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Plan

e Bohm trees -- reminders

* Morris extensional equivalence
e Bohm trees and n-rule

* Observational equivalences

e Relation with Scott’'s models



Bohm tree semantics - reminders

* Theorem [continuity] For all b € N such that b C C[M], then b C C[4]

for some a € N such that a C M.
* Theorem [monotony] M C N implies C[M] C C[N]
e Theorem [A-theory] M = N implies C[M] = C[N]

Proofs: easy consequences of previous proofs.
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Bohm tree and n-rule

Functional extensionality has not been considered since we can have:

MP = NP for all P, but M £ N.
(Take M = x and N = \y.xy)
We need take n-rule into account ! How to mix n-rule and Bohm tree construction ?

We take for granted that =, and >3, are confluent.

Moreover ==, strongly normalizes.

The prefix ordering between approximants must be extended. For instance:

AX.yQ < Axyx =, ¥

x2 =, Ay.xQy < Ay.xyy



Finite approximants

We consider the set A€ of n-normal forms of finite approximants with following
relation:

a<¢b iff a(SU=,)"b

Lemma : We have following commutation properties:

—>, < C < —>y

S(_n C (_né

Corollary: a<¢b iff a<~,a <b =, b

Examples:

Ay xQ < Ay.xy =, x
xQ €=, \y.xQy < Ay.xyy



Extensional Bohm trees

 Definition : Let w®(M) be the n-normal form of w(M).

e Definition : The extensional Bohm tree BT(M) of M is defined by:

BTS(M) = {ac N¢ | a <¢ w(N), M > N}

e Definition : Extensional Bohm tree semantics
M Ce N iff BT°(M) C BT°(N)
M =¢ N iff BT°(M) = BT(N)



Extensional Bohm trees

e Theorem : C¢ is a monotonic semantics and =€ forms a A-theory.

* Theorem [Hyland, 19735]:

M C¢ N iff for all C[], C[M] = n.f. implies C[N] == n.f.

)

J.Morris extensional equivalence

MIT-1968
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Finite Bohm trees revisited

* We just added n-rule to the standard Bohm tree construction with completion by
ideals.

 However, we forgot slight difficulty: now, thanks to n-rule, finite Bohm tree now
dominates an infinite number of other finite Bohm trees. See:

Ao = X lloo:{aENe\agex}
Uz, 1, €= new point
l added by ideal completion
az = )\Xl.X(>\X2.X1()\X3.X2Q)) I3 = {a c Ne© ‘ a <¢ 33}
dr = )\Xl.X(AXQ.Xlﬂ) I, = {a c N¢ ‘ a <°¢ 32}
a; = dxg.xQ2 h={acN¢ | a<®a}

ao = {2 lh = {82}



Finite Bohm trees revisited

* There are two ways of completing finite Bohm trees.
1- standard completion by ideals (what we did)

2- completion with closed ideals (does not add new limit point)

* \We define the closure of directed sets as being the set with its already
existing limit in \N©

BTS(M) = cl(BTZ(M))

e \We therefore have:

[ =5 J where

J =Y (Axy.x(fy))

e and normal forms are no longer isolated points.



Finite Bohm trees revisited

* The equality between [ and J is not so unnatural since one may emulate infinite n-
expansion with the B-rule:

| = Ax.x n  AXX].XX]

n AXX1.X(AX2.x1X2)

n AXX1.X(Ax2.x1(AX3.%2X3))

J=Y(Max(fx)) = Ixa.x(Ix)
=3 )\XX]_.X()\X2-X1(JX2))
=3 )\XXl.X()\X2-X1()\X3'X2(JX3)))

e same phenomenon as for these two versions of identity on natural numbers:
I(n) < n

J(n) < ifn=0thenlelsel+ J(n—1) |



Bohm trees and Scott’s models

* We have following correspondances:
1- MCEN iff MCp_ N (Scott’'s model)

2- MCN iff MCyo N (Plotkin’s model)
e One can also show that:
3- MCe" N iff MCp, N (Scott’s model)

where C°T is Bohm tree construction from «*-, < ordering on N.

* finally, one may order Bohm trees with symmetrical:

4- MrCe N

where C¢~ is Bohm tree construction from <-=», ordering on N°.



Observational equivalences

* To conclude we have the following results:

1-

2-

M C¢ N iff for all contexts C[],

M C¢ N iff for all contexts C[],

Cl

Cl

M|

M|

—> hnf implies C[N] => hnf

—> nf implies C[N] —=> nf

* Making observational equivalences with other Bohm tree semantics is more difficult

since one has to fight with n-equality. Take for instance Ax.xx and Ax.x(\y.xy)
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Exercices

1- Show that if M has no hnf, then M is totally undefined.
2- Show QM = Q and \x.QQ = Q. Show that M —_, N, then M = N.

3- Find M and N such that MP = NP for all P, but M #Z N. (Meaning that = is
not extensional)

4- Show M # Ax.Mx when x & var(M). What if M = Ax.M; ?

5- Let Yo=Y, Yoi1 = Ya(Axy.y(xy)). Show that Y =Y, for all n. However all Y,
are pairwise non interconvertible.

6 If M < Pand N < P (M and N are prefix compatible), then BT(M M N) =
BT(M)NBT(N). (Thus BT is stable in Berry's sense, 1978). What if not com-
patible 7



Exercices

7- [Barendregt 1971]
A closed expression M (i.e. var(M) = ()) is solvable iff:

VP, 3Ny, Na, ... N, such that MN{ N, --- N, =5 P
(in short:
vP, 3N, MN =5 P )
Show that for every closed term M, the following are equivalent:
1. M has a hnf
U HKI, MN has a normal form
3. 3N, MN =4 |

4. M is solvable

8- [Barendregt 1974]

Show that, in the Al-calculus, a term M is solvable iff it has a normal form.



Exercices

9- Let R be a preorder on N (reflexive + transitive) compatible with its structure:
ai R by,...a, R b, implies xaias---a,
a’R b implies Ax.a R Ax.b
Let MCxr N iff YVae BT(M), 3be BT(N), aR b
Show that when M is a closed term, one has:

VP, MP Cx NP iff VC[], C[M]Cx C[N]

10- (cont'd 1) Let M R N be “if M has a normal form, then N has a normal form”
Give examples of M and N such that M Cr N but M IZ N.

11- (cont'd 2) Let M R N be “if M has a hnf, then N has a hnf"
Give examples of M and N such that M Cr N but M Z N.

12- (cont'd 2) Let M R N be “if M has a hnf, then N has a similar hnf"

Give examples of M and N such that M Cr N but M Z N. (Hint: consider
M = Ax.xx and N = Ax.x(Ay.xy)) [Compare with Hyland 1975])



