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Head normal forms

e Atermis in head normal form (hnf) iff it has the following form:

AX1 X0+ X XM{ My - - - M, with m>0and n> 0

N’ head variable

(x may be free or bound by one of the x;)

e Aterm not in head normal form is of following form:

)\X1X2 Xm )\X M)NNl N2

N’ head redex

 Head normal forms appeared in Wadsworth’s phD [1973].




Plan

* Finite Bohm trees

* |nfinite Bohm trees

* Monotony and Continuity theorems
* Inside-out completeness

* Generalized Finite Developments

e Another labeled calculus
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Bohm trees

* |ntuitively:

If M has no hnf

BT(M) =Q

|fM'—*'))\X1X2'-°Xm.X Ml M2 Mn

BT(M) = Ax1x2 « -+ Xpm.X

BT (M) BT (M,) BT (M,)




Bohm trees

BT(AA) = Q BT(Y)=\.f = BT(Y')
f'
BT (Ix(Ix)(Ix)) = x f
BT (Ix(AA)(Ix)) = /x\ Y = M. (Ax.f(xx))(Ax.f(xx))
) Y = (Axy.y(oy))(Axy.y (xy))

BT (Ix(Ix)(AA)) = x
<



Finite Bohm trees

e Afinite approximant is any member of the following set of terms:

S — ()

| AX{Xp+* Xm.Xaia2-++a, (m>0,n2>0)

* examples of finite approximants:

x€22

xx (2

x§2x
Axy . xy(x€2)
Axy.x(Az.yQ)

e we call NV the set of finite approximants



Finite Bohm trees

* Finite approximants can be ordered by following prefix ordering:

) <a
di = bl, 2h) < bz, ... dp < bn implies

AX1Xo *+* Xm.Xa1d2 +++ Ap < AX1X2 ** * X Xb1bo - - - b,

e examples:

x€2Q) < xxf
x2Q < x€2x

Axy.x€2 < Axy.xy

e thus a < b iff several £2's in a are replaced by finite approximants in b.



Finite Bohm trees

e wW(M) is direct approximation of M. It is obtained by replacing all redexes in M by
constant QQ and applying exhaustively the two Q-rules:

QM — Q
Ax.QQ —» Q)

e examples of direct approximation:

-----------------
-- ~
L 4

T — > Q

L4
L4
l
\
A\
A\
.
.
.
A
A
1

x(lx)(lx) Ix x(Ix) IX(IX)X‘ x§2€2
XX(IX) X(Ix)x . /XXX_‘ x x x Q x
\ XXlX \ /
X X X

A-terms finite approximants



Finite Bohm trees

e Lemma 1:

w(M) = Q iff M is not in hnf.

W(Ax1x0 -+« X XMy My - - - M) = Axyxo -« - - X X(W(My) ) (w(M5)) - - - (w(M,))

e Lemma2: M — N implies w(M) < w(N)

e Lemma 3: The set NV of finite approximants is a conditional lattice with <.

e Definition: The set A(M) of direct approximants of M is defined as:

AM) = {w(N) | M > N}

e Lemma 4: The set A(M) is a sublattice of A/ with same lub and glb.

Proof: easy application of Church-Rosser + standardization.



Bohm trees

e Definition: The Bohm tree of M is the set of prefixes of its direct approximants:

BT(M)={aeN | a<b, be AM)}

* |n the terminology of partial orders and lattices, Bohm trees are ideals. Meaning
they are directed sets and closed downwards. Namely:

directed sets: Va,b € BT(M), dc e BT(M), a<c A b<c.

ideals: Vb € BT(M), Vae N, a<b = ac BT(M).

e In fact, we made a completion by ideals. Take N = {A| AC N, Ais an ideal}
Then (N, <) can be completed as (N, C).

* Thus Bohm trees may be infinite and they are defined by the set of all their finite
prefixes.



Bohm trees

e Examples:
1- BT(AA) = {Q} =BT(AAA) =BT(AAM)
2- BT((Ax.xxx)(Ax.xxx)) = BT(YK) = {Q}
- BT(M) = {Q} if M has no hnf
- BT(1) ={Q, 1}
- BT(K) ={Q, K}
- BT(Ix(Ix)(Ix)) = {€2, xQ2€2, xx€2, x{2x, xxx}
- BT(Y) = {Q A .FQ AN F(FQ), ... Af.f"(Q), ...}
- BT(Y') = {Q A FQAF(FQ), ... Af. (), ...}

0 ~N OO O A~ O



ree semantics
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Bohm tree semantics

Definition 1: let the Bohm tree semantics be defined by:
M =gt N iff BT(M)=BT(N)

Definition 2: we also consider Bohm tree ordering defined by:

M Cgr N iff BT(M) C BT(N)

When clear from context, we just write = for =g7 and C for Cpgr.

New goal: is Bohm tree semantics a (consistent) A-theory ?

We want to show that:

M —=> N implies M =N

M C N implies C[M]C C[N]



Bohm tree semantics

* Proposition1: M <> N implies M =N

Proof: First BT(N) C BT(M), since any approximant of N is one of M.
Conversely, take a in BT(M). We have a < b = w(M’) where M = M’.

By Church-Rosser, there is N’ such that M’ > N’ and N <> N’. By lemma 1,
we have w(M') < w(N').

Therefore a < w(N') and a € BT(N).



Bohm tree semantics

* Let consider A-calculus (all set of A-terms) with extra constant QQ and
corresponding prefix ordering, 3-conversion and straitforward extension of
Bohm tree semantics.

e Lemmas:
1- M < N implies MC N

2- a € BT(M) implies a C BT(C[M])

Proof:

1- First notice that if M < N and M => M’, then N => N’ with M’ < N’ for some
N’. Therefore if a be in BT (M), there is M’ such that M = M’ and a < w(M’").
So there is N’ such that M = N’ and N = N’. So a < w(M’) < w(N’) by
lemma 2. Thus a is also in BT(N).

2- Let a be in BT(M). Consider b in BT(a). This means b < a.

We have a < w(P) with C[M] <> P. Thus a < P. By previous lemmas, we have
aC P = C[M]. Therefore a = C[M].



Bohm tree semantics

e Remember we considered completion (N, C) by ideals of (N, <).

* Therefore we have an upper limit US of any directed subset S in V.
(One has just to check that US is an ideal of NV)

* Proposition 2: M C N implies C[M] C C[N]
Proof: we already know by previous lemmas:

U{C[a] | a € BT(M)} ¢ U{C[b] | b€ BT(N)} ¢ BT(C[N])

Remains to show BT(C[M]) Cc U{Cl[a] | a € BT(M)} !
l.e. Vb€ BT(C[M]), da€ BT(M), be BT(Cla]) ??

|.e. continuity of context w.r.t Bohm tree semantics !!



Bohm tree semantics

* We want to show following property [Welch, 1974]

C[M]

“x * reduction not
\J ’ . .
A L contracting residuals
of redexes in N

First one show that for any A and set of redexes F in A. If A — A’ without
contracting a redex in F, then A{F = Q} — A{F’' .= Q} where F’ are the

residuals of F.

Then let b < w(P). One has b < w(P) < w(Q) and thus b C w(Q). Now let F’
are residuals of the set F of redexes in N within C[N], one has:

w(Q) C Q{F" :=Q} since w(Q) < Q{F' :=Q},



Bohm tree semantics

* We want to show following property [Welch, 1974]

C[M]
's
* S
) S
A 3
"
P. C[N]
“a 2 .
“x * reduction not
A 3 - n
\Qg' L contracting residuals

of redexes in N

Q{F .= Q} = C[N{F := Q}] since they are [-inconvertible,
C[N{F := Q}] = Cl[a] since C[N{F := Q}] =, C|a].

Therefore b © Cla], meaning b € BT(CJa]) since a is finite.



Bohm tree semantics

* Theorem [continuity] For all b € N such that b C C[M], then b C C[4]

for some a € N such that a C M.
* Theorem [monotony] M C N implies C[M] C C[N]
e Theorem [A-theory] M = N implies C[M] = C[N]

Proofs: easy consequences of previous proofs.



Exercices

1- Show that M C N for all N when M has no hnf.

2- [algebraicity] Show that a © M implies a € BT(M) for any a € V.

3
4

Show that if M has a normal form and M C N, then M and N have same normal form.

Show that if M has a hnf and M C N, then M and N have similar hnfs.

5. Show that Yf = Yf2.

6

Show that Y(fog) = f(Y(gof))

7 - Show that any monotonic semantics T’ such that Q T/ M for any M also satisfies
QM =" Q. How about A x.Q="Q ?

8- Show Y = Y’ for any Y’ such that Y'f = f(Y'f).



elopments
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Inside-out reductions

 How to prove the following property [Welch, 1974]

C[M]
‘/ Mo reduction not
. contracting residuals
P, fc[,\,] of redexes in N
\‘{ fx'&/
X 4
‘Q x

* |t can be derived from following simpler property.

Inside-out reduction

X



Inside-out reductions

e Definition:
Ri R> R

The reduction M = My —> My —> M, --. — M, = N is inside-out iff for
all i, j (0 < i <j < n), redex R; is not a residual of redex ij inside R; in M;_1.

* How to prove it ? Intuitively one just have to reorder redexes contracted in any given
reduction and get an inside-out reduction maybe getting further than initial reduction
because of symmetries forced by the inside-out order.

* Another remark is that if M strongly normalizes, one has just to consider any
innermost reduction until its normal form.



Another labeled calculus

* We add a natural number as exponent of any subterm.

 Lambda calculus with indexes a la Scott-Wadsworth-Hyland

MNP == x (variables)
| (Ax.M)" (M as function of x)
I (M N)" (M applied to N)

e Labeled reduction

(()\X.M)'H_l/V)p —> M{X = N[n]}[n][p] when n > 0

e Labeled substitution

x"{y = P} = x" X = XP
y"y = P} = Py (Ax.M)™ = (Ax.M)P
(Ax.M)"{y = P} = (Ax.M{y := P})" (MN)™ = (MN)P

(MN)"{y := P} = (M{y .= P} N{y := P})" where p = |m, n|



Another labeled calculus

 Examples:
(Ox.x¥)3y4) 12— )2
(MF.(FPa7)°) 2 ((Ax.x®)3) 12— (Ax.xP®)la)l — 4O

(AF(FOaT)5) (A x®)3) 12— ((Ax.x*%)0a7)

(Ax.(x")P) 2 (Ax.(x°x7)*))2 — (M. (x*x7)°) (Ax.(xx7)*)1)!

—>  (Ax.(xx7)°)0(Ax.(x"x7)°)1)0

)

new normal forms



Labeled calculus

e Theorem The labeled calculus is confluent.

* Theorem The labeled calculus is strongly normalizable (no infinite labeled
reductions).

e Lemma For any reduction p: M —=> N residuals keep degree of redexes

v

* Theorem 3 [inside-out completeness]: Any reduction can be overpassed
by an inside-out reduction.



Labeled calculus

e Proof

Let p : M —=> N be any reduction. It can be performed in the labeled calculus
by taking large enough exponents of subterms in M. Call U this labeled A\-term.

Then p: U —=> V with M and N being U and V stripped.

Take any innermost reduction starting from U. It reaches a normal form W since
the labeled calculus strongly normalizes.

This reduction is surely inside-out. If not, a redex inside the one contracted in a
previous step has a residual contracted later. Therefore this residual has non-null
degree, as redex of which he is residual. Contradicts the fact that p was a labeled
innermost reduction.

By Church-Rosser, V —=> W.

Let P be W stripped. Then M <> P and M —> P by an inside-out reduction.

* This proof seems magic. But it is an instance of a more general theorem:
Generalized finite developments, with the redex family idea (see [ JJL 78])
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Exercices

1- Show that if M has no hnf, then M is totally undefined.
2- Show QM = Q and \x.QQ = Q. Show that M —_, N, then M = N.

3- Find M and N such that MP = NP for all P, but M #Z N. (Meaning that = is
not extensional)

4- Show M # Ax.Mx when x & var(M). What if M = Ax.M; ?

5- Let Yo=Y, Yoi1 = Ya(Axy.y(xy)). Show that Y =Y, for all n. However all Y,
are pairwise non interconvertible.

6 If M < Pand N < P (M and N are prefix compatible), then BT(M M N) =
BT(M)NBT(N). (Thus BT is stable in Berry's sense, 1978). What if not com-
patible 7



Exercices

7- [Barendregt 1971]
A closed expression M (i.e. var(M) = ()) is solvable iff:

VP, 3Ny, Na, ... N, such that MN{ N, --- N, =5 P
(in short:
vP, 3N, MN =5 P )
Show that for every closed term M, the following are equivalent:
1. M has a hnf
U HKI, MN has a normal form
3. 3N, MN =4 |

4. M is solvable

8- [Barendregt 1974]

Show that, in the Al-calculus, a term M is solvable iff it has a normal form.



Exercices

9- Let R be a preorder on N (reflexive + transitive) compatible with its structure:
ai R by,...a, R b, implies xaias---a,
a’R b implies Ax.a R Ax.b
Let MCxr N iff YVae BT(M), 3be BT(N), aR b
Show that when M is a closed term, one has:

VP, MP Cx NP iff VC[], C[M]Cx C[N]

10- (cont'd 1) Let M R N be “if M has a normal form, then N has a normal form”
Give examples of M and N such that M Cr N but M IZ N.

11- (cont'd 2) Let M R N be “if M has a hnf, then N has a hnf"
Give examples of M and N such that M Cr N but M Z N.

12- (cont'd 2) Let M R N be “if M has a hnf, then N has a similar hnf"

Give examples of M and N such that M Cr N but M Z N. (Hint: consider
M = Ax.xx and N = Ax.x(Ay.xy)) [Compare with Hyland 1975])



Exercices

13- Lévy-Longo trees [JJL,1974;GL,1978]

Bohm tree construction can also be done by separating €2 and Ax.€2. Therefore
trees will be labeled as follows:

LLT()\X]_XQ % o Xn.XMl M2 ge ce Mn) — )\Xl

|
)\XQ

|
A,
|

X

BT (M) BT (M,) BT(M,)

Redo all theory with LL-trees. What is LL-tree of YK?



