Reductions and Causality (II)

jean-jacques.levy@inria.fr

Tsinghua University, November 4, 2011

http://pauillac.inria.fr/~levy/courses/tsinghua/reductions

Exercice

Exercice

Plan

- parallel reduction steps
- cube lemma
- residuals of reductions
- equivalence by permutations
- beyond the λ-calculus

Parallel reduction steps

Parallel reductions (1/3)

permutation of reductions has to cope with copies of redexes

- in fact, a parallel reduction $Ia(Ia) \not\longrightarrow aa$
- in λ-calculus, need to define parallel reductions for nested sets

Parallel reductions (2/3)

the axiomatic way (à la Martin-Löf)

• example:

$$(\lambda x.lx)(ly) \not\longleftrightarrow (\lambda x.x)y$$

 $(\lambda x.(\lambda y.yy)x)(la) \not\longleftrightarrow la(la)$
 $(\lambda x.(\lambda y.yy)x)(la) \not\longleftrightarrow (\lambda y.yy)a$

• it's an *inside-out* parallel reduction

Parallel reductions (3/3)

• Parallel moves lemma [Curry 50]

If $M \not\longrightarrow N$ and $M \not\longrightarrow P$, then $N \not\longrightarrow Q$ and $P \not\longrightarrow Q$ for some Q.

• Enough to prove Church Rosser thm since → ⊂ //→ ⊂ → [Tait--Martin Löf 60?]

// Reductions of set of redexes (1/4)

Goal: parallel reduction of a given set of redexes

$$M, N ::= x \mid \lambda x.M \mid MN \mid (\lambda x.M)^a N$$

 $a, b, c, ... ::= redex labels$

$$(\lambda x.M)N \longrightarrow M\{x := N\}$$
$$(\lambda x.M)^a N \longrightarrow M\{x := N\}$$

Substitution as before with add-on:

$$((\lambda y.P)^{a}Q)\{x := N\} = (\lambda y.P\{x := N\})^{a}Q\{x := N\}$$

// Reductions of set of redexes (2/4)

• let \mathcal{F} be a set of redex labels in M

$$[Var Axiom] x \xrightarrow{\mathcal{F}} x$$

$$[Const Axiom] c \xrightarrow{\mathcal{F}} c$$

$$[App Rule] \xrightarrow{M} \xrightarrow{\mathcal{F}} M' \xrightarrow{N} \xrightarrow{\mathcal{F}} N'$$

$$MN \xrightarrow{\mathcal{F}} M'N'$$

$$[Abs Rule] \xrightarrow{M} \xrightarrow{\mathcal{F}} M'$$

$$\lambda x.M \xrightarrow{\mathcal{F}} \lambda x.M'$$

$$[Abs Rule] \xrightarrow{M} \xrightarrow{\mathcal{F}} M'$$

$$\lambda x.M \xrightarrow{\mathcal{F}} \lambda x.M'$$

$$[Redex'] \xrightarrow{M} \xrightarrow{\mathcal{F}} M' \xrightarrow{N} \xrightarrow{\mathcal{F}} N' \xrightarrow{a \notin \mathcal{F}} (\lambda x.M')^{a}N'$$

• let \mathcal{F} , \mathcal{G} be set of redexes in M and let $M \xrightarrow{\mathcal{F}} N$, then the set \mathcal{G}/\mathcal{F} of residuals of \mathcal{G} by \mathcal{F} is the set of \mathcal{G} redexes in N.

// Reductions of set of redexes (3/4)

• Parallel moves lemma+ [Curry 50]

If $M \xrightarrow{\mathcal{F}} N$ and $M \xrightarrow{\mathcal{G}} P$, then $N \xrightarrow{\mathcal{G}/\mathcal{F}} Q$ and $P \xrightarrow{\mathcal{F}/\mathcal{G}} Q$ for some Q.

// Reductions of set of redexes (4/4)

• Parallel moves lemma++ [Curry 50] The Cube Lemma

• Then $(\mathcal{H}/\mathcal{F})/(\mathcal{G}/\mathcal{F})=(\mathcal{H}/\mathcal{G})/(\mathcal{F}/\mathcal{G})$

Residuals of reductions

Parallel reductions

- Redex occurences and labels
 - **Let** ||U|| = M where labels in U are erased (forgetful functor)
 - Then $M \xrightarrow{\mathcal{F}} N$ iff $U \xrightarrow{\mathcal{F}} N$ for some labeled U and M = ||U||

Consider reductions where each step is parallel

$$\rho: M = M_0 \xrightarrow{\mathcal{F}_1} M_1 \xrightarrow{\mathcal{F}_2} M_2 \cdots \xrightarrow{\mathcal{F}_n} M_n = N$$

We also write

$$\rho = 0$$
 when $n = 0$

$$\rho = \mathcal{F}_1; \mathcal{F}_2; \cdots \mathcal{F}_n$$
 when M clear from context

Residual of reductions (1/4)

Residual of reductions (2/4)

Definition [JJ 76]

$$ho/0=
ho$$

$$ho/(\sigma;\tau)=(
ho/\sigma)/ au$$

$$(
ho;\sigma)/ au=(
ho/ au);(\sigma/(au/
ho))$$
 \mathcal{F}/\mathcal{G} already defined

Notation

$$\rho \sqcup \sigma = \rho$$
; (σ/ρ)

• Proposition [Parallel Moves +]: $\rho \sqcup \sigma$ and $\sigma \sqcup \rho$ are cofinal

Residual of reductions (3/4)

Residual of reductions (4/4)

• Proposition [Cube Lemma ++]:

$$\tau/(\rho \sqcup \sigma) = \tau/(\sigma \sqcup \rho)$$

Equivalence by permutations

Equivalence by permutations (1/4)

Definition:

Let ρ and σ be 2 coinitial reductions. Then ρ is equivalent to σ by permutations, $\rho \simeq \sigma$, iff:

$$\rho/\sigma = \emptyset^m$$
 and $\sigma/\rho = \emptyset^n$

ullet Notice that $ho \simeq \sigma$ means that ho and σ are cofinal

Equivalence by permutations (2/4)

Equivalence by permutations (3/4)

• Notice that $\rho \not\simeq \sigma$ while ρ and σ are coinitial and cofinal

Equivalence by permutations (4/4)

- Same with $0 \not\simeq \rho$ when $\rho : \Delta\Delta \longrightarrow \Delta\Delta$ $\Delta = \lambda x.xx$
- Exercice 1: Give other examples of non-equivalent reductions between same terms
- Exercice 2: Show following equalities

$$ho/0 =
ho \qquad \emptyset^n/\rho = \emptyset^n$$
 $0/\rho = 0 \qquad 0 \simeq \emptyset^n$
 $\rho/\emptyset^n = \rho \qquad \rho/\rho = \emptyset^n$

• Exercice 3: Show that \simeq is an equivalence relation.

Properties of equivalent reductions

Proposition

$$ho \simeq \sigma \quad \text{iff} \quad \forall \tau, \ \tau/\rho = \tau/\sigma$$
 $ho \simeq \sigma \quad \text{implies} \quad \rho/\tau \simeq \sigma/\tau$
 $ho \simeq \sigma \quad \text{iff} \quad \tau; \rho \simeq \tau; \sigma$
 $ho \simeq \sigma \quad \text{implies} \quad \rho; \tau \simeq \sigma; \tau$
 $ho \sqcup \sigma \simeq \sigma \sqcup \rho$

Proof

As $\rho \simeq \sigma$, one has $\sigma/\rho = \emptyset^n$. Therefore $\tau/\rho = (\tau/\rho)/(\sigma/\rho)$. That is $\tau/\rho = \tau/(\rho \sqcup \sigma)$. Similarly as $\sigma \simeq \rho$, one gets $\tau/\sigma = \tau/(\sigma \sqcup \rho)$. But cube lemma says $\tau/(\rho \sqcup \sigma) = \tau/(\sigma \sqcup \rho)$. Therefore $\tau/\rho = \tau/\sigma$.

Properties of equivalent reductions

ullet Proposition \simeq is the smallest congruence containing

$$\mathcal{F}$$
; $(\mathcal{G}/\mathcal{F})\simeq\mathcal{G}$; $(\mathcal{F}/\mathcal{G})$

$$0\simeq\emptyset$$

Beyond \(\lambda\)-calculus

Context-free languages

• permutations of derivations in contex-free languages

• each parse tree corresponds to an equivalence class

Term rewriting

- permutations of derivations are defined with critical pairs
- critical pairs make conflicts
- only 2nd definition of equivalence works [Boudol, 1982]

Process algebras

• similar to TRS [Boudol-Castellani, 1982]

Exercices

- Exercice 4: Complete all proofs of propositions
- Exercice 5: Show equivalent reductions in

