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The A-Brain Project in a Nutshell  

Application  
  Large-scale Joint Genetic and 
Neuroimaging Data Analysis 

Goal  
  Assess and understand the variability 
between individuals 

Approach  
  Optimized data processing on 
Microsoft’s Azure clouds based on 
INRIA’s BlobSeer data management 
system 

INRIA teams involved   
  KerData (Rennes)  
  PARIETAL (Saclay)  

Framework 
  Joint MSR-INRIA Research Center 
  MS involvement: Azure teams, EMIC 
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Parietal  

  INRIA team, created in 2009, ̃10 people 

  Involved in MRI-based brain imaging data analysis 

  Emphasis on statistical methods, machine learning and computational
 anatomy. 

  Situated on the main french platform for brain imaging, Neurospin (CEA) 

   Many recent contributions on brain connectivity 
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Neuroimaging-genetics: the Problem 

  Several brain diseases have a genetic origin, or  their 
occurrence/severity related to genetic factors 

  Genetics important to understand & predict response 
to treatment 

-  identified risk and protective factors for brain 
diseases 

-  Brain: Huntington's disease, autism… and many 
others 

  Currently: large-scale studies to assess the 
relationships between diseases and genes: 
typically 104 patients per study + control groups 

  Genetic variability captured in DNA microarray 
data 



5 

The Problem: Neuroimaging Data 

Brain images can be used to understand, model and quantify
 various characteristics of the brain: 

Morphology: shape, thickness 

Structure: anatomical connectivity 

Function: response to stimulation, functional connectivity 
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Neuroimaging: Intermediate Information
 between Genetics and Behaviour/Diseases 

Genetic information: SNPs 
G G 
T G 
T T 
T G 
G G 

MRI brain images 

Clinical / behaviour 

Here we focus 
on this link 

Hypothesis: brain 
images contain 
useful markers that 
relate genetics to 
behaviour/diseases 
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Neuroimaging-genetics:  
Designing the Statistical Study  
  Univariate studies: find a (SNP, neuroimaging trait) that are 
significantly correlated 

-  e.g. the amount of functional activity in a brain region is 
related to the presence of a minor allele on a gene 

  Regression studies: some sets of SNPs predict a 
neuroimaging/behavioral trait 

-  e.g. a set of SNPs altogether predict a given brain 
characteristic 

-  SNP set can be on a given gene or not 

  Multivariate studies: an ensemble of genetic traits predict a 
certain combination of neuroimaging traits 

-  Emphasis on the underlying network structure  
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Example of a dataset that might be studied in
 A-brain: The Imagen Database 

  FP7 European project, 2007-2012 
 [Schumann et al, Mol Psychiatry] 

   Study neurobiological and genetic basis of 
reinforcer sensitivity, cognitive control and 
emotional reactivity + assess their relevance for 
mental disorder. 

  individual differences in brain responses x 
genotype may mediate risk factor in adolescents. 

  abnormalities in those brain processes are 
implicated in psychiatric disorder (addiction) 

   Adolescents + longitudinal : predictive value of 
the assessment 

  Database hosted and processed at Neurospin 
(CEA, DSV, LNAO) 
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Statistical Methodology 

  The test is performed at each pair: n*p tests (up to 1012) 

  Significance assessed by permutation test:104 replications of the
 regression (correction for multiple comparisons) 

  Efficient and standard, but… 

  Very weakly sensitive method: only large effects can be detected 

Model : allelic dosage model 

Signal in 
one brain 
region  

Number of minor 
alleles at a given 
genetic location 

Confounding 
factors 

For each (trait, SNP) pair 
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Statistical Methodology 

  Instead, predict some brain characteristic 
using many genetic sites simultaneously 

  Typically yields a rank deficient system, 
thus requires regularization 

  State of the art: elastic net regularization: 
combination of L1 and L2 penalties.  
 sparse loadings 

  Fit becomes expensive. 
  Requires setting the parameters of the 
regularization (internal cross-validation) 

  Performance evaluated using 
permutations 
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Statistical Methodology: Example on a Pilot Study 

  In one region (45, 27, -3), about 10% 
of the asymmetry value is fit by the 
elastic net model 

  Parameter tuning done by internal/
nested cross-validation 

  Statistical test: the association 
strength is significant at  p<0.03 
corrected for multiple comparisons 

  More sensitive than simple association 
study  
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Credits: Microsoft 
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KerData: Scalable Storage for Clouds and Beyond 
A joint team at INRIA (Rennes) ‒ ENS Cachan/Brittany, created in 2009, ̃10 people 

Focus: Scalable storage for new-generation, data-oriented high-performance applications 
  Massive, unstructured data objects (Terabytes) 
  Many data objects (10³-106) 
  High concurrency (10³ concurrent clients) 
  Fine-grain access (Megabytes) 

Applications: distributed, with high-throughput requirements under concurrency 
  Map-Reduce-based data-mining applications 
  Governmental and commercial statistics  
  Data-intensive HPC simulations 
  Checkpointing for massively parallel computations 

Target platforms: large clusters, clouds, Post-Petascale machines  

http://www.irisa.fr/kerdata/ 
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Our Current Focus: the BlobSeer Approach  
to Concurrency-Optimized Data Management 

BlobSeer: software platform for scalable, distributed BLOB management 
  Decentralized data storage 
  Decentralized metadata management 
  Versioning-based concurrency control 
  Lock-free concurrent writes (enabled by versioning) 

A back-end for higher-level data management systems 
  Short term: highly scalable distributed file systems 
  Middle term: storage for cloud services  
  Long term: extremely large distributed databases 

Validated on the ALADDIN-Grid’5000 experimental  

grid/cloud testbed  

http://blobseer.gforge.inria.fr/ 
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Leveraging BlobSeer on Clouds: MapReduce 

•  MapReduce: a simple programming model for data-intensive computing on clouds 

•  Typical problem solved by MapReduce 
  Read a lot of data  
  Map: extract something you care about from each record  
  Shuffle and Sort  
  Reduce: aggregate, summarize, filter, or transform  
  Write the results  

•  Approach: hide messy details in a runtime library  
  Automatic parallelization  
  Load balancing  
  Network and disk transfer optimization  
  Transparent handling of machine failures 

•  Implementations: Google MapReduce, Hadoop (Yahoo!) 
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Integrating BlobSeer in the Hadoop  
Map-Reduce Framework 

MapReduce: a natural application class for BlobSeer: 
  Case study: Yahoo!’s Hadoop MapReduce framework 
  Approach: use BlobSeer instead of Yahoo!’s Hadoop file system (HDFS) 
  Motivation: HDFS has limited support for concurrent access to shared data 

Implementing the HDFS API for BlobSeer  
  Implements basic file system operations: create, read, write...  
  Introduces support for concurrent append operations 

BlobSeer File System (BSFS)  
  File system namespace - keeps file metadata, maps files to BLOB’s  
  Client-side buffering: data prefetching, write aggregation  
  Exposes data layout to Hadoop, just like HDFS 
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Highlight: BlobSeer Does Better Than Hadoop!  
Original Hadoop 

Hadoop+BlobSeer 

MapReduce: a natural application class for BlobSeer 

•  Study: BlobSeer as a file system for Yahoo!’s Hadoop MapReduce framework 

•  Publications: JPDC(2010), IPDPS 2010, MAPREDUCE 2010 

distributed grep 
sort 

Execution time reduced by up to 38% 
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The MapReduce Project  (2010-2014) 
Goal: an optimized Map-Reduce platform for cloud infrastructures 

Total cost: 3,1M€, ANR funding: 827K€ 

Partners 
  INRIA - KerData team (Rennes) ‒ leader 
  INRIA - GRAAL team (Lyon), France 
  Nimbus team, Argonne National Lab/University of Chicago, USA 
  University of Illinois at Urbana Champaign, USA 
  Joint UIUC/INRIA Laboratory for Petascale Computing  
  IBM Products and Solutions Center, Montpellier, France 
  Institute of Biology and Chemistry of Proteins, Lyon, France 
  MEDIT (SME), Palaiseau, France 
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From MapReduce to the A-Brain Project 

Application  
  Large-scale Joint Genetic and 
Neuroimaging Data Analysis 

Approach  
  Optimized data processing on 
Azure clouds  

Bricks 
  Application (INRIA/PARIETAL) 
  BlobSeer data management system 
(INRIA/KerData) 

  Platform: Microsoft Azure cloud  
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AzureBrain: Resources 

Access to the Azure platform 

•  2 million hours per year and 10 TBytes for storage will be available  

Human resources 

•  Several researchers in two INRIA teams 
  KerData (Rennes): optimized cloud storage 
  Parietal (Saclay): neuroimaging and genetics 

•  Dedicated human resources (to be hired!) 
  Postdoctoral fellows and engineers both in Rennes and Saclay 
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Roadmap for A-Brain and Beyond 
WP1: Application 

•  Task 1: Understand and extract relevant input data 

•  Task 2: Structure the application output 

•  Task 3: Redesign the application using a cloud-oriented programming model 

WP2: Optimized cloud data management platform 

•  Task 4: Design a joint BlobSeer ‒ Azure architecture for data processing 
  IN PROGRESS, preliminary prototype running! 

•  Task 5: Evaluate the benefits of integrating BlobSeer with Microsoft Azure storage services 
  Potential collaboration initiated with Geoffrey Fox, Indiana University   

•  Task 6: Evaluate the impact of using BlobSeer on Azure with large-scale application experiments 

Possible follow-up 

•  Collaborative project on geo-replicated cloud storage with MSR Cambridge (Systems and
 Networking Group, ER proposal under evaluation), co-funding opportunities: INRIA, EIT ICT Labs 
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For more information… 
  The KerData team at INRIA, Rennes: http//www.irisa.fr/kerdata 
  The Parietal team at INRIA, Saclay: http://parietal.saclay.inria.fr/ 

Contacts 
  gabriel.antoniu@inria.fr - advanced cloud data management 
  bertrand.thirion@inria.fr - joint neuroimaging and genetics data analysis 


