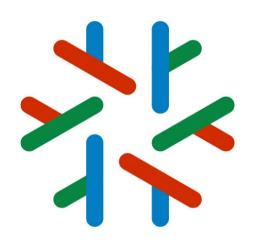
Reductions and Causality (III)



jean-jacques.levy@inria.fr

Tsinghua University, November 7, 2011

http://pauillac.inria.fr/~levy/courses/tsinghua/reductions

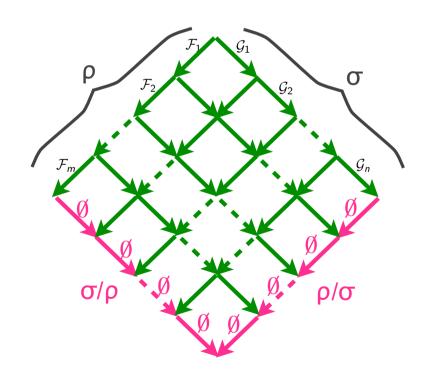
Plan

- properties of equivalence by permutations
- beyond lambda-calculus
- prefix ordering
- properties of prefix ordering
- the lattice of reductions
- canonical reductions

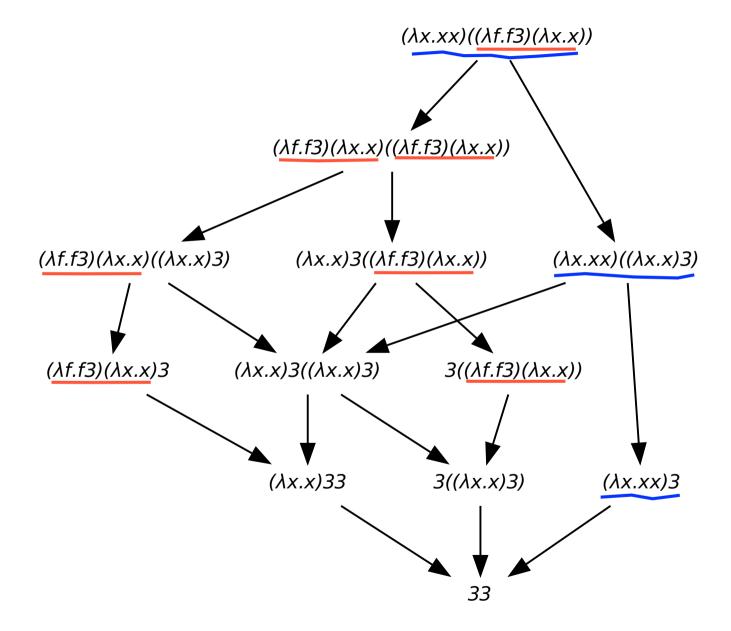
• Definition:

Let ρ and σ be 2 coinitial reductions. Then ρ is equivalent to σ by permutations, $\rho \simeq \sigma$, iff:

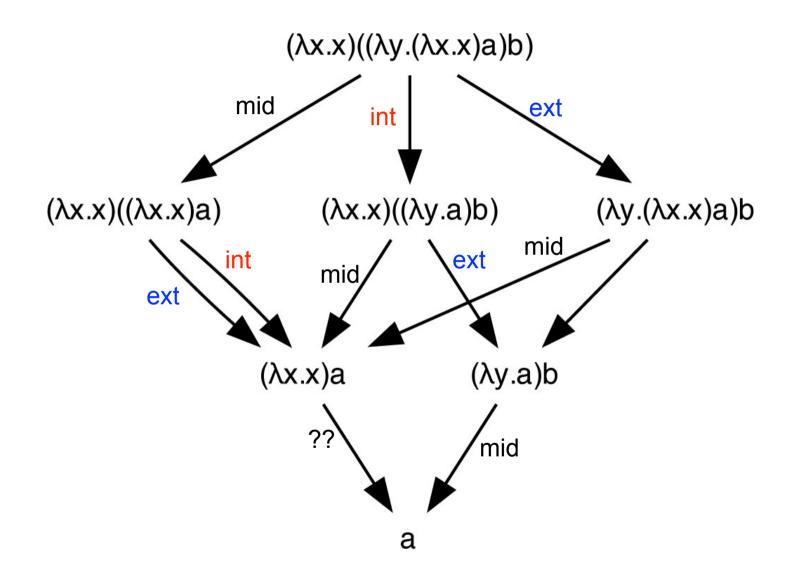
$$\rho/\sigma = \emptyset^m$$
 and $\sigma/\rho = \emptyset^n$



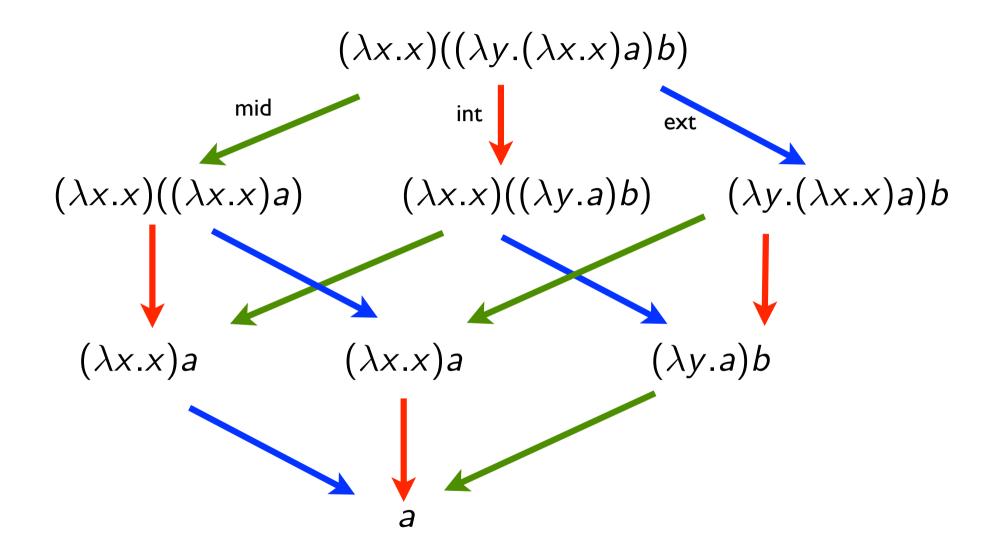
ullet Notice that $ho \simeq \sigma$ means that ho and σ are cofinal



• In this case, all coinitial&cofinal reductions are equivalent



• In this case, all coinitial&cofinal reductions are not equivalent



New reduction graph with equivalent reductions

Properties of perm. equivalence (1/3)

Proposition

- (a) $ho \simeq \sigma$ iff orall au, $au/
 ho = au/\sigma$
- (b) $\rho \sqcup \sigma \simeq \sigma \sqcup \rho$
- (c) $ho \simeq \sigma$ implies $ho/ au \simeq \sigma/ au$
- (d) $\rho \simeq \sigma$ iff τ ; $\rho \simeq \tau$; σ
- (e) $\rho \simeq \sigma$ implies ρ ; $\tau \simeq \sigma$; τ

Proof

(a) $\rho \simeq \sigma$ means $\sigma/\rho = \emptyset^n$. Therefore $\tau/\rho = (\tau/\rho)/(\sigma/\rho)$. That is $\tau/\rho = \tau/(\rho \sqcup \sigma)$. Similarly $\tau/\sigma = \tau/(\sigma \sqcup \rho)$. But cube lemma says $\tau/(\rho \sqcup \sigma) = \tau/(\sigma \sqcup \rho)$. Therefore $\tau/\rho = \tau/\sigma$.

Conversely take $\tau = \rho$ and $\tau = \sigma$.

Properties of perm. equivalence (2/3)

Proposition

- (a) $ho \simeq \sigma$ iff $\forall au$, $au/
 ho = au/\sigma$
- (b) $\rho \sqcup \sigma \simeq \sigma \sqcup \rho$
- (c) $\rho \simeq \sigma$ implies $\rho/\tau \simeq \sigma/\tau$
- (d) $\rho \simeq \sigma$ iff τ ; $\rho \simeq \tau$; σ
- (e) $\rho \simeq \sigma$ implies ρ ; $\tau \simeq \sigma$; τ

Proof

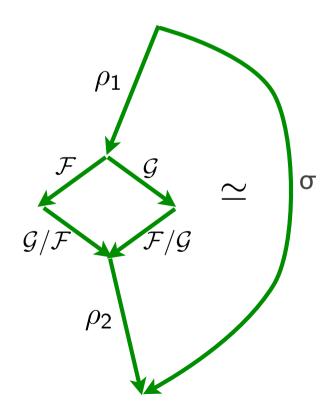
- (b) (d) (e) Obvious by definition of residual.
- (c) $(\rho/\tau)/(\sigma/\tau) = \rho/(\tau \sqcup \sigma) = \rho/(\sigma \sqcup \tau)$ = $(\rho/\sigma)/(\tau/\sigma) = \emptyset^m$ by (a) and (b).

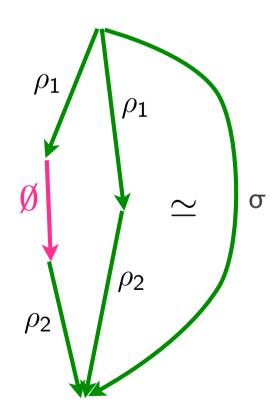
Properties of perm. equivalence (3/3)

• Proposition \simeq is the smallest congruence containing

$$\mathcal{F}$$
; $(\mathcal{G}/\mathcal{F})\simeq\mathcal{G}$; $(\mathcal{F}/\mathcal{G})$

$$0 \simeq \emptyset$$

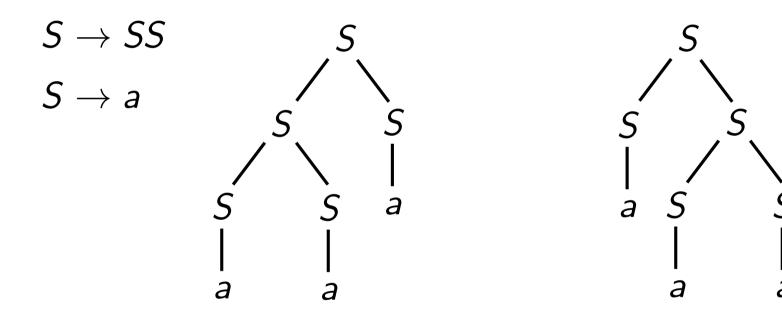




Beyond \(\lambda\)-calculus

Context-free languages

• permutations of derivations in contex-free languages



• each parse tree corresponds to an equivalence class of derivations

Term rewriting

- permutations of derivations are defined with critical pairs
- critical pairs make conflicts
- only 2nd definition of equivalence works for linear TRS
 [Boudol, 1982]

Process algebras

• similar to TRS [Boudol-Castellani, 1988]

Weak memory models

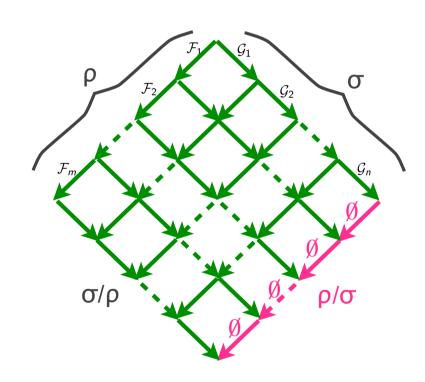
• speculative computations [Boudol-Petri, 2009]

Prefix ordering

Prefix ordering (1/4)

• Definition:

Let ρ and σ be 2 coinitial reductions. Then ρ is prefix of σ by permutations, $\rho \sqsubseteq \sigma$, iff $\rho/\sigma = \emptyset^m$

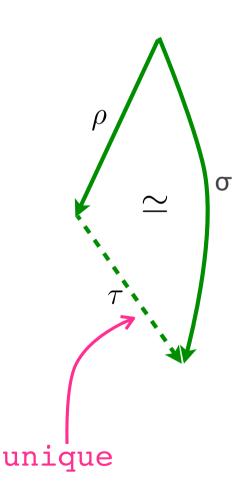


• Notice that $\rho \sqsubseteq \sigma$ means that $\rho \sqcup \sigma \simeq \sigma$

Properties of prefix ordering

Proposition

- (a) $\rho \sqsubseteq \sigma \sqsubseteq \rho$ iff $\rho \simeq \sigma$
- (b) \sqsubseteq is an ordering relation
- (c) $\rho \simeq \rho' \sqsubseteq \sigma' \simeq \sigma$ implies $\rho \sqsubseteq \sigma$
- (d) $\rho \sqsubseteq \sigma \text{ iff } \tau; \rho \sqsubseteq \tau; \sigma$
- (e) $\rho \sqsubseteq \sigma$ implies $\rho/\tau \sqsubseteq \sigma/\tau$
- (f) $\rho \sqsubseteq \sigma$ iff $\exists \tau, \ \rho; \tau \simeq \sigma$
- (g) $\rho \sqsubseteq \sigma \text{ iff } \rho \sqcup \sigma \simeq \sigma$



Properties of prefix ordering

unique

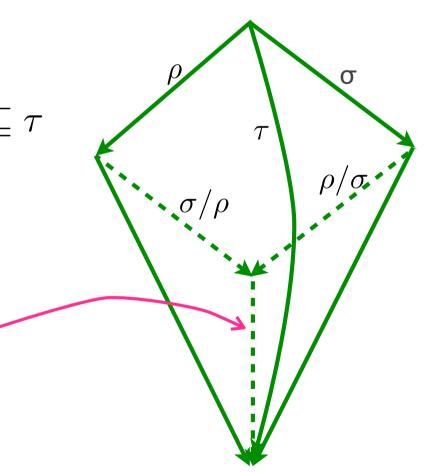
Proposition [lattice of reductions]

$$\rho \sqsubseteq \rho \sqcup \sigma$$

$$\sigma \sqsubseteq \rho \sqcup \sigma$$

$$\rho \sqsubseteq \tau, \ \sigma \sqsubseteq \tau \ \text{implies} \ \rho \sqcup \sigma \sqsubseteq \tau$$

also named a push-out



Properties of prefix ordering

Proposition [lattice of reductions]

$$\rho \sqsubseteq \rho \sqcup \sigma$$

$$\sigma \sqsubseteq \rho \sqcup \sigma$$

$$\rho \sqsubseteq \tau, \ \sigma \sqsubseteq \tau \ \text{implies} \ \rho \sqcup \sigma \sqsubseteq \tau$$

Proof First two, already proved.

Let
$$\rho \sqsubseteq \tau$$
, $\sigma \sqsubseteq \tau$. Then $(\rho \sqcup \sigma)/\tau$
 $= (\rho/\tau); ((\sigma/\rho)/(\tau/\rho))$
 $= \emptyset^m; \sigma/(\rho \sqcup \tau)$
 $= \emptyset^m; \sigma/(\tau \sqcup \rho)$
 $= \emptyset^m; (\sigma/\tau)/...$
 $= \emptyset^m; \emptyset^n/... = \emptyset^m; \emptyset^n$

Standard reductions

Standard reductions (1/6)

• When R is a single redex, we write freely R/\mathcal{F} for $\{R\}/\mathcal{F}$ or \mathcal{F}/R for $\mathcal{F}/\{R\}$.

• Proposition:

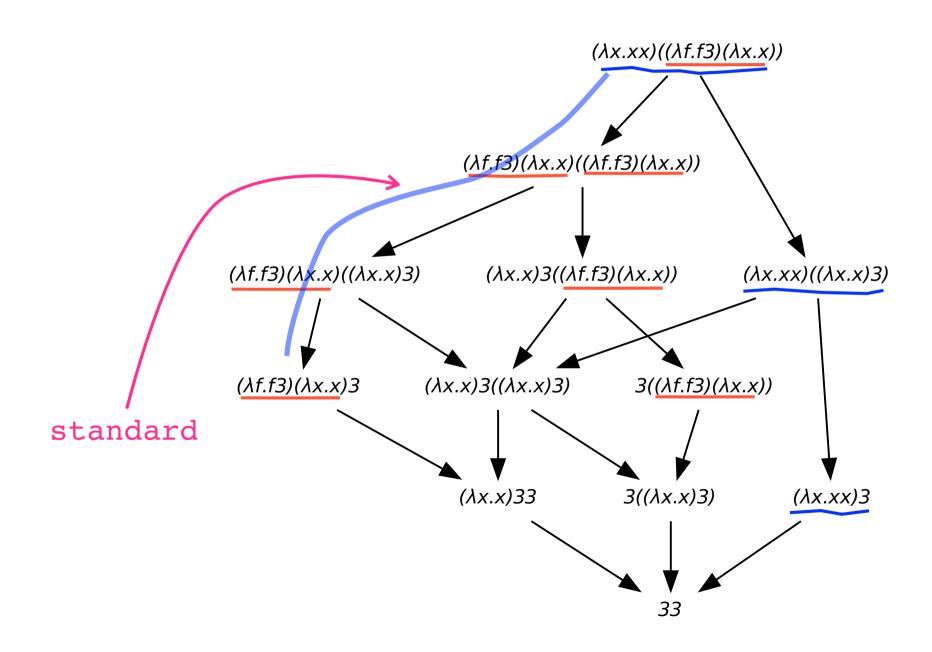
Let R be a redex to the left of \mathcal{F} . Then R/\mathcal{F} is a singleton.

• Definition: The following reduction is standard

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all i and j, i < j, then R_j is not residual along ρ of some R'_j to the left of R_i in M_{i-1} .

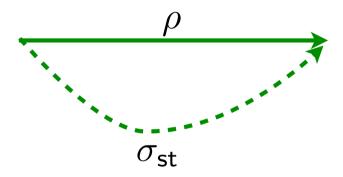
Standard reductions (2/6)



Standard reductions (3/6)

• Standardization thm [Curry 50]

Let
$$M \stackrel{*}{\longrightarrow} N$$
. Then $M \stackrel{*}{\Longrightarrow} N$.



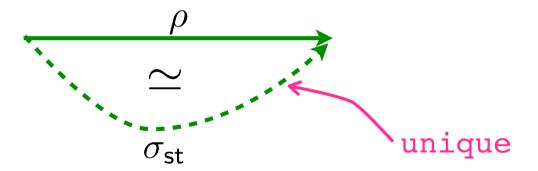
Any reduction can be performed outside-in and left-to-right.

Standard reductions (4/6)

Standardization thm +

Any ρ has a unique σ standard equivalent by permutations.

$$\forall \rho$$
, $\exists ! \sigma_{\mathsf{st}}$, $\rho \simeq \sigma_{\mathsf{st}}$



Standard reductions are canonical representatives in their equivalence class by permutations.

Standard reductions (5/6)

• Lemma (left-to-right creation) [O'Donnell] Let R be redex to the left of redex S in M. Let $M \xrightarrow{S} N$. If T' is redex in N to the left of the residual R' of R, T' is residual of a redex T in M.

$$M = \cdots \underbrace{((\lambda x. \cdots S \cdots)B)}_{R} \cdots \longrightarrow \underbrace{((\lambda x. \cdots S' \cdots)B)}_{C} \cdots = N$$

$$M = \cdots \underbrace{((\lambda x. A)(\cdots S \cdots))}_{R} \cdots \longrightarrow \underbrace{((\lambda x. A)(\cdots S' \cdots)B)}_{C} \cdots = N$$

$$M = \cdots ((\lambda x.A)B) \cdots S \cdots \longrightarrow \cdots ((\lambda x.A)B) \cdots S' \cdots = N$$

One cannot create a new redex across another left one.

Standard reductions (6/6)

• Lemma If R to the left of R_1 and ρ is standard reduction starting with contracting R_1 . Then $R/\rho \neq \emptyset$.

Proof: application of previous lemma.

• Proof of unicity of standard reduction in each equivalence class Let ρ and σ be standard and $\rho \simeq \sigma$. They start with same reduction and differ at some point. Say that ρ is more to the left than σ . Then at that point redex R contracted by ρ has (unique) residual by σ . Therefore $\rho \not\simeq \sigma$.

Exercices

- Show all standard reductions in the 2 reduction graphs of beginning of this class.
- Show that all reductions to normal form are equivalent.
- Show that there is a single standard reduction to normal form. What is that reduction ?
- Find an example where there is no greatest lower bound of 2 reductions. (Hint: you should use K-terms)
- Show that there is inf-lattice of reductions in λ I-calculus.
- Draw lattice of reductions of $\Delta\Delta$ ($\Delta = \lambda x.xx$).
- What are standard reductions in derivations of context-free languages?