Plan

- Normalization
- Strong normalization
- Standardization theorem
- Normalization strategies
Reminders

• Redexes may be tracked with residuals

• One can define parallel reduction $\rightarrow^{\mathcal{F}}$ of a given set \mathcal{F} of redexes by considering any of its finite developments.

• Lemma of parallel moves (other version of confluency lemma 1111)

• Cube lemma (consistency of residual relation w.r.t. finite developments)

• The labeled calculus was a technical tool to name redexes and prove Curry’s Finite Development Theorem.
Termination
Strong Normalization

- \(M \) is strongly normalizable iff every reduction from \(M \) is finite

\[
M \\
N \text{ normal form}
\]

- **Exercice:** which of following terms is strongly normalizable?

\[
l, II, \Delta \Delta, \Delta l, Y, Yl, YK, KL(\Delta \Delta)
\]

where \(l = \lambda x.x, \Delta = \lambda x.xx, K = \lambda x.\lambda y.x \) and \(Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx)) \).
Strong Normalization

• In typed lambda-calculi, all terms are strongly normalizable:
 • in 1st-order typed calculus, in system F, F-omega, terms are in \mathcal{SN}
 • terms of Coq are also strongly normalizable.

$\mathcal{SN} + \text{confluency}$ \Rightarrow type-free λ-calculus

typed λ-terms \leftrightarrow unique normal forms
Non termination

• In a fully expressive language, you have non-termination:

• in PCF + Y operator, in Ocaml, in Haskell, some terms are not in SN

• Confluency ensures deterministic calculations

• but possibly not terminating with a normal form.
Normalization

- M is **normalizable** iff a reduction from M leads to a normal form.

Exercice: Which of the following terms is normalizable?

$I, II, \Delta \Delta, \Delta I, Y, YI, YK, KI(\Delta \Delta)$

where $I = \lambda x.x$, $\Delta = \lambda x.xx$, $K = \lambda x.\lambda y.x$

and $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$.
Normalization strategies

- Suppose M is normalizable. Is there a strategy to reach the normal form? (normalizing strategy)

- Conversely, if M has an infinite reduction, is there a strategy to fall in an infinite reduction? (perpetual strategies) [see Barendregt + Klop]

• Take: $M = (\lambda x.y)(\Delta\Delta) \xrightarrow{*} y$
 but $(\lambda x.y)(\Delta\Delta) \rightarrow (\lambda x.y)(\Delta\Delta) \rightarrow \cdots$

• Take: $M = I(\Delta(KI(\Delta\Delta))) \xrightarrow{*} I$
 but $M = I(\Delta(KI(\Delta\Delta))) \rightarrow I(\Delta(KI(\Delta\Delta))) \rightarrow \cdots$

• Take: $M = I(\Delta(K(\Delta\Delta)I)) \xrightarrow{*} \Delta\Delta \rightarrow \Delta\Delta \rightarrow \cdots$
 but $M \xrightarrow{*} N$ in normal form ??
Normalization strategies

• Take: $M = Y'(KI) \rightarrow I$

but $M = Y'(KI) \rightarrow KI(Y'(KI)) \rightarrow KI(KI(Y'(KI))) \rightarrow \cdots$

where $Y' = (\lambda xy.y(xx))(\lambda xy.y(xx))$

• Comparable to evaluation strategies in programming languages:

```java
static int f (int x, int y) {
  if (x == 0)
    return 1;
  else
    return f (x-1, f(x, y));
}
```

what is value of $f(1, 0)$? ???

• In PCF, it would be:

$$\ Y(\lambda fxy.\text{if}z \ x \ \text{then} \ 1 \ \text{else} \ f(x - 1)(f \ x \ y)) \ 1 \ 0$$
Normalization strategies

- In programming languages, evaluation strategies could be:
 - **call-by-value**: compute value of arguments of functions and pass values to the function parameters (Ocaml, Java)
 - **call-by-name**: pass symbolic expression of arguments to the function parameters and calculate them when needed.
 - **call-by-need**: variation of call-by-name in order to avoid recalculations of arguments (lazy languages -- Haskell)

- there are also CBV, CBN strategies in the lambda-calculus (we don’t do it here)

- Call-by-need is more complex [J JL’78, Lamping’90, Gonthier-Abadi-JJL’92]
Standardization
Standard reduction

Redex R is to the left of redex S if the λ of R is to the left of the λ of S.

$$M = \cdots (\lambda x. A) B \cdots (\lambda y. C) D \cdots$$

or

$$M = \cdots (\lambda x. \cdots (\lambda y. C) D \cdots) B \cdots$$

or

$$M = \cdots (\lambda x. A)(\cdots (\lambda y. C) D \cdots) \cdots$$

The reduction $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ is standard iff for all i, j ($0 < i < j \leq n$), redex R_j is not a residual of redex R'_j to the left of R_i in M_{i-1}.
Standard reduction

\[M = (\lambda x.x)((\lambda f.3)(\lambda x.x)) \]

\[(\lambda f.3)(\lambda x.x)((\lambda f.3)(\lambda x.x)) \]

\[(\lambda f.3)(\lambda x.x)((\lambda x.x)3) \]

\[(\lambda x.x)((\lambda x.x)3) \]

\[(\lambda x.x)3((\lambda f.3)(\lambda x.x)) \]

\[3((\lambda f.3)(\lambda x.x)) \]

\[(\lambda x.x)33 \]

\[(\lambda x.x)3 \]

\[N = 3((\lambda x.x)3) \]

\[(\lambda x.xx)3 \]

\[33 \]
Standardization

- **Theorem [standardization] (Curry)** Any reduction can be standardized.

- The **normal reduction** (each step contracts the leftmost-outermost redex) is a standard reduction.

- **Corollary [normalization]** If M has a normal form, the normal reduction reaches the normal form.
Standardization lemma

- **Notation**: write $R <_\ell S$ if redex R is to the left of redex S.

- **Lemma 1** Let R, S be redexes in M such that $R <_\ell S$. Let $M \xrightarrow{S} N$. Then $R/S = \{R'\}$. Furthermore, if $T' <_\ell R'$, then $\exists T, T <_\ell R, T' \in T/S$. [one cannot create a redex through another more-to-the-left]

- **Proof of standardization thm**: [Klop] application of the finite developments theorem and previous lemma.
Standardization axioms

- 3 axioms are sufficient to get lemma 1

- **Axiom 1 [linearity]** \(S \not\leq \ell R \) implies \(\exists! R', R' \in R/S \)

- **Axiom 2 [context-freeness]** \(S \not\leq \ell R \) and \(R' \in R/S \) and \(T' \in T/S \) implies \(T \nRightarrow R \) iff \(T' \nRightarrow R' \) where \(\nRightarrow \) is \(<_\ell \) or \(>_\ell \)

- **Axiom 3 [left barrier creation]**

 \((R <_\ell S \) and \(\nexists T', T \in T'/S) \) implies \(R' <_\ell T \) where \(R/S = \{R'\} \)
Standardization proof

• Proof:

Each square is an application of the lemma of parallel moves. Let ρ_i be the horizontal reductions and σ_j the vertical ones. Each horizontal step is a parallel step, vertical steps are either elementary or empty.

We start with reduction ρ_0 from M to N. Let R_1 be the leftmost redex in M with residual contracted in ρ_0. By lemma 1, it has a single residual R'_1 in M_1, M_2, ... until it belongs to some F_k. Here $R'_1 \in F_2$. There are no more residuals of R_1 in M_{k+1}, M_{k+2},

Let R_2 be leftmost redex in P_1 with residual contracted in ρ_1. Here the unique residual is contracted at step n. Again with R_3 leftmost with residual contracted in ρ_2. Etc.
Standardization proof

• Proof (cont’d):

Now reduction σ_0 starting from M cannot be infinite and stops for some p. If not, there is a rightmost column σ_k with infinitely non-empty steps. After a while, this reduction is a reduction relative to a set F^j_i, which cannot be infinite by the Finite Development theorem.

Then ρ_p is an empty reduction and therefore the final term of σ_0 is N.
• **Proof (cont’d):**

We claim σ_0 is a standard reduction. Suppose R_k ($k > i$) is residual of S_i to the left of R_i in P_{i-1}.

By construction R_k has residual S^j_k along ρ_{i-1} contracted at some j step. So S^j_k is residual of S_i.

By the cube lemma, it is also residual of some S^j_i along σ_{j-1}. Therefore there is S^j_i in F^j_i residual of S_i leftmore or outer than R_i.

Contradiction.
Homeworks
Exercices

1- Show that $\Delta\Delta(II)$ has no normal form when $I = \lambda x.x$ and $\Delta = \lambda x.xx$.

2- Show that $\Delta\Delta M_1 M_2 \cdots M_n$ has no normal form for any $M_1, M_2, \ldots M_n$ ($n \geq 0$).

3- Show there is no M whose reduction graph is exactly the following:

```
M
 /\ \\
/   \ \\
M_1 -> M_2 <- M_3 \\
 |   / \\
|  /   \\
| /     \\
|/      \\
N
```

4- Show that rightmost-outermost reduction may miss normal forms.

5- Show that if $M \xrightarrow{*} \lambda x.N$, there is a minimal N_0 such that for all P, such that if $M \xrightarrow{*} \lambda x.P$, then $N_0 \xrightarrow{*} P$.