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Exercices

« Show all standard reductions in the 2 reduction graphs of
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Exercices

o Show all standard reductions in the 2 reduction graphs of
beginning of this class.
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Exercices

« Find an example where there is no greatest lower bound
of 2 reductions. (Hint: you should use K-terms)
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Exercices

o Show that there is inf-lattice of reductions in Al-calculus.
pst:M—=>N, o M >N, 7: M- M
then [pst| > |ost| + [ 7]
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Initial redexes - new redexes
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¢ Red and blue are initial redexes. Green is new.



Redexes and their history (1/3)

* Notation [historical redexes]

We write (p, R) when p: M = N and R is redex in N.

¢ Definition [copies of redexes]

(p,R) < (0,S) when pC o and S € R/(c/p)

* Definition [redex families]

(p, R) ~ (0, S) stands for the symmetric and transitive
closure of the copy relation.

Redexes and their history (2/3)

Redex families (1/3)
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* 3 redex families: red, blue, green.

Redex families (2/3)
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* 3 redex families: red, blue, green.



Redexes families (3/3) Canonical representatives (2/4)

* Proposition * Definition [extraction of canonical redex]
@ TeR/pTeS/p implies R=S5 Let M = (Ax.P)Q My M, -+ M, and (ps, R) be historical
redex from M and H is head redex in M.

() p~o implies R/p=R/oc

© (p.R)<(r.T), (0,5) < (r, T) implies (p,R) < (pUo, T') <(r,T), extract(H; pst, R) = H; extract(pst, R)
(0.8) < (pUo T) < (rT)

@ {p.R)<(7,T), (0,5) <(r, T) does not implies (79, To) < {p, R),
(10, To) < (o, S) for some (19, Tp)

(e)  (p.R)~(0,S) does not implies (79, To) < (p, R), (70, To) < (0, S) for some
(10, To)

] (p, R) ~ (o, S) does not implies (p, R) < (10, To), (0, S) < (70, To) for some
(10, To)

¢ Question Is there a canonical redex in each family ?

Canonical representatives (1/4)

* Proposition [initial redexes]
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(0, R) ~ (0,S) implies S € R/c
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Parallel steps revisited (1/3)

» parallel steps were defined with inside-out strategy
[a la Martin-Lof]

» can we take any order as reduction strategy ?

« Definition Areduction relative to a set F of redexes
in M is any reduction contracting only residuals of F.

A development of F is any maximal relative reduction of F.

Parallel steps revisited (2/3)

e Theorem [Finite Developments, Curry, 50]
Let F be set of redexes in M.

(1)  there are no infinite relative reductions of F,

(2)  they all finish on same term N

(3) Let R be redex in M. Residuals of R by all finite
developments of F are the same.

e Similar to parallel moves lemma, but we considered particular
inside-out reduction strategy.

Parallel steps revisited (3/3)

* Notation’ [parallel reduction steps]
. . F
Let F be set of redexes in M. We write M —» N

if a development of F connects M to N.

 This notation is consistent with previous results

* Corollaries of FD thm are also parallel moves + cube lemmas

Finite and infinite reductions (1/3)

« Definition A reduction relative to a set F of redex families is
any reduction contracting redexes in families of F.

A development of F is any maximal relative reduction.

e Theorem [Finite Developments+, 76]
Let F be a finite set of redex families.

(1)  there are no infinite reductions relative to F,
(2)  they all finish on same term N
(3)  All developments are equivalent by permutations.



Finite and infinite reductions (2/3) Inside-out reductions

¢ Definition: The following reduction is inside-out
» Corollary An infinite reduction contracts an infinite set of

Ry R R,
redex families. p-M=My—> M — My,--- —> M, =N

iff for all i and j, i <, then R; is not residual
« Corollary The first-order typed A-calculus strongly terminates. along p of some RJ’ inside R; in M;_.

Proof In first-order typed A-calculus:
* Theorem [ Inside-out completeness, 74]

(1)  residuals R" = (Ax.M")N’ of R = (Ax.M)N keep the Let M => N. Then M => P and N => P for some P.

same type of the function part

(2)  new redexes have lower type of their function part L

Finite and infinite reductions (3/3)

Proof (cont’d) Created redexes have lower type
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Exercices
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