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Plan

¢ Residuals of redexes
* Finite developments theorem
¢ Alabeled calculus ““underlined method”

* Proof of finite developments
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Residuals of redexes

* tracking redexes while contracting others

* examples:
A(la) — la(la) A=Xx.xx |=Xxx K=Mxyx

la(A(Ib)) —> la(Ib(Ib))
1(A(la)) — 1(/a(1a))

A(la) — la(la))

la(A(1b)) —> la(1b(1))
AN — AA

—_—

(Ax.fa)(Ib) — la

Residuals of redexes

s
e when RisredexinMand M — N

the set R/S of residuals of R in N is defined by inspecting relative positions
of Rand Sin M:

S
1- Rand Sdisjoint, M = ---R---S--- —> ---R---§'- . = N

2- Sin R=(\x.A)B
s
2a-SinA M= (x-S )B- = (Ax.-- S B =N

2b- Sin B, M= (AxA)(-+-S- )+ —5>~~~()\x.A)(-~~$/~~-)~-~:N

3-RinS=(\y.C)D

3a-RinC,M:~-~(>\y.~~-5~-~)D-~~—S> ...... R{y:=D}----- =N
3-RinD,M=---Oy.O)(---R-+)--—> (- R-) (- R-)-=N

4- Ris S, no residuals of R.

Residuals of redexes

when p is a reduction from Mto N, i.e. p: M —=> N

the set of residuals of R by p is defined by transitivity on the length of p
and is written R/p

notice that we can have S € R/pand R # S

residuals may not be syntacticly equal (see previous 3rd example)

residuals depend upon reduction. Two reductions between same terms
may produce two distinct sets of residuals.

* aredex is residual of a single redex (the inverse of the residual relation is a
function): Re€ S/pand R€ T/pimplies S =T

Exercices

* Find redex R and reductions p and o between M and N such that residuals
of R by p and o differ. Hint: consider M = /(Ix)

¢ Show that residuals of nested redexes keep nested.
* Show that residuals of disjoint redexes may be nested.

* Show that residuals of a redex may be nested after several reduction steps.

Created redexes

* Aredex is created by reduction p if it is not a residual by p of a redex in
initial term. Thus R is created by p when p: M => N and 3S, R<€ S/p

(Ax.xa)l —> la

lla —> la
(Axy.xy)ab —> (\y.ay)b AA — AA



Residuals of redexes

(AX.XxXx)((Af.f3)(Ax.x))
—_—

/

(AF.f3)(Ax.X) ((Af.f3)(AX.x))

—

(Af 3)(Ax.x)((Ax.x)3) (Ax.x)3((Af.f3)(Ax.x)) (Ax.xx)((Ax.x)3)

N

(AF.f3)(Ax.x)3 (Ax.x)3((Ax.x)3) 3((Af.f3)(Ax.x))

SN

(Ax.x)33 3((Ax.x)3) (Ax.xx)3

N

33

Relative reductions

_____

'," (Af.f3) (Ax.x)((Af.£3)(Ax.X)) “‘
" ()\f 3)(Ax.x)((Ax.x)3) (Ax.x)3((Af.f3)(Ax.x)) (Ax.xx)((Ax.x)3) -

TN

(AF.£3)(Ax.x)3 s S (AXX)3((AxX)3) -, Rt 3((Af.f3)(Ax.x))

SIS

(Ax.x)33 3((Ax.x)3) (Ax.xx)3

Nt

33

Finite developments

* Let F be a set of redexes in M. A reduction relative to F only contracts
residuals of F.

* When there are no more residuals of F to contract, we say the relative
reduction is a development of F.

* Theorem 3 [finite developments] (Curry) Let 7 be a set of redexes in M. Then:
- relative reductions cannot be infinite; they all end in a development of
- all developments end on a same term N

- let R be a redex in M. Then residuals of R by finite developments of F are the
same.

Finite developments

* Therefore we can define (without ambiguity) a new parallel step reduction:
]:
p:M—N

and when R is a redex in M, we can write R/F for its residuals in N

¢ Two corollaries:

Lemma of Parallel Moves Cube Lemma
o M H/'
N P ———’ .
N . * P
QA ﬁg //,‘
Q _—7



Labeled calculus

Take F = {s, u, v} and

Moo= ARy - development of s,u,v
P — U0)ay) |
abeled calculus — e
— (1)) ()

but also

M — 1Ay (1Y)

=3 (7)) also development of s,u,v
— (1)) ()

IE=\ixéx A = Ax.xx
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Labeled calculus Labeled calculus

* Finite developments will be shown with a labeled calculus. « Theorem For any 7, the labeled calculus is confluent.

¢ Lambda calculus with labeled redexes

MNP == xyz.. (variables) * Theorem For any F, the labeled calculus is strongly normalizable (no infinite
labeled reductions).

| (Ax.M) (M as function of x)

| (MN) (M applied to N) e Lemma For any Freduction p: M —> N, alabeled redex in N has label r
cd, .. constants if and only if it is residual by p of a redex with label rin M.

| ( ) new! y y p

| (AM)'N (

labeled redexes) 6/ *

e F-labeled reduction

(AxM)"N — M{x := N} when r € F
* Theorem 3 [finite developments] (Curry)
¢ Labeled substitution

...as before
(MY N){y = P} = (M) = P} (N{y := P})



Labeled calculus proofs

* Definition [F-labeled parallel reduction]:

[Var Axiom] x #> x [Const Axiom] ¢ #> ¢
M #> M N # N M #> M
[App Rule] = v [Abs Rule] = i
M # M N # N
[//App’ Rule] =
DX MY N 7 Ox. MYV 'new!

MA#> M N # N reF

4
[//Beta Rule] Ox.MYN 5 Mix =N} <- -

Labeled calculus proofs

* Substitution lemma: M{x := N}{y := P} = M{y := P}{x:= N{y := P}}

when x not free in P

Proof: Induction on ||M||. Cases 1-4 are as in the unlabeled calculus.

Case 5: M = (Az.M;)"M,. This case is easy. Write A* = A{x := N}{y := P} and
At = Aly := P}{x := N{y := P}} for any A.

We have M* = ((Az.My)*)"M; = (()\z.M1)1L)’M2T by induction. Thus again M* = MT.
QED

Labeled calculus proofs

* Proof of confluency is again with Martin-L&f's axiomatic method.
* Proof of residual property is by simple inspection of a reduction step.
* Proof of termination is slightly more complex with following lemmas:

* Notation M > N if M reduces to N without contracting a toplevel redex.

* Lemma 1 [Barendregt-ike] M{x := N} > (Ay.P)"'Q implies
M = (A\y.A)B with A{x := N} => P, B{x =N} = Q
or

M =x and N = (\y.P)"Q

* Lemma2 M, N € SN (strongly normalizing) implies M{x := N} € SN’

e Theorem M c SN for all M.

Labeled calculus proofs

* Lemma 1 [Barendregt-ike] M{x := N} > (Ay.P)"Q implies
M = (A\y.A)"'B with A{x := N} => P, B{x := N} = Q
or
M = x and N > (\y.P)"Q

Proof Let P* be P{x := N} for any P.

Case 1: M = x. Then M* = N and N = (\y.P)"Q.

Case 2: M =y. Then M* = y. Impossible.

Case 2: M = \y.M;. Again impossible.

Case 3: M = MM, or M = (Ay.M;)*M, with s # r. These cases are also impossible.
Case 4: M = (\y.My)"M,. Then My => P and Mj = Q.

QED



Labeled calculus proofs Labeled calculus proofs

* Lemma2 M, N € SN (strongly normalizing) implies M{x := N} € SN’

e Theorem M € SN for all M.
Proof: by induction on (depth(M), |[M||). Let P* be P{x := N} for any P.

Case 1: M = x. Then M* = N € SN. If M = y. Then M* = y € SA'. Proof: by induction on || M]|.

Case 2: M = \y.M;. Then M* = Ay.M; and by induction M; € SN Case 1: M = x. Obvious.

Case 3: M = M;M, and never M* > (\y.A)"B. Same argument on M; and M,. Case 2: M = Ax.M;. Obvious since M; € SN by induction.

Case 4 M = MM, and M* > (\y.A)"B. We can always consider first time when this Case 3: M = MiM, and My # (Ax.A)". Then all reductions are internal to My and M,.
toplevel redex appears. Hence we have M* ==> (\y.A)"'B. By lemma 1, we have two Therefore M € SN by induction on M; and M.

cases:

Case 4: M = (Ax.M;) "M, and r ¢ F. Same argument on M; and M.
Case 4.1: M = (\y.M3)"M, with M; > A and M; —=> B. Then M* =

(Ay.-M3)M;. As M3 € SN and M, € SN, the internal reductions from M* Case 5: M = (Ax.M1)"M and r € 7. Then M; .and M; in SN by induction. But we
terminate by induction. If r ¢ F, there are no extra reductions. If r € F, we can also have M <> (Ax.A)’'B —> A{x := B} with A and B in SN. By Lemma 2, we
can have Mj > A, M; > B and (\y.A)’B — A{y := B}. But M — know that A{x := B} € SN.

Ms{y := Ma} and (Mz{y := Mp})* <> A{y := B}. As depth(A{y := B} < QED

depth(Ms{y := M»)} < depth(M), we get A{y := B} € SN by induction.

Case 4.2: M = x. Impossible.
QED

Labeled calculus proofs

Case 4.1 (bis): still by induction on (depth(M), [[M]] ).
M* = (\y.M3) M; M=(\y.Ms) My, reF

W \

(\y.A)B Mi{y == Mox} = (Ms{y := Mo})* Ms{y := M} : O m eWO rkS

. 4

Aly :== B}

We need substitution lemma and main lemma of Martin-L6f’s axiomatic method:

M{x = N}{y := P} = M{y := P}{x:= N{y := P}} when x not free in P

M #» M’ and N #> N’ implies M{x := N} +#> M'{x := N'}
(in last one, one can replace #> by =)
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Exercices

1- Show there is no M such that M = Kac and M => Kbc where K = Ax.\y.x.
2- Find M such that M <> Kab and M <> Kac.
3- (difficult) Show that «* is not confluent.
4- Show there is no M whose reduction graph is exactly following:
/M\
M, M, M,
N
5- Show there is no M such that M <> Ax.N and M => yM; M, --- M,,.

6- Show there is no M such that M > xN;Ny--- N, and M > yPP,--- P,
(x #y).

7- Show that «<*=, and (—> U <—;)* are confluent.

Exercices

8- Equivalence by permutations.



