Lambda-Calculus (lli-1)

jean-jacques.levy@inria.fr

Tsinghua University,
September 3,2010

Plan

* language

e abbreviations

* |ocal confluency

e Church Rosser theorem

e Redexes and residuals

CENTRE DE RECHERCHE
COMMUN

INRIA
MICROSOFT RESEARCH

The lambda-calculus

e Lambda terms

M N &= X,V Z, ... (variables)
(Ax.M) (M as function of x)
(M N) (M applied to N)
c, d, ... (constants)

e Calculations “reductions”

(Ax.M)N) —> M{x = N}

Abbreviations
MMM, --- M, for (((MMl)MQ)Mn)
(Ax1x0 -+ - %, . M) for (Axy.(Axa. - - (Axp . M) --+))

external parentheses and parentheses after a dot may be forgotten

Exercice 1

Write following terms in long notation:

AX.X, AXAY.X, AXY.X, AXyzZ.y, Axyz.zxy, Axyz.z(xy),
(Ax.Ay.x)MN, (Axy x)MN, (Axy.y)MN, (Axy.y)(MN)

Examples

(Ax.x)N —> N
(M.f N)(Ax.x) = (Ox.x)N —> N

(Ax.xx) (Ax.xN) —> (AxxN)(Ax.xN) —> (Ax.xN)N —> NN
(Ax.x0x) (Axxx) = (Axox)(Axxx) —> - -

Y = (Ax.f(xx))(Ax.f(xx)) —> f((Ax.f(xx))(Ax.f(xx))) = f(Y¥)

F(YR) = F(F(YR) = - —> £7(¥p) —> -

Substitution

x{y =GR = cly =P} =c

yly == Hige

(MN){y := P} = M{y := P} N{y := P}
(Ay.M){y =P} =Ay.M

(Ax.M){y := P} = M M{x .= x"}H{y = P}
where x’ = x if y not free in M or x not free in P,

otherwise x’ is the first variable not free in M and P.
(we suppose that the set of variables is infinite and enumerable)

Free variables

var(x) = {x} var(c) =)
var(MN) = var(M) U var(N)
var(Ax.M) = var(M) — {x}

Conversion rules

XM —, A M{x =X} (x" & var(M))
(AXX-M)N —>5 M{x:= N}
AX.Mx —», M (x & var(M))

 |eft-hand-side of conversion rule is a redex (reductible expression)
e ag-redex, B-redex, n-redex, ...

* we forget indices when clear from context, often

Reduction step

* let R be aredexin M. Then one can contrat redex R in M and get N:

R
M — N

Reductions

M-=>N when M=My —> My — M, — ---M,=N (n>0)

e same with explicit contracted redexes

R: R> R,
M=My —> M — My--. —> M, =N

e and with named reductions
Ri R> R

o M=My —> M, — My--- —> M, =N

* we speak of redex occurences when specifying reduction steps,
but it is convenient to confuse redexes and redex occurences when clear from

context

Lambda theories

M =z N when Mand N are related by a zigzag of reductions

M and N are said interconvertible
w
M | \/\ N
\

Also M =, N, M =, N, M =5, N, ...
Interconvertibility is symmetric, reflexive, transivite closure of reduction relation

or with notations of mathematical logic:

aFM=N, 6kM=N, n=M=N, 8+nEM=N,..

the syntactic equality M = N will often stand for M =, N.

Exercice 3

e Show that M —> N implies var(N) C var(M).

* Find terms M such that:
M — M
M=My —> M — M, — ---M,=M (M, all distinct)
M=3gxM
M =3 Ax.M
M =5 MM
M =5 MNy N --- N, for all Ny, Ny, ... N,

* Find term Y such that, for any M:
YM =5 M(YM)

* Find Y’such that, for any M:
Y'M —=> M(Y'M)

e (difficult) Show there is only one redex R such that R — R

Normal forms

* An expression M without redexes is in normal form

M
e |f M reduces to a normal form, then M has a normal form

M => N, N in normal form

Exercice 4

* which of following terms are in -normal form ?

iIn Bn-normal form ?

AX.X Ax.x(Axy . x)(Ax.x)
AXY . X Axy . X(Axy.x)(Ax.yx)
AXY .XY Axy . x((Ax.xx)(Ax.xx))y

Axy . x((Ax.y(xx))(Ax.y(xx)))

Exercice 5

e Show that if M is in normal form and M = N, then M = N

e Show that:
1- \>x.M => N implies N = Ax.N' and M = N’

2- MN —=> P implies M = M', N—=> N’ and P= M'N'
or M= X x.M, N> N and M{x:=N}-=->P

3- XM1M2 S Mn —> N implies Ml —» Nl, M2 —> /V2, Mn — /Vn
and XN1N2°°°N,,:N

4- M{x = N} 2> \y.P implies M = Ay.M" and M'{x = N} => P
or M= xMiM,---M, and NMi{x := N} --- M, {x:= N} = \y.P

Reduction (axiomatic def.)

We can define reduction —» axiomatically by following axioms and rules:

e Definition [beta reduction]:

M — M N — N
[Appl Rule] N — N [App2 Rule] VN — VN
M — M

[Abs Rule] = Uoc | //Beta Axiom] (Ax.M)N — M{x := N}

Exercice 6

Give axiomatic definition for =, —, , =3, .

CENTRE DE RECHERCHE
COMMUN

INRIA
MICROSOFT RESEARCH

Confluency

Question: If M > N and M => P, then N => @ and P —=> @ for some Q ?

- ‘s * l' s ’ s ¢
\‘*‘ "l \é " \‘* *"
A Y 4)) ' 4
Q . '
1 N 4
)} q
)} 7 4

Corollary: [unicity of normal forms]

If M ==> N in normal form and M == N’ in normal form, then N = N’.

Local confluency

e Theorem 1 [lemma 11**]: If M — Nand M — P, then N <> Q and P == Q@
for some Q

: t
/ \ * Lemma1: M — N implies P{x:= M} = P{x:= N}
‘o *,° * Lemma2: M — N implies M{x := P} — N{x := P}
Q T
e Substitution lemma: M{x := N}{y = P} = M{y:= P}{x:= N{y := P}}

when x not free in P

Local confluency

e Substitution lemma: M{x .= N}{y =P} = M{y := P}H{x := N{y = P}}

when x not free in P

Proof:
Write A* = A{x := N}{y := P} and AT = A{y := P}{x := N{y := P}} for any A.

Case 1: M = x. Then M* = N{y := P} = MT.

Case 2: M =y. Then M* = P = P{x := A} for any A since x & var(P). Therefore
M* = P{x := N{y := P}} = MT.

Case 3: M = M{M,. This case is easy by induction.

Case 4: M = \z.M;. We assume (by a-conversion) that z is a fresh variable neither

in N/, nor in P. Then induction is easy, since M* = Az.M; and MT =)\Z.M]J_f. This
case is then similar to the previous one.

Confluency

e Fact: local confluency does not imply confluency

1 km/hr

Confluency

We define %> such that — C %> C —=—>

* Definition [parallel reduction]:

[Var Axiom] x +#> x

M 4> M N # N
MN > M'N’

[App Rule]

M 4> M N 4 N
(Ax.M)N +#> M'{x := N’}

| //Beta Rule]

e Example:

[Const Axiom] ¢ > ¢

M > M’

[Abs Rule] AX.M 4> \x.M’

X > X zZ #> z X > X Z > Z

|z %> =z Iz #> Zz

Iz(Iz) #> 2zz

| = \x.x

Confluency

e Goalis to prove strongly local confluency:

M
N . P

o S
\‘ ‘I
Q

e Example: (Ax.xx)(lz) #» (Mx.xx)z “y

Iz(Iz) H> 2z

Confluency

* Proof of confluency :

Confluency

Lemma4: M #> N and P %> Q implies M{x := P} #> N{x:= Q}

Lemmab5: It M %> Nand M %> P, then N %> Q and N %> @ for some Q.

Proofs L6/L7: structural induction + substitution lemma.

Lemma6: f M — N, then M 4> N.
Lemma?7: If M =% N, then M —=> N.

Proofs L6/L7: obvious.

* Theorem 2 [Church-Rosser]:
If M => N and M —=> P, then N => @ and P —=> Q@ for some Q.

Confluency

previous axiomatic method is due to Tait and Martin-Lof
Tait--Martin-Lof’'s method models inside-out parallel reductions

there are other proofs with explicit redexes

v

Curry’s finite developments

als of redexes

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Residuals of redexes

* tracking redexes while contracting others

e examples:
A(la) — la(la) A=XIx.xx | =Xxx K=JAxyx

Ia(A(16)) — La(lb(1b)
[(A(la)) — [(la(la))
A(la) — la(la))

a(A (1)) —> la(b(15))

é/A\—»AA

(Ax.1a)(Ib) —> la

Residuals of redexes

S
e when RisredexinMand M — N

the set R/S of residuals of R in N is defined by inspecting relative positions
of Rand Sin M.

S
1- Rand S disjoint M=---R---5--- —> -

R---§ . =N
2- Sin R=(\x.A)B
S
2a- SinA M= (x-S)B+ — - (M-S)B-- =N
S
2b- Sin B, M= (AA)(-S) — A S) = N
3-RinS=(\y.C)D
S
3a-R|nC’M:()\yB)D_) R{y: :N
S
3-RinD, M=---(Ay.C)(-+-R-+) -+ — -+ (-+-Re-) e (- Rev) - = N

4- R is S, no residuals of R.

Residuals of redexes

e when p is a reduction from Mto N,ie. p: M-—=> N
the set of residuals of R by p is defined by transitivity on the length of p

and is written R/p

* notice that we canhave S R/pand R# S

residuals may not be syntacticly equal (see previous 3rd example)

* residuals depend on reductions. Two reductions between same terms may
produce two distinct sets of residuals.

* aredex is residual of a single redex (the inverse of the residual relation is a
function): Re S/pand R€ T/p impliesS=T

Exercice 7

* Find redex R and reductions p and o between M and N such that residuals
of R by p and o differ. Hint: consider M = [(/x)

* Show that residuals of nested redexes keep nested.

e Show that residuals of disjoint redexes may be nested.

* Show that residuals of a redex may be nested after several reduction steps.

Created redexes

 Aredex is created by reduction p if it is not a residual by p of a redex in
initial term. Thus R is created by pwhen p: M <> N and AS, R€ S/p

(Ax.xa)l —> la lla —> [a

(Axy.xy)ab —> (Ay.ay)b AN — AA

Residuals of redexes

(Ax.xx)((Af.f3) (AXi())

/

(Af.f3)(Ax.x)((Af.f3)(AXx.x))

—

(Af.F3)(Ax.x)((Ax.x)3) (Ax.x)3((Af.f3)(Ax.x)) (Ax.xx)(()\X.X)i)

| N\ S

(Af.f3)(Ax.x)3 (Ax.x)3((Ax.x)3) 3((Af.f3)(Ax.x))

o Y

(Ax.x)33 3((Ax.x)3) (Ax.xx)3

e

N

33

CENTRE DE RECHERCHE
COMMUN

INRIA
MICROSOFT RESEARCH

Exercices 8

e Show that:

1-M —, N — P implies M — Q =, P for some Q

2- M =, N = P implies M => Q ==, P for some Q

3- M =3, N implies M => P —=>,_ N for some P

4- M — N and M —>, P implies N =, Q and P —> Q@ for some @
5- M =, N and M =, P implies N =, Q and P =>, Q for some Q

6- M =3, Nand M =3, Pimplies N =»3, Q and P =3, Q for some Q

Therefore -3, is confluent.

e Show same property for B-reduction and n-expansion (— U <—,)*

Exercices

7- Show there is no M such that M > Kac and M <> Kbc where K = Ax.\y .x.

8- Find M such that M == Kab and M —=> Kac.

9- (difficult) Show that €<= is not confluent.

