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Plan

• Residuals of redexes

• Finite developments theorem

• A labeled calculus ``underlined method’’

• Proof of finite developments
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• Local confluency of β-conversion (lemma 11**)

• Local confluency

• need for defining parallel reduction (lemma 1111)

• then full confluency (Church-Rosser thm ****)

• interconvertibility (β-equality) is consistent

full confluency

11**

1111****



Finite developments



Residuals of redexes
• tracking redexes while contracting others 

• examples:

∆(Ia) Ia(Ia)

∆(Ia) Ia(Ia))

Ia(∆(Ib)) Ia(Ib(Ib))

∆∆ ∆∆

Ia(∆(Ib)) Ia(Ib(Ib))

I (∆(Ia)) I (Ia(Ia))

∆ = λx . xx I = λx .x K = λxy .x

(λx .Ia)(Ib) Ia



Residuals of redexes
M

S
N• when R is redex in M and

the set R/S of residuals of R in N is defined by inspecting relative positions

of R and S in M:

1- M = · · · R · · · S · · ·
S

· · · R · · · S � · · · = NR and S disjoint,

R is S , no residuals of R.4-

2-

2a-

S in R = (λx .A)B

2b-

S in A, M = · · · (λx . · · · S · · · )B · · ·
S

· · · (λx . · · · S � · · · )B · · · = N

S in B, M = · · · (λx .A)(· · · S · · · ) · · ·
S

· · · (λx .A)(· · · S � · · · ) · · · = N

3- R in S = (λy .C )D

3a-

3b-

R in C , M = · · · (λy . · · ·R · · · )D · · ·
S

· · · · · ·R{y := D} · · · · · · = N

R in D, M = · · · (λy .C )(· · · R · · · ) · · ·
S

· · · (· · · R · · · ) · · · (· · · R · · · ) · · · = N



Residuals of redexes

• when ρ is a reduction from M to N, i.e.

the set of residuals of R by ρ is defined by transitivity on the length of ρ

and is written 

ρ : M N

R/ρ

• residuals depend upon reduction. Two reductions between same terms 
may produce two distinct sets of residuals.

• notice that we can have S ∈ R/ρ and R �= S

residuals may not be syntacticly equal (see previous 3rd example)

• a redex is residual of a single redex (the inverse of the residual relation is a 
function): R ∈ S/ρ and R ∈ T/ρ implies S = T



Exercices
• Find redex R and reductions ρ and σ between M and N such that residuals 

of R by ρ and σ differ. Hint: consider M = I (Ix)

• Show that residuals of nested redexes keep nested.

• Show that residuals of disjoint redexes may be nested.

• Show that residuals of a redex may be nested after several reduction steps.

Created redexes

(λx .xa)I Ia

(λxy .xy)ab (λy .ay)b

IIa Ia

∆∆ ∆∆

• A redex is created by reduction ρ if it is not a residual by ρ of a redex in 
initial term. Thus R is created by ρ when ρ : M N and �S , R ∈ S/ρ



Residuals of redexes



Relative reductions



Finite developments

• Let F    be a set of redexes in M. A reduction relative to F   only contracts 
residuals of F.

• When there are no more residuals of F  to contract, we say the relative 
reduction is a development of F.

• Theorem 3 [finite developments] (Curry)  Let F  be a set of redexes in M. Then:

- relative reductions cannot be infinite; they all end in a development of F

- all developments end on a same term N

- let R be a redex in M. Then residuals of R by finite developments of F are the 
same.



Finite developments

• Therefore we can define (without ambiguity) a new parallel step reduction:

ρ : M
F

N

• Two corollaries:

and when R is a redex in M, we can write R/F for its residuals in N

M

N P

Q

F G

G/F F/G

Cube LemmaLemma of Parallel Moves

M

N P

Q

F G

H



Labeled calculus



Labeled calculus

• Lambda calculus with labeled redexes

• F -labeled reduction

• Labeled substitution

M, N, P ::= x, y, z, ... (variables)

| ( λx.M ) (M as function of x)

| ( M  N ) (M applied to N)

| c, d, ... (constants )

| ( λx.M )  N (labeled redexes)r

(λx .M)rN M{x := N} when r ∈ F

. . . as before

((λx .M)rN){y := P} = ((λx .M){y := P})r (N{y := P})

• Finite developments will be shown with a labeled calculus.

new!



Labeled calculus

Take F = {s, u, v} and

M = I r (∆s(I tx))(∆u(I vy))

I r (I tx(I tx))(∆u(I vy))

I r (I tx(I tx))(∆uy)

I r (I tx(I tx))(yy)

but also

M I r (∆s(I tx))(I vy(I vy))

I r (I tx(I tx))(I vyy)

I r (I tx(I tx))(yy)

development of s,u,v

also development of s,u,v

I = λx .x ∆ = λx .xx



Labeled calculus

• Theorem For any F, the labeled calculus is confluent.

• Theorem For any F, the labeled calculus is strongly normalizable (no infinite 
labeled reductions).

• Lemma  For any F-reduction  ρ : M N, a labeled redex in N has label r

if and only if it is residual by ρ of a redex with label r in M.

• Theorem 3 [finite developments] (Curry)



Labeled calculus proofs

• Definition [F -labeled parallel reduction]:

[Var Axiom] x x [Const Axiom] c c

[App Rule]
M M � N N �

MN M �N � [Abs Rule]
M M �

λx .M λx .M �

[ //App’ Rule]
M M � N N �

(λx .M)rN (λx .M �)rN �

[ //Beta Rule]
M M � N N � r ∈ F
(λx .M)rN M �{x := N �}

new!



Labeled calculus proofs

• Substitution lemma: M{x := N}{y := P} = M{y := P}{x := N{y := P}}
when x not free in P

Proof: Induction on ||M||. Cases 1-4 are as in the unlabeled calculus.

Case 5: M = (λz .M1)rM2. This case is easy. Write A∗ = A{x := N}{y := P} and
A† = A{y := P}{x := N{y := P}} for any A.

We have M∗ = ((λz .M1)∗)rM∗
2 = ((λz .M1)†)rM

†
2 by induction. Thus again M∗ = M†.

QED



Labeled calculus proofs

• Proof of confluency is again with Martin-Löf’s axiomatic method.

• Proof of residual property is by simple inspection of a reduction step.

• Proof of termination is slightly more complex with following lemmas:

• Theorem M ∈ SN for all M.

• Lemma 2 M,N ∈ SN (strongly normalizing) implies M{x := N} ∈ SN

• Lemma 1 [Barendregt-like] M{x := N} (λy .P)rQ impliesint

M = (λy .A)rB with A{x := N} P, B{x := N} Q

or

M = x and N (λy .P)rQ

• Notation M N if M reduces to N without contracting a toplevel redex.int



Labeled calculus proofs

Proof

Case 1: M = x . Then M∗ = N and N (λy .P)rQ.

Case 2: M = y . Then M∗ = y . Impossible.

Case 2: M = λy .M1. Again impossible.

Case 3: M = M1M2 or M = (λy .M1)sM2 with s �= r . These cases are also impossible.

Case 4: M = (λy .M1)rM2. Then M∗
1 P and M∗

2 Q.

Let P∗ be P{x := N} for any P.

• Lemma 1 [Barendregt-like] M{x := N} (λy .P)rQ impliesint

M = (λy .A)rB with A{x := N} P, B{x := N} Q

or

M = x and N (λy .P)rQ

QED



Labeled calculus proofs
• Lemma 2 M,N ∈ SN (strongly normalizing) implies M{x := N} ∈ SN

Proof: by induction on �depth(M), ||M|| �. Let P∗ be P{x := N} for any P.

Case 1: M = x . Then M∗
= N ∈ SN . If M = y . Then M∗

= y ∈ SN .

Case 2: M = λy .M1. Then M∗
= λy .M∗

1 and by induction M∗
1 ∈ SN .

Case 3: M = M1M2 and never M∗
(λy .A)

rB. Same argument on M1 and M2.

Case 4: M = M1M2 and M∗
(λy .A)

rB. We can always consider first time when this

toplevel redex appears. Hence we have M∗
(λy .A)

rB. By lemma 1, we have two

cases:

int

Case 4.2: M = x . Impossible.

Case 4.1: M = (λy .M3)rM2 with M∗
3 A and M∗

2 B. Then M∗ =
(λy .M∗

3 )rM∗
2 . As M3 ∈ SN and M2 ∈ SN , the internal reductions from M∗

terminate by induction. If r �∈ F , there are no extra reductions. If r ∈ F , we
can have M∗

3 A, M∗
2 B and (λy .A)rB A{y := B}. But M

M3{y := M2} and (M3{y := M2})∗ A{y := B}. As depth(A{y := B} ≤
depth(M3{y := M2)} < depth(M), we get A{y := B} ∈ SN by induction.

QED



Labeled calculus proofs
Case 4.1 (bis): still by induction on �depth(M), ||M|| �.

M = (λy .M3)rM2M∗

(λy .A)B M3{y := M2}

A{y := B}

M∗
3 {y := M2∗} = (M3{y := M2})∗

int

= (λy .M∗
3 )rM∗

2 r ∈ F

We need substitution lemma and main lemma of Martin-Löf’s axiomatic method:

M{x := N}{y := P} = M{y := P}{x := N{y := P}} when x not free in P

M M � and N N � implies M{x := N} M �{x := N �}
(in last one, one can replace by )



Labeled calculus proofs

• Theorem M ∈ SN for all M.

Proof: by induction on ||M||.

Case 1: M = x . Obvious.

Case 2: M = λx .M1. Obvious since M1 ∈ SN by induction.

Case 3: M = M1M2 and M1 �= (λx .A)r . Then all reductions are internal to M1 and M2.

Therefore M ∈ SN by induction on M1 and M2.

Case 4: M = (λx .M1)
rM2 and r �∈ F . Same argument on M1 and M2.

Case 5: M = (λx .M1)
rM2 and r ∈ F . Then M1 and M2 in SN by induction. But we

can also have M (λx .A)rB A{x := B} with A and B in SN . By Lemma 2, we

know that A{x := B} ∈ SN .

QED



Homeworks



Exercices
1-

2-

3-

Show there is no M such that M Kac and M Kbc where K = λx .λy .x .

Find M such that M Kab and M Kac .

(difficult) Show that is not confluent.

4- Show there is no M whose reduction graph is exactly following:

M

N

M1 M2 M3

5- Show there is no M such that M λx .N and M yM1M2 · · · Mn.

Show there is no M such that M xN1N2 · · · Nn and M yP1P2 · · · Pn

(x �= y).
6-

7- Show that η and ( ∪ η)∗ are confluent.



Exercices
8- Equivalence by permutations.


