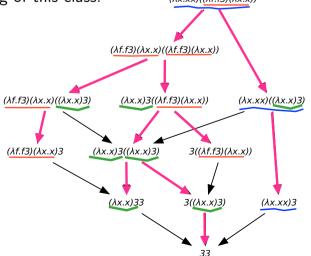
Reductions and Causality (IV)

http://pauillac.inria.fr/~levy/courses/tsinghua/reductions

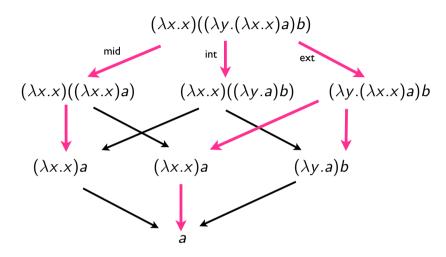
Exercices

• Show all standard reductions in the 2 reduction graphs of beginning of this class. (Ax.xx)((Af.f3)(Ax.x))



Exercices

• Show all standard reductions in the 2 reduction graphs of beginning of this class.



Exercices

• Find an example where there is no greatest lower bound of 2 reductions. (Hint: you should use *K*-terms)

$$M = (\lambda x.(\lambda y.a)(xY_f))(\lambda z.b)$$

$$(\lambda x.(\lambda y.a)(xY_f^n))(\lambda z.b)$$

$$(\lambda y.a)((\lambda z.b)Y_f))$$

$$(\lambda y.a)((\lambda z.b)Y_f^n))$$

$$(\lambda y.a)b$$

$$(\lambda x.a)(\lambda z.b)$$

$$Y_f = (\lambda x. f(xx))(\lambda x. f(xx))$$

Exercices

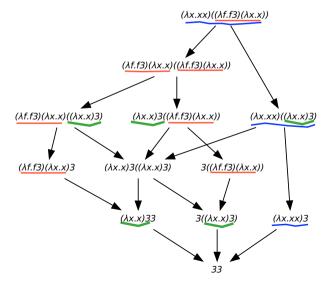
• Show that there is inf-lattice of reductions in λ I-calculus.

$$\rho_{\text{st}}: M \xrightarrow{*} N, \ \sigma_{\text{st}}: M' \xrightarrow{*} N, \ \tau: M \xrightarrow{*} M'$$
then $|\rho_{\text{st}}| \ge |\sigma_{\text{st}}| + |\tau|$

Plan

- redexes and their history
- creation of redexes
- redex families
- finite developments
- finite developments+
- infinite reductions, strong normalization

Initial redexes - new redexes

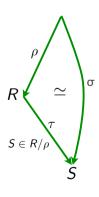


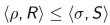
• Red and blue are initial redexes. Green is new.

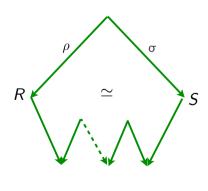
Redexes and their history (1/3)

- Notation [historical redexes] We write $\langle \rho, R \rangle$ when $\rho : M \xrightarrow{*} N$ and R is redex in N.
- Definition [copies of redexes] $\langle \rho, R \rangle \leq \langle \sigma, S \rangle$ when $\rho \sqsubseteq \sigma$ and $S \in R/(\sigma/\rho)$
- Definition [redex families] $\langle \rho,R\rangle \sim \langle \sigma,S\rangle$ stands for the symmetric and transitive closure of the copy relation.

Redexes and their history (2/3)

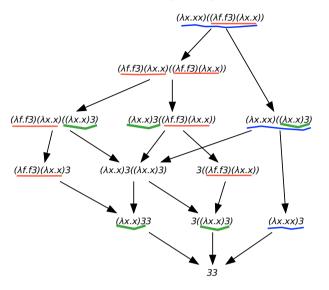






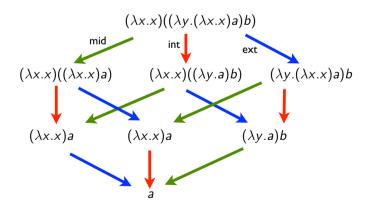
$$\langle \rho, R \rangle \sim \langle \sigma, S \rangle$$

Redex families (1/3)



• 3 redex families: red, blue, green.

Redex families (2/3)



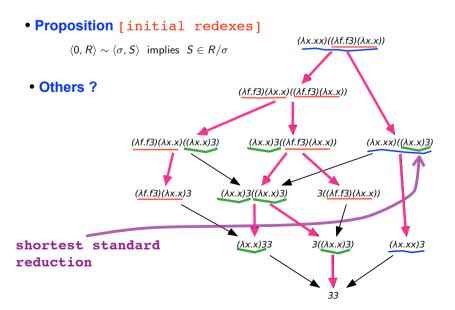
• 3 redex families: red, blue, green.

Redexes families (3/3)

• Proposition

- (a) $T \in R/\rho, T \in S/\rho$ implies R = S
- (b) $\rho \simeq \sigma$ implies $R/\rho = R/\sigma$
- (c) $\langle \rho, R \rangle \leq \langle \tau, T \rangle$, $\langle \sigma, S \rangle \leq \langle \tau, T \rangle$ implies $\langle \rho, R \rangle \leq \langle \rho \sqcup \sigma, T' \rangle \leq \langle \tau, T \rangle$, $\langle \sigma, S \rangle \leq \langle \rho \sqcup \sigma, T' \rangle \leq \langle \tau, T \rangle$
- (d) $\langle \rho, R \rangle \leq \langle \tau, T \rangle$, $\langle \sigma, S \rangle \leq \langle \tau, T \rangle$ does not implies $\langle \tau_0, T_0 \rangle \leq \langle \rho, R \rangle$, $\langle \tau_0, T_0 \rangle \leq \langle \sigma, S \rangle$ for some $\langle \tau_0, T_0 \rangle$
- (e) $\langle \rho, R \rangle \sim \langle \sigma, S \rangle$ does not implies $\langle \tau_0, T_0 \rangle \leq \langle \rho, R \rangle$, $\langle \tau_0, T_0 \rangle \leq \langle \sigma, S \rangle$ for some $\langle \tau_0, T_0 \rangle$
- (f) $\langle \rho, R \rangle \sim \langle \sigma, S \rangle$ does not implies $\langle \rho, R \rangle \leq \langle \tau_0, T_0 \rangle$, $\langle \sigma, S \rangle \leq \langle \tau_0, T_0 \rangle$ for some $\langle \tau_0, T_0 \rangle$
- Question Is there a canonical redex in each family?

Canonical representatives (1/4)



Canonical representatives (2/4)

• **Definition** [extraction of canonical redex] Let $M = (\lambda x.P)Q M_1 M_2 \cdots M_n$ and $\langle \rho_{st}, R \rangle$ be historical redex from M and H is head redex in M.

$$\operatorname{extract}(H; \rho_{\operatorname{st}}, R) = H; \operatorname{extract}(\rho_{\operatorname{st}}, R)$$

Parallel steps revisited (1/3)

- parallel steps were defined with inside-out strategy
 [a la Martin-Löf]
- can we take any order as reduction strategy?
- **Definition** A reduction relative to a set \mathcal{F} of redexes in M is any reduction contracting only residuals of \mathcal{F} . A development of \mathcal{F} is any maximal relative reduction of \mathcal{F} .

Parallel steps revisited (2/3)

- Theorem [Finite Developments, Curry, 50]
 Let F be set of redexes in M.
- (1) there are no infinite relative reductions of \mathcal{F} ,
- (2) they all finish on same term N
- (3) Let R be redex in M. Residuals of R by all finite developments of \mathcal{F} are the same.
- Similar to parallel moves lemma, but we considered particular inside-out reduction strategy.

Parallel steps revisited (3/3)

- Notation' [parallel reduction steps]
 Let \mathcal{F} be set of redexes in M. We write $M \xrightarrow{\mathcal{F}} N$ if a development of \mathcal{F} connects M to N.
- This notation is consistent with previous results
- Corollaries of FD thm are also parallel moves + cube lemmas

Finite and infinite reductions (1/3)

• Definition A reduction relative to a set \mathcal{F} of redex families is any reduction contracting redexes in families of \mathcal{F} .

A **development** of $\mathcal F$ is any maximal relative reduction.

- Theorem [Finite Developments+, 76] Let \mathcal{F} be a finite set of redex families.
- (1) there are no infinite reductions relative to \mathcal{F} ,
- (2) they all finish on same term N
- (3) All developments are equivalent by permutations.

Finite and infinite reductions (2/3)

- Corollary An infinite reduction contracts an infinite set of redex families.
- Corollary The first-order typed λ-calculus strongly terminates.

Proof In first-order typed λ -calculus:

- (1) residuals $R' = (\lambda x.M')N'$ of $R = (\lambda x.M)N$ keep the same type of the function part
- (2) new redexes have lower type of their function part

Finite and infinite reductions (3/3)

Proof (cont'd) Created redexes have lower type

$$\underbrace{(\lambda x.\cdots xN\cdots)(\lambda y.M)}_{\sigma \to \tau} \xrightarrow{\sigma} \underbrace{(\lambda y.M)N'\cdots}_{\sigma}$$
creates

$$(\lambda x.\underline{\lambda y.M})NP \longrightarrow (\underline{\lambda y.M'})P$$

$$\tau$$

$$\sigma \rightarrow \tau$$
creates

$$\underbrace{(\lambda x. x)(\lambda y. M)}_{\sigma \to \sigma} N \to \underbrace{(\lambda y. M)}_{\sigma} N$$
creates

Inside-out reductions

• Definition: The following reduction is inside-out

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all i and j, i < j, then R_j is not residual along ρ of some R'_i inside R_i in M_{i-1} .

• Theorem [Inside-out completeness, 74] Let $M \stackrel{\star}{\longrightarrow} N$. Then $M \stackrel{\star}{\underset{io}{\longrightarrow}} P$ and $N \stackrel{\star}{\longrightarrow} P$ for some P.

Exercices

