
Reductions and Causality (1)

jean-jacques.levy@inria.fr
Tsinghua University,
October 31, 2011

http://pauillac.inria.fr/~levy/courses/tsinghua/reductions

Plan

• independent statements

• control flow

• relaxed control flow

• data dependencies

• parallel processes

• functional languages and multi-threading

Weak memory
models

Intel whitepaper (1/3)

Demo1

Intel whitepaper (2/3)

Demo2

Intel whitepaper (3/3)

Demo3

Causality

• Computations steps may be independent

• Others are causally related

• Refined to memory accesses

• Theory of causality ?
- reductions steps in the λ-calculus (this course)

- event structures (processes)

- true concurrency

- slicing (program analysis)

- etc.

Intel 64 revisited (1/4)

• In SC (sequentially consistent), program order is strictly respected

Intel 64 revisited (2/4)

• Dependency relations

rf R is read from relationW

po B is program orderA

ws W is write serialization (acyclic) relationW

frR W is from read relation when there is W’ such that

rf R andW’ ws WW’

Intel 64 revisited (3/4)

• In TSO, W followed by R can be relaxed within program order

Intel 64 revisited (4/4)

• In TSO, W followed by R is relaxed

• In PSO, W followed by W to distinct location is relaxed

WMM

WMM and optimization (1/2)

WMM and optimization (2/2)

[Vafeiadis, Zappa Nardelli] SAS/2010

Parallel computations

Pure functional languages (1/2)

• Evaluations of subexpressions are independent

MM1M2 · · ·Mn

• Evaluations of M and Mi can be done in parallel

• No longer true if effects within some of Mi

- In Haskell, monads are the only effect-ful subterms

- monads may call pure functional terms

- pure functional terms cannot call monads

- effects are visible in types

• In other languages, static analysis necessary to detect effects

Pure functional languages (2/2)

• Inside functional languages, there exists dependencies

• Evaluations in M has to be done before toplevel redex

M N (�x .P)Q P{x := Q}

I = �x .xwhere

I I (Ia) I (Ia) Ia

CCS or π-calculus (1/3)

• Communications may be independent

• but other transitions may be causally related

a 0 | b 1 | a(x).P | b(x).Q

a 0 | a(x).P | Q{x := 1}
b 1 | P{x := 0} | b(x).Q

P{x := 0} | Q{x := 1}

[Jean Krivine] (reversible CCS)

CCS or π-calculus (2/3)

• example of causally related transitions

a 0 | a(x).b(y).P | b 1

b(y).P{x := 0} | b 1

P{x := 0, y := 1}

• causality in process algebras == event structures or Petri nets

• causality in process algebras == event structures or Petri nets

• « true concurrency »
[Winskel, Boudol-Castellani]

CCS or π-calculus (3/3)

• possible conflicts

• causality in process algebras == event structures or Petri nets

a 0 | b 1 | a(x).P | a(y).Q

b 1 | P{x := 0} | a(y).Q b 1 | a(x).P | Q{y := 0}

#

Security

Non interference

• Private and Public expressions

 when P is public and M, N are private

C [M] P C [N] P

• Computations in M do not interfer on result P

[Volpano-Smith, Pottier-Simonet, Boudol]

• ... information flow

λ-calculus

Independent reductions (1/3)

• In the λ-calculus, there are no conflicts (Church-Rosser thm)

M

N P

Q

• Need closer look at reduction steps

 and notice when they can be permuted

Independent reductions (2/3)

• permutation of reduction steps (nested redexes)

• permutation of reduction steps (disjoint redexes)

(�x .x(Ix))(Ia) (�x .xx)(Ia)

(�x .x(Ix))a (�x .xx)a

(�x .x(Ix))(Ia) Ia (I (Ia))

(�x .xx)(Ia) Ia (Ia)

Independent reductions (3/3)

• problem: copies of redexes

(�x .xx)(Ia) Ia (Ia) a (Ia)

(�x .xx)a a a

• how to define easily equivalence by permutations ?

Exercices



















Exercice
• Show reductions equivalent by permutations in following reduction
graph





 































• Show reductions equivalent by permutations in following reduction
graph

• Show reductions equivalent by permutations in following reduction
graph

