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Exercices

o Show all standard reductions in the 2 reduction graphs of
beginning of this class. AXX(MF3)(AX.X))
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Exercices

o Show all standard reductions in the 2 reduction graphs of
beginning of this class.
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Exercices

e Find an example where there is no greatest lower bound
of 2 reductions. (Hint: you should use K-terms)
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Exercices

o Show that there is inf-lattice of reductions in \l-calculus.
pss M —=> N, oo - M => N, 7: M-> M

then [pst| 2 |ost| + |7]



Plan

e redexes and their history

e creation of redexes

e redex families

e finite developments

e finite developments+

e infinite reductions, strong normalization
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Initial redexes - new redexes
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e Red and blue are initial redexes. Green is new.



Redexes and their history (1/3)

e Notation [historical redexes]
We write (p, R) when p: M —=> N and R is redex in N.

e Definition [copies of redexes]

(p,R) < (o,5)whenp T oand S € R/(c/p)

e Definition [redex families]

(p, R) ~ (0,S) stands for the symmetric and transitive
closure of the copy relation.



Redexes and their history (2/3)




Redex families (1/3)
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e 3 redex families: red, blue, green.



Redex families (2/3)
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e 3 redex families: red, blue, green.



Redexes families (3/3)

* Proposition
@ TeR/p, TE€S/p implies R=S5
() p~oc implies R/p=R/o

c (p,R)<(r,T) (0,5 <(r, T) implies (p,R) < {(pUo, T") < (1, T),
(0,5) <{(pUo, T <(r, T)

@ (p,R) < (r,T), (6,5 < (1, T) does not implies (19, To) < (p, R),
(10, To) < (0, S) for some (19, Tp)

e) (p,R) ~ (0,S) does not implies (79, To) < (p, R), (70, To) < (0, S) for some
(70, To)

(f) (p,R) ~ (0,S) does not implies (p, R) < (19, To), (0,S) < (109, Tp) for some
(10, To)

e Question Is there a canonical redex in each family ?



Canonical representatives (1/4)

* Proposition [initial redexes]
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Canonical representatives (2/4)

e Definition [extraction of canonical redex]

Let M = (Ax.P)Q MM, --- M, and {ps;, R) be historical
redex from M and H is head redex in M.

extract(H; pst, R) = H; extract(pst, R)
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Parallel steps revisited (1/3)

e parallel steps were defined with inside-out strategy
[a 1la Martin-Lof]

e can we take any order as reduction strategy ?

e Definition Areduction relative to a set F of redexes
in M is any reduction contracting only residuals of F.

A development of F is any maximal relative reduction of F.



Parallel steps revisited (2/3)

* Theorem [Finite Developments, Curry, 50]
Let F be set of redexes in M.

(1)  there are no infinite relative reductions of F,
(2)  they all finish on same term N

(3) Let R be redex in M. Residuals of R by all finite
developments of F are the same.

e Similar to parallel moves lemma, but we considered particular
iInside-out reduction strategy.



Parallel steps revisited (3/3)

e Notation’ [parallel reduction steps]

F
Let F be set of redexes in M. We write M — N

if a development of F connects M to N.

e This notation is consistent with previous results

e Corollaries of FD thm are also parallel moves + cube lemmas



Finite and infinite reductions (1/3)

e Definition A reduction relative to a set F of redex families is
any reduction contracting redexes in families of F.

A development of J Is any maximal relative reduction.

e Theorem [Finite Developments+, 76]
Let F be a finite set of redex families.

(1)  there are no infinite reductions relative to F,
(2)  they all finish on same term N
(3)  All developments are equivalent by permutations.



Finite and infinite reductions (2/3)

e Corollary An infinite reduction contracts an infinite set of
redex families.

e Corollary The first-order typed A-calculus strongly terminates.

Proof In first-order typed A-calculus:

(1)  residuals R' = (Ax.M")N" of R = (Ax.M)N keep the
same type of the function part

(2)  new redexes have lower type of their function part



Finite and infinite reductions (3/3)

Proof (cont’d) Created redexes have lower type

(Ax.---xN-- Y Ay.M) = - (Ay.M)N' - -
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Inside-out reductions
e Definition: The following reduction is inside-out
R R R,
,OZM:MO—)Ml—)M2“-—)Mn:N
iff for all 7 and j, i <, then R; is not residual

along p of some ij inside R; in M;_.

* Theorem [Inside-out completeness, 74]
Let M —=> N. Then M ==> P and N —> P for some P.
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Exercices
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