polytime command context

P satisfies computational secrecy and integrity against a-adversaries.

* The proof is by a series of typed program transformations (games)



Cryptographic Types

T = t({) Security types

t:= Data |t xt Data types for payloads
Enct K | KeTt K | Kd7™ K Data types for asymmetric encryption
SEncT K | Ked T K Data types for symmetric encryption
Sig7 | KsF K | KvF K Data types for signing
Mac7 | KmF K Data types for keyed hashes

By design, these types suffice to build efficient protocols,
including key establishment and selective key reuse.

— Our types keep track of static names K for keys,
of tags for signing (F: t — ¢,), and of maximal message lengths.

— Our typing rules capture computationally sound
patterns of declassifications and endorsement



Security by Typing [POPL08]

Theorem (Computational Soundness by Typing)
Let o a security label.

Let I' a policy .

Let P a well-typed, safe, polytime command

P satisfies computational secrecy and integrity against a-adversaries.

— the proof is by a series of typed program transformations (games)

Starting from well-typed source programs,

the compiler yields well-typed cryptographic code

for an extension of the source program policy, hence
Compilation preserves all information-flow properties:

— an adversary that interacts with high-level code and entirely controls
low-level code gains illegal information only with negligible probability.



Typing rules for Signatures

GENS
[(ks) = KsFK(£,)  T(ky) = KvF(£)

ks, ky = Gs() : Ls T

SFI(GkS) = KsF K (/) F(t) =71 ['(x) = Sig7(£,)
FmoT L(7t) < L(x) I(ls) <y I(x)

Fx:=8S{t+m,ks) : l,

VER
['(ky,) = KvF(ly) F(t) =71 ['(x)=T
o7 =m : SigT(4,) -P:/lp
Clly)UC(T") <o C(2) (. < L(x)

=if V(t 4+ v,m, k,) then (x :=v; P) : L(x)




Security by Typing

[POPL'08] Starting from well-typed source programs,
the compiler yields well-typed cryptographic code
for an extension of the source program policy

* Hence, compilation preserves all information-flow properties:

— an adversary that interacts with our compiled code and
entirely controls low-level code gains illegal information

only with negligible probability.

* We now have similar guarantees for “insecure” source programs

an adversary that interacts with our compiled code and
entirely controls low-level code does not gain (much) more
information than an adversary that interacts with source code.



