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Plan

Residuals of redexes
Finite developments theorem
A labeled calculus ""underlined method”

Proof of finite developments




Reminders

Local confluency of B-conversion (lemma 11**)

Local confluency *} full confluency

need for defining parallel reduction (lemma 1111)

then full confluency (Church-Rosser thm ** * )

interconvertibility (8-equality) is consistent

SN, AN

P
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Residuals of redexes

* tracking redexes while contracting others

e examples:
A(la) — la(la) A=XIx.xx | =Xxx K=JAxyx

Ia(A(16)) — La(lb(1b)
[(A(la)) — [(la(la))
A(la) — la(la))

a(A (1)) —> la(b(15))

é/A\—»AA

(Ax.1a)(Ib) —> la



Residuals of redexes

S
e when RisredexinMand M — N

the set R/S of residuals of R in N is defined by inspecting relative positions
of Rand Sin M.

S
1- Rand S disjoint M=---R---5--- —> -

R---§ . =N
2- Sin R=(\x.A)B
S
2a- SinA M= (x-S )B+ — - (M-S )B-- =N
S
2b- Sin B, M= (AA)(-S ) — A S ) = N
3-RinS=(\y.C)D
S
3a-R|nC’M:()\yB)D_) ...... R{y: ...... :N
S
3-RinD, M=---(Ay.C)(-+-R-+) -+ — -+ (-+-Re-) e (- Rev) - = N

4- R is S, no residuals of R.



Residuals of redexes

e when p is a reduction from Mto N,ie. p: M= N
the set of residuals of R by p is defined by transitivity on the length of p

and is written R/p

* notice that we canhave S R/pand R# S

residuals may not be syntacticly equal (see previous 3rd example)

* residuals depend upon reduction. Two reductions between same terms
may produce two distinct sets of residuals.

* aredex is residual of a single redex (the inverse of the residual relation is a
function): Re S/pand R€ T/p impliesS=T



Exercices

* Find redex R and reductions p and o between M and N such that residuals
of R by p and o differ. Hint: consider M = [(Ix)

 Show that residuals of nested redexes keep nested.

e Show that residuals of disjoint redexes may be nested.

* Show that residuals of a redex may be nested after several reduction steps.

Created redexes

 Aredex is created by reduction p if it is not a residual by p of a redex in
initial term. Thus R is created by p when p: M => N and S, R€ S/p

(Ax.xa)l —> la lla —> la

(Axy.xy)ab —> (Ay.ay)b AN — AA



Residuals of redexes

(Ax.xx)((Af.f3) (AXi())

/

(Af.f3)(Ax.x)((Af.f3)(AXx.x))

—

(Af.F3)(Ax.x)((Ax.x)3) (Ax.x)3((Af.f3)(Ax.x)) (Ax.xx)( ()\X.X)i)

| N\ S

(Af.f3)(Ax.x)3 (Ax.x)3((Ax.x)3) 3((Af.f3)(Ax.x))

o Y

(Ax.x)33 3((Ax.x)3) (Ax.xx)3

e

N

33




Relative reductions
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Finite developments

 Let F be a set of redexes in M. A reduction relative to F only contracts
residuals of F.

 When there are no more residuals of F to contract, we say the relative
reduction is a development of F.

* Theorem 3 [finite developments] (Curry) Let F be a set of redexes in M. Then:
- relative reductions cannot be infinite; they all end in a development of F
- all developments end on a same term N

- let R be aredex in M. Then residuals of R by finite developments of F are the
same.



Finite developments

* Therefore we can define (without ambiguity) a new parallel step reduction:

p: M — N

and when R is a redex in M, we can write R/F for its residuals in N

e Two corollaries:

Lemma of Parallel Moves

A
N,/

N

Cube Lemma

7SN\
N\g7

e
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Labeled calculus

Finite developments will be shown with a labeled calculus.

Lambda calculus with labeled redexes

M,N,P = XYz .. (variables)
(Ax.M) (M as function of x)
(M N ) (M applied to N)
c, d, .. (constants )
(AX.M)"N (labeled redexes) 6/

F-labeled reduction

(Ax.M)'N — M{x := N} when r € F

Labeled substitution

... as before
(AX-M)'N)Ny := P} = (Ax.-M){y := P})"(N{y := P})

new!



Labeled calculus

Take 7 = {s, u, v} and

Moo= MEEATTYY - development of s,u,v
— It (1)) (A4 (1Y) e/
—>  1"(I'x(1*x))(AYy)
—17(IX(1%)) ()

but also

M — (A1) Yy (1Vy))

(X)) (Y yy) also development of s,u,v
— I7(I'x(I'x))(yy)

| = Ax.x A = A\x.xx



Labeled calculus

* Theorem For any F, the labeled calculus is confluent.

* Theorem For any F, the labeled calculus is strongly normalizable (no infinite
labeled reductions).

e Lemma For any F-reduction p: M —=> N, a labeled redex in N has label r

if and only if it is residual by p of a redex with label rin M.

v

* Theorem 3 [finite developments] (Curry)



Labeled calculus proofs

* Definition [F-labeled parallel reduction]:

[Var Axiom] x +#>» x [Const Axiom| ¢ > ¢
M 4> M N > N M #> M’
App Rule] —— v Abs Rule] S o 7
M > M N %> N
[ //App’ Rule] N é\
AX.-MY'N > (Ax.M")"N
(M)W 5 () " new!
M > M N % N recF
| //Beta Rule] (Ax.M)'N > M{x := N'} <- =



Labeled calculus proofs

e Substitution lemma: M{x:= N}y =P} = M{y = P}H{x := N{y := P}}

when x not free in P

Proof: Induction on ||[M||. Cases 1-4 are as in the unlabeled calculus.

Case 5: M = (Az.M;y)"M,. This case is easy. Write A* = A{x := N}{y := P} and
AT = Aly := P}{x := N{y := P}} for any A.

We have M* = ((Az.My)*)" M3 = ((Az.My)T)"M] by induction. Thus again M* = M.
QED



Labeled calculus proofs

Proof of confluency is again with Martin-Lof's axiomatic method.
Proof of residual property is by simple inspection of a reduction step.

Proof of termination is slightly more complex with following lemmas:

Notation M -=> N if M reduces to N without contracting a toplevel redex.

Lemma 1 [Barendregt-like] M{x := N} ==> (Ay.P)"Q implies
M = (Ay.A)'B with A{x .= N} => P, B{x .= N} = Q
or
M= xand N = (\y.P)" Q@

Lemma 2 M, N € SN (strongly normalizing) implies M{x := N} € SN/

Theorem M & SN for all M.



Labeled calculus proofs

* Lemma 1 [Barendregt-like] M{x := N} ==> (Ay.P)"Q implies
M = (Ay.A)'B with A{x .= N} => P, B{x =N} = Q
or
M=xand N = (Ay.P)"'Q

Proof Let P* be P{x := N} for any P.

Case 1: M =x. Then M* = N and N = (\y.P)"Q.

Case 2: M =y. Then M* = y. Impossible.

Case 2: M = \y.M;. Again impossible.

Case 3: M = MM, or M = (Ay.M;)*M, with s = r. These cases are also impossible.
Case 4. M = (Ay.My)"M,. Then My => P and My = Q.

QED



Labeled calculus proofs

e Lemma2 M, N € SN (strongly normalizing) implies M{x := N} € SN/

Proof: by induction on (depth(M), ||M||). Let P* be P{x := N} for any P.
Case 1: M=x. Then M* =N e SN. If M=y. Then M* =y € SN.

Case 2: M = A\y.M;. Then M* = \y.M; and by induction M} € SN.

Case 3: M = M;M, and never M* = (Ay.A)"B. Same argument on M; and M,.

Case 4: M = My M, and M* = (Ay.A)'B. We can always consider first time when this
toplevel redex appears. Hence we have M* = (Ay.A)"B. By lemma 1, we have two
cases:

Case 4.1: M = (Ay.M3)"My with Mj = A and M = B. Then M* =
(Ay.M3)Ms. As M3 € SN and M, € SN, the internal reductions from M*
terminate by induction. If r € F, there are no extra reductions. If r € F, we
can have M => A, M; <> B and (\y.AYB — A{y .= B}. But M —>
Ms{y := Mb} and (Ms{y := Mh})* = A{y := B}. As depth(A{y := B} <
depth(Mz{y := M,)} < depth(M), we get A{y := B} € SN by induction.

|nt

Case 4.2: M = x. Impossible.
QED



Labeled calculus proofs

Case 4.1 (bis): still by induction on (depth(M), ||M||).

M* = (\y. M3 ) M; M=(\y.M) My reF
int
(\y.A)B M3y = Mox} = (M3{y := Ma})” Ms{y := M2}
) 4
AR = 1)

We need substitution lemma and main lemma of Martin-Lof’'s axiomatic method:

M{x .= N}y := P} = M{y := P}{x:= N{y := P}} when x not free in P

M -#> M’ and N %> N’ implies M{x := N} %> M'{x .= N’}
(in last one, one can replace #>» by =)



Labeled calculus proofs

e Theorem M & SN for all M.

Proof: by induction on || M||.
Case 1: M = x. Obvious.
Case 2: M = Ax.M;. Obvious since M; € SN by induction.

Case 3: M = M;M, and M; # (Ax.A)". Then all reductions are internal to M; and M.
Therefore M € SN by induction on M; and M.

Case 4: M = (Ax.My)"M, and r ¢ F. Same argument on M; and M,.

Case 5: M = (Ax.My)"My and r € F. Then My and M, in SN by induction. But we
can also have M <> (Ax.A)"'B — A{x := B} with A and B in SN. By Lemma 2, we
know that A{x := B} € SN.

QED
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Exercices

1- Show there is no M such that M = Kac and M <> Kbc where K = Ax.\y .x.

2- Find M such that M => Kab and M = Kac.

3- (difficult) Show that €<= is not confluent.

4- Show there is no M whose reduction graph is exactly following:

2
5- Show there is no M such that M => Ax.N and M = yM; M, --- M,,.

6- Show there is no M such that M = xN{No--- N, and M = yPP>--- P,
(x # y).

7- Show that <=, and (— U <—,)* are confluent.



Exercices

8- Equivalence by permutations.



