Lambda-Calculus (111-4)

jean-jacques.levy@inria.fr

Tsinghua University,
September 14,2010



Plan

e Consistent lambda theories
e Extensional equivalences
* Congruences and semantics

e Bohm trees
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Consistency

 Alambda-theory is any congruence containing B-equality (interconvertiblity)

* More precisely, a lambda-theory satisfies the following axioms and rules:

X = X c=c (Ax.M)N = M{x := N}
M= M N=N M= M
MN = M’'N MN = MN’ AxX.M = Ax.M’

e Alambda-theory is consistent iff M = N for some M, N.

Exercice 1

1- Give examples of consistent theories.

2- Show that any lambda-theory containing x = y is inconsistent when x # y.

3- Same with | = K.



Extensional theories

* An extensional lambda-theory satisfies the n-rule.

X = X c=c (Ax.M)N = M{x := N}
M= M N=N M= M
MN = M'N MN = MN’ AxX.M = Ax.M’

AX.Mx =M (x & var(M))

Exercice 2

e Show previous definition is equivalent to following:

X = X c=c (Ax.M)N = M{x := N}
M=M N=N M=M
MN = M'N MN = MN’ AxX.M = \x. M’
VP. MP = NP

M=N



Contexts

A context C[]is a A-term with a hole. More precisely:

Cl[1 == 111 C[IN | MC[] | Ax.C[]
By C/M], we mean the A-term obtained by putting M in the hole.
A A-theory is any equivalence relation = satisfying:

M—>N = M=N

M=N = C[M]=C[N]



What are consistent A-theories ?

 Can we equate 2 different normal forms ?

* No by Bohm theorem!

* Theorem (Bohm)[1968] Let M and N be two normals forms such that M #, N.

Let x and y be two variables. There exists a context C|[] such that:

C[M] = x

C[N] =>y

Proof: not easy !!

e Corollary: any A-theory equating two different normal forms is inconsistent.

Proof: easy ! Do it as exercice.



What are consistent A-theories ?

 Can we equate all terms without normal forms ?
* No by a similar argument !

e Fact:
Take M = x(AA)l and N = x(AA)K.

Then M and N have no normal forms. Thus M = N and C[M] = C[N] in any
context C| |.

Take C[ ] = (Ax.[ ](KI)). Then C[M] => KI(AA) —> [. And C[N] =>
KI(AA)K > K.

Therefore | = C[M] = C[N] = K. Which is not consistent.

* Exercice Do similar argument with x/(AA) = x(AA)]
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Total undefinedness

e Aterm M s totally undefined iff for all context C[ ] whenever there exists N
such that C/N] has no normal form, then C[M] has no normal form.

 Thus M is totally undefined iff for all context C[ ] when C[M] has a normal form,
then C[N] has also a normal form for every N.

 Examples:

1- x(AA)/ is not totally undefined, since (Ax.x(AA)I)(KI) has a normal form, but
not (Ax.AA)(KI).

2- xI(AA) is not totally undefined, by similar argument.

3- AA is totally undefined. Proof is a bit complex. Intuitively, if C[AA] has a normal
form, one can reach it by the leftmost-outermost reduction. Never a residual of
AA is contracted in this reduction, since it would have been an endless leftmost-
outermost redex and this normal reduction would not get the normal form. Then
by plugging any N in place of AA in initial term, one get the same reduction and
ends with same normal form.



Head normal forms

* Fortunately, there is another (intensional) characterization of totally undefined
terms .

e Atermis in head normal form (hnf) iff it has the following form:

AX1 X0+ X . XM{ My -+ - M, with m>0and n>0

N’ head variable

(x may be free or bound by one of the x;)

e Aterm not in head normal form is of following form:

)\X1X2 *Xm- ()\X M)NNl N2

N’ head redex

 Head normal forms appeared in Wadsworth’s phD [1973].




Head normal forms

e Aterm M has a hnf if it reduces to a hnf.

e Definition: H and H’ are similar head normal forms iff
H = )\X1X2 b 'Xm.XMle $ie Mn

H = Axaxo - X . xM{M} - - - M/

(same external structure)

e Examples:
Axy . x(AA)x and Axy.xx(AA) are similar hnfs.

xy(AA)x and xxy(AA) are similar hnfs.

Axy . x(AA) and Axy.y(AA) are not similar.



Head normal forms

Lemma1: If M=> H in hnf and M = H' in hnf, then H and H’ are similar.

Lemma 2: If M has a hnf, it has a minimum hnf Hy such:

for every hnf H, we have M =» Hy = H.

where —» is head reduction.

Proofs: easy.

Lemma 3: If M has a hnf, then M is not totally undefined.

Proof: easy again.

Let M = Axix0 -+« Xpp. XM M5 - - - M,,. We may suppose x bound. If not, we add
an extra binder. So let x = x;. Consider Ny, Ny, ... N, be any term, but N; =
Ax1X2 - -+ Xp.y. Then MN{ N> --- N, => y in normal form, but AAN;N5 - -- N, has

no normal form.

We will later prove the opposite direction.



Exercices

1- Find Bohm context for xab and xac; for Axy.x and Axy.y; for x(xab)c and x(xad)c.

2- Bohm theorem can be generalized to n normal forms, pairwise distinct. Find Bohm
context for xab, xac, and xbc.

3- Give examples of terms without hnf

4- Give examples of terms with hnf, but without normal forms
5- Prove that any normal form is also a head normal form

Show that Y has a hnf.

&
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Bohm trees

e head normal forms are first level of the normal form of M

M -L) )\X1X2 L Xm.XMl M2 cee Mn.

e but we can iterate within M;, M, ... M, and get second level

My = Ay1ys -+ yp.yNiNo - - - N

M2 '—*) )\2122 Suaes Zr.ZP1P2 A PS

M, = Aviva - vy v@Q1 Qa - - - Qy

e andsoon...



Bohm trees

* this process gives the following tree-structure:

If M has no hnf

BT(M) =Q

|fM'—*))\X1X2'-°Xm.X Ml M2 Mn

BT(M) = Ax1x2 « -+ Xpm.X

BT (M) BT (M,) BT (M,)




Bohm trees

BT(AA) = Q BT(Y)=\.f = BT(Y')
f'
BT (Ix(Ix)(Ix)) = x f
BT (Ix(AA)(Ix)) = /x\ Y = M. (Ax.f(xx))(Ax.f(xx))
) Y = (Axy.y(oy))(Axy.y (xy))

BT (Ix(Ix)(AA)) = x
<



Need to define Bohm trees properly !



Finite Bohm trees

e Afinite approximant is any member of the following set of terms:

S — ()

| AX{Xp+* Xm.Xaia2-++a, (m>0,n2>0)

* examples of finite approximants:

x€22

xx (2

x§2x
Axy . xy(x€2)
Axy.x(Az.yQ)

e we call NV the set of finite approximants



Finite Bohm trees

* Finite approximants can be ordered by following prefix ordering:

) <a
di = bl, 2h) < bz, ... dp < bn implies

AX1Xo *+* Xm.Xa1d2 +++ Ap < AX1X2 ** * X Xb1bo - - - b,

e examples:

x€2Q) < xxf
x2Q < x€2x

Axy.x€2 < Axy.xy

e thus a < b iff several £2's in a are replaced by finite approximants in b.



Finite Bohm trees

e wW(M) is direct approximation of M. It is obtained by replacing all redexes in M by
constant QQ and applying exhaustively the two Q-rules:

QM — Q
Ax.QQ —» Q)

e examples of direct approximation:

-----------------
-- ~
L 4

T — > Q

L4
L4
l
\
A\
A\
.
.
.
A
A
1

x(lx)(lx) Ix x(Ix) IX(IX)X‘ x§2€2
XX(IX) X(Ix)x . /XXX_‘ x x x Q x
\ XXlX \ /
X X X

A-terms finite approximants



Finite Bohm trees

e Lemma 1:

w(M) = Q iff M is not in hnf.

W(Ax1x0 -+« X XMy My - - - M) = Axyxo -« - - X X(W(My) ) (w(M5)) - - - (w(M,))

e Lemma2: M — N implies w(M) < w(N)

e Lemma 3: The set NV of finite approximants is a conditional lattice with <.

e Definition: The set A(M) of direct approximants of M is defined as:

AM) = {w(N) | M > N}

e Lemma 4: The set A(M) is a sublattice of A/ with same lub and glb.

Proof: easy application of Church-Rosser + standardization.



Bohm trees

e Definition: The Bohm tree of M is the set of prefixes of its direct approximants:

BT(M)={aeN | a<b, be AM)}

* |n the terminology of partial orders and lattices, Bohm trees are ideals. Meaning
they are directed sets and closed downwards. Namely:

directed sets: Va,b € BT(M), dc e BT(M), a<c A b<c.

ideals: Vb € BT(M), Vae N, a<b = ac BT(M).

e In fact, we made a completion by ideals. Take N = {A| AC N, Ais an ideal}
Then (N, <) can be completed as (N, C).

* Thus Bohm trees may be infinite and they are defined by the set of all their finite
prefixes.



Bohm trees

e Examples:
1- BT(AA) = {Q} =BT(AAA) =BT(AAM)
2- BT((Ax.xxx)(Ax.xxx)) = BT(YK) = {Q}
- BT(M) = {Q} if M has no hnf
- BT(1) ={Q, 1}
- BT(K) ={Q, K}
- BT(Ix(Ix)(Ix)) = {€2, xQ2€2, xx€2, x{2x, xxx}
- BT(Y) = {Q A .FQ AN F(FQ), ... Af.f"(Q), ...}
- BT(Y') = {Q A FQAF(FQ), ... Af. (), ...}

0 ~N OO O A~ O
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Bohm tree semantics

Definition 1: let the Bohm tree semantics be defined by:
M =gt N iff BT(M)=BT(N)

Definition 2: we also consider Bohm tree ordering defined by:

M Cgr N iff BT(M) C BT(N)

When clear from context, we just write = for =g7 and C for Cpgr.

New goal: is Bohm tree semantics a (consistent) A-theory ?

We want to show that:

M —=> N implies M =N

M C N implies C[M]C C[N]



Bohm tree semantics

* Proposition1: M <> N implies M =N

Proof: First BT(N) C BT(M), since any approximant of N is one of M.
Conversely, take a in BT(M). We have a < b = w(M’) where M = M’.

By Church-Rosser, there is N’ such that M’ > N’ and N <> N’. By lemma 1,
we have w(M') < w(N').

Therefore a < w(N') and a € BT(N).
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Exercices

1-  What is the finest (consistent) A-theory.

2- Do carefully examples at slide just before Bohm tree semantics.

3- Give 2 A-terms without normal form, but with distinct finite Bohm trees

4- Give 2 A-terms with distinct infinite Bohm trees

5- Jacopini proved that /| = AA makes a consistent theory. Why this is not contra-
dictory with other results in this lecture?

6- Easy terms are terms which can be consistently equated to any other term.
A A is easy. Why again this is not contradictory with current chapter?



