Reminders

- Redexes may be tracked with residuals.
- One can define parallel reduction \rightarrow_p of a given set \mathcal{F} of redexes by considering any of its finite developments.
- Lemma of parallel moves (other version of confluence lemma 1111)
- Cube lemma (consistency of residual relation w.r.t. finite developments)
- The labeled calculus was a technical tool to name redexes and prove Curry’s Finite Development Theorem.

Plan

- Normalization
- Strong normalization
- Standardization theorem
- Normalization strategies

Termination
Strong Normalization

- M is strongly normalizable iff every reduction from M is finite

Exercice: which of following terms is strongly normalizable?

$I, II, \Delta\Delta, \Delta I, Y, YI, YK, KI(\Delta\Delta)$

where $I = \lambda x.x$, $\Delta = \lambda x.xx$, $K = \lambda x.\lambda y.x$ and $Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$.

Strong Normalization

- In typed lambda-calculi, all terms are strongly normalizable:
 - in 1st-order typed calculus, in system F, F-omega, terms are in SN.
 - terms of Coq are also strongly normalizable.

$SN +$ confluence \rightarrow type-free λ-calculus

typed λ-terms \leftrightarrow unique normal forms

Non termination

- In a fully expressive language, you have non-termination:
 - in PCF + Y operator, in Ocaml, in Haskell, some terms are not in SN.
 - Confluency ensures deterministic calculations.
 - but possibly not terminating with a normal form.

Normalization

- M is normalizable iff a reduction from M leads to a normal form.

Exercice: which of following terms is normalizable?

$I, II, \Delta\Delta, \Delta I, Y, YI, YK, KI(\Delta\Delta)$

where $I = \lambda x.x$, $\Delta = \lambda x.xx$, $K = \lambda x.\lambda y.x$ and $Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$.

SN \rightarrow normal form

\rightarrow infinite reduction

but normal form
Normalization strategies

- Suppose M is normalizable. Is there a strategy to reach the normal form? (normalizing strategy)
- Conversely, if M has an infinite reduction, is there a strategy to fall in an infinite reduction? (perpetual strategies) [see Barendregt + Klop]
- Take: $M = (\lambda x. y)(\Delta \Delta) \rightsquigarrow y$
 but $(\lambda x. y)(\Delta \Delta) \rightarrow (\lambda x. y)(\Delta \Delta) \rightarrow \cdots$
- Take: $M = I(\Delta(KI(\Delta \Delta))) \rightsquigarrow I$
 but $M = I(\Delta(KI(\Delta \Delta))) \rightarrow I(\Delta(KI(\Delta \Delta))) \rightarrow \cdots$
- Take: $M = I(\Delta(K(\Delta \Delta))) \rightarrow \Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$
 but $M \rightsquigarrow N$ in normal form??
Standard reduction

Redex \(R \) is to the left of redex \(S \) if the \(\lambda \) of \(R \) is to the left of the \(\lambda \) of \(S \).

\[
M = \cdots (\lambda x.A)B \cdots (\lambda y.C)D \cdots \underbrace{R}_{S}
\]

or

\[
M = \cdots (\lambda x \cdots (\lambda y.C)D \cdots)B \cdots \underbrace{R}_{S}
\]

or

\[
M = \cdots (\lambda x.A)(\cdots (\lambda y.C)D \cdots) \cdots \underbrace{R}_{S}
\]

The reduction \(M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} \cdots \xrightarrow{R_n} M_n = N \) is standard iff for all \(i, j \) (\(0 < i < j \leq n \)), redex \(R_j \) is not a residual of redex \(R'_j \) to the left of \(R_i \) in \(M_{i-1} \).

Standardization

- **Theorem [standardization] (Curry)** Any reduction can be standardized.

- **The normal reduction** (each step contracts the leftmost-outermost redex) is a standard reduction.

- **Corollary [normalization]** If \(M \) has a normal form, the normal reduction reaches the normal form.

Standardization lemma

- **Notation**: write \(R <_l S \) if redex \(R \) is to the left of redex \(S \).

- **Lemma 1** Let \(R, S \) be redexes in \(M \) such that \(R <_l S \). Let \(M \xrightarrow{S} N \).

Then \(R/S = \{R'\} \). Furthermore, if \(T' <_l R' \), then \(\exists T, T <_l R, T' \in T/S \).

(one cannot create a redex through another more-to-the-left)

- **Proof of standardization thm**: [Klop] application of the finite developments theorem and previous lemma.
Standardization axioms

- 3 axioms are sufficient to get lemma 1

- **Axiom 1 [linearity]** \(S \not\leq R \) implies \(\exists! R', R' \in R/S \)

- **Axiom 2 [context-freeness]** \(S \not\leq R \) and \(R' \in R/S \) and \(T' \in T/S \) implies \(T \not\leq R \) iff \(T' \not\leq R' \) where \(\not\leq \) is \(<_{\ell} \) or \(>_{\ell} \)

- **Axiom 3 [left barrier creation]**

 \((R <_{\ell} S \) and \(T \in T'/S) \) implies \(R' <_{\ell} T \) where \(R/S = \{R'\} \)

Standardization proof

- **Proof (cont'd):**

Now reduction \(\sigma_0 \) starting from \(M \) cannot be infinite and stops for some \(p \). If not, there is a rightmost column \(\sigma_4 \) with infinitely non-empty steps. After a while, this reduction is a reduction relative to a set \(\mathcal{F}_1 \), which cannot be infinite by the Finite Development theorem.

Then \(\rho_p \) is an empty reduction and therefore the final term of \(\sigma_0 \) is \(N \).

Standardization proof

- **Proof:**

Each square is an application of the lemma of parallel moves. Let \(\rho_i \) be the horizontal reductions and \(\sigma_j \) the vertical ones. Each horizontal step is a parallel step, vertical steps are either elementary or empty.

We start with reduction \(\rho_0 \) from \(M \) to \(N \). Let \(R_1 \) be the leftmost redex in \(M \) with residual contracted in \(\rho_0 \). By lemma 1, it has a single residual \(R_1' \) in \(M_1, M_2, \ldots \) until it belongs to some \(\mathcal{F}_s \). Here \(R_1' \in \mathcal{F}_2 \). There are no more residuals of \(R_1 \) in \(M_{k+1}, M_{k+2}, \ldots \).

Let \(R_2 \) be leftmost redex in \(P_1 \) with residual contracted in \(\rho_1 \). Here the unique residual is contracted at step \(n \). Again with \(R_3 \) leftmost with residual contracted in \(\rho_2 \), etc.
Exercices

1- Show that $\Delta \Delta (I)$ has no normal form when $I = \lambda x.x$ and $\Delta = \lambda x.xx$.

2- Show that $\Delta \Delta M_1 M_2 \cdots M_n$ has no normal form for any $M_1, M_2, \ldots M_n$ ($n \geq 0$).

3- Show there is no M whose reduction graph is exactly the following:

```
M
 \downarrow
M_1 \quad M_2 \quad M_3
 \downarrow \quad \downarrow \quad \downarrow
N
```

4- Show that rightmost-outermost reduction may miss normal forms.

5- Show that if $M \rightarrow \lambda x.N$, there is a minimal N_0 such that for all P, such that if $M \rightarrow \lambda x.P$, then $N_0 \rightarrow P$.