Lambda-Calculus (III-I)

jean-jacques.levy@inria.fr Tsinghua University, September 3, 2010

Plan

- language
- abbreviations
- local confluency
- Church Rosser theorem
- Redexes and residuals

λ-calculus

The lambda-calculus

Lambda terms

M, N, P	::=	X, Y, Z,	(variables)
	I	(λ <i>x.M</i>)	(M as function of x)
		(M N)	(<i>M</i> applied to <i>N</i>)
	Ι	c, d,	(constants)

Calculations "reductions"

 $((\lambda x.M)N) \longrightarrow M\{x := N\}$

Abbreviations

 $MM_1M_2\cdots M_n \quad \text{for} \quad (\cdots ((MM_1)M_2)\cdots M_n)$ $(\lambda x_1x_2\cdots x_n . M) \quad \text{for} \quad (\lambda x_1.(\lambda x_2.\cdots (\lambda x_n . M)\cdots))$

external parentheses and parentheses after a dot may be forgotten

Exercice 1

Write following terms in long notation:

 $\lambda x.x, \lambda x.\lambda y.x, \lambda xy.x, \lambda xyz.y, \lambda xyz.zxy, \lambda xyz.z(xy),$ $(\lambda x.\lambda y.x)MN, (\lambda xy.x)MN, (\lambda xy.y)MN, (\lambda xy.y)(MN)$

Examples

 $(\lambda x.x)N \longrightarrow N$

 $(\lambda f.f N)(\lambda x.x) \longrightarrow (\lambda x.x) N \longrightarrow N$

 $(\lambda x.xx)(\lambda x.xN) \longrightarrow (\lambda x.xN)(\lambda x.xN) \longrightarrow (\lambda x.xN)N \longrightarrow NN$

 $(\lambda x.xx)(\lambda x.xx) \longrightarrow (\lambda x.xx)(\lambda x.xx) \longrightarrow \cdots$

 $Y_f = (\lambda x.f(xx))(\lambda x.f(xx)) \longrightarrow f((\lambda x.f(xx))(\lambda x.f(xx))) = f(Y_f)$

 $f(Y_f) \longrightarrow f(f(Y_f)) \longrightarrow \cdots \longrightarrow f^n(Y_f) \longrightarrow \cdots$

Substitution

 $\begin{aligned} x\{y &:= P\} = x & c\{y &:= P\} = c \\ y\{y &:= P\} = P \\ (MN)\{y &:= P\} = M\{y &:= P\} N\{y &:= P\} \\ (\lambda y.M)\{y &:= P\} = \lambda y.M \\ (\lambda x.M)\{y &:= P\} = \lambda x'.M\{x &:= x'\}\{y &:= P\} \\ \text{where } x' &= x \text{ if } y \text{ not free in } M \text{ or } x \text{ not free in } P, \\ \text{otherwise } x' \text{ is the first variable not free in } M \text{ and } P. \\ (\text{we suppose that the set of variables is infinite and enumerable}) \end{aligned}$

Free variables

 $var(x) = \{x\} \quad var(c) = \emptyset$ $var(MN) = var(M) \cup var(N)$ $var(\lambda x.M) = var(M) - \{x\}$

Conversion rules

$$\lambda x.M \rightarrow_{\alpha} \lambda x'.M\{x := x'\} \qquad (x' \notin var(M))$$
$$(\lambda x.M)N \rightarrow_{\beta} M\{x := N\}$$
$$\lambda x.Mx \rightarrow_{\eta} M \qquad (x \notin var(M))$$

- left-hand-side of conversion rule is a redex (reductible expression)
- α -redex, β -redex, η -redex, ...
- we forget indices when clear from context, often β

Reduction step

• let *R* be a redex in *M*. Then one can contrat redex *R* in *M* and get *N*:

$$M \xrightarrow{R} N$$

Reductions

 $M \xrightarrow{*} N$ when $M = M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots M_n = N$ $(n \ge 0)$

same with explicit contracted redexes

 $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$

and with named reductions

 $\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$

 we speak of redex occurrences when specifying reduction steps, but it is convenient to confuse redexes and redex occurrences when clear from context

Lambda theories

 $M =_{\beta} N$ when *M* and *N* are related by a zigzag of reductions *M* and *N* are said **interconvertible**

• Also
$$M =_{\alpha} N$$
, $M =_{\eta} N$, $M =_{\beta,\eta} N$, ...

- Interconvertibility is symmetric, reflexive, transivite closure of reduction relation
- or with notations of mathematical logic:

 $\alpha \vdash M = N, \ \beta \vdash M = N, \ \eta \vdash M = N, \ \beta + \eta \vdash M = N, \dots$

• the syntactic equality M = N will often stand for $M =_{\alpha} N$.

Exercice 3

- Show that $M \longrightarrow N$ implies $var(N) \subset var(M)$.
- Find terms *M* such that:

$$M \longrightarrow M$$

$$M = M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots M_n = M \quad (M_i \text{ all distinct}$$

$$M =_{\beta} \times M$$

$$M =_{\beta} \Lambda \times M$$

$$M =_{\beta} MM$$

$$M =_{\beta} MN_1 N_2 \cdots N_n \text{ for all } N_1, N_2, \dots N_n$$

• Find term Y such that, for any M:

 $YM =_{\beta} M(YM)$

• Find Y' such that, for any M:

 $Y'M \xrightarrow{\star} M(Y'M)$

• (difficult) Show there is only one redex R such that $R \rightarrow R$

Normal forms

• An expression *M* without redexes is in normal form

 $M \not\rightarrow$

• If *M* reduces to a normal form, then *M* has a normal form

 $M \xrightarrow{} N$, N in normal form

Exercice 4

• which of following terms are in β -normal form ? in $\beta\eta$ -normal form ?

 $\lambda x.x \qquad \lambda x.x(\lambda xy.x)(\lambda x.x)$ $\lambda xy.x \qquad \lambda xy.x(\lambda xy.x)(\lambda x.yx)$ $\lambda xy.xy \qquad \lambda xy.x((\lambda x.xx)(\lambda x.xx))y$ $\lambda xy.x((\lambda x.y(xx))(\lambda x.y(xx)))$

Exercice 5

- Show that if *M* is in normal form and $M \xrightarrow{} N$, then M = N
- Show that:

1- $\lambda x.M \longrightarrow N$ implies $N = \lambda x.N'$ and $M \longrightarrow N'$

2- $MN \xrightarrow{\bullet} P$ implies $M \xrightarrow{\bullet} M'$, $N \xrightarrow{\bullet} N'$ and P = M'N'or $M \xrightarrow{\bullet} \lambda x.M'$, $N \xrightarrow{\bullet} N'$ and $M'\{x := N'\} \xrightarrow{\bullet} P$

3- $xM_1M_2 \cdots M_n \xrightarrow{*} N$ implies $M_1 \xrightarrow{*} N_1$, $M_2 \xrightarrow{*} N_2$, ... $M_n \xrightarrow{*} N_n$ and $xN_1N_2 \cdots N_n = N$

4- $M\{x := N\} \xrightarrow{*} \lambda y.P$ implies $M \xrightarrow{*} \lambda y.M'$ and $M'\{x := N\} \xrightarrow{*} P$ or $M \xrightarrow{*} xM_1M_2 \cdots M_n$ and $NM_1\{x := N\} \cdots M_n\{x := N\} \xrightarrow{*} \lambda y.P$

Reduction (axiomatic def.)

We can define reduction \rightarrow axiomatically by following axioms and rules:

• Definition [beta reduction]:

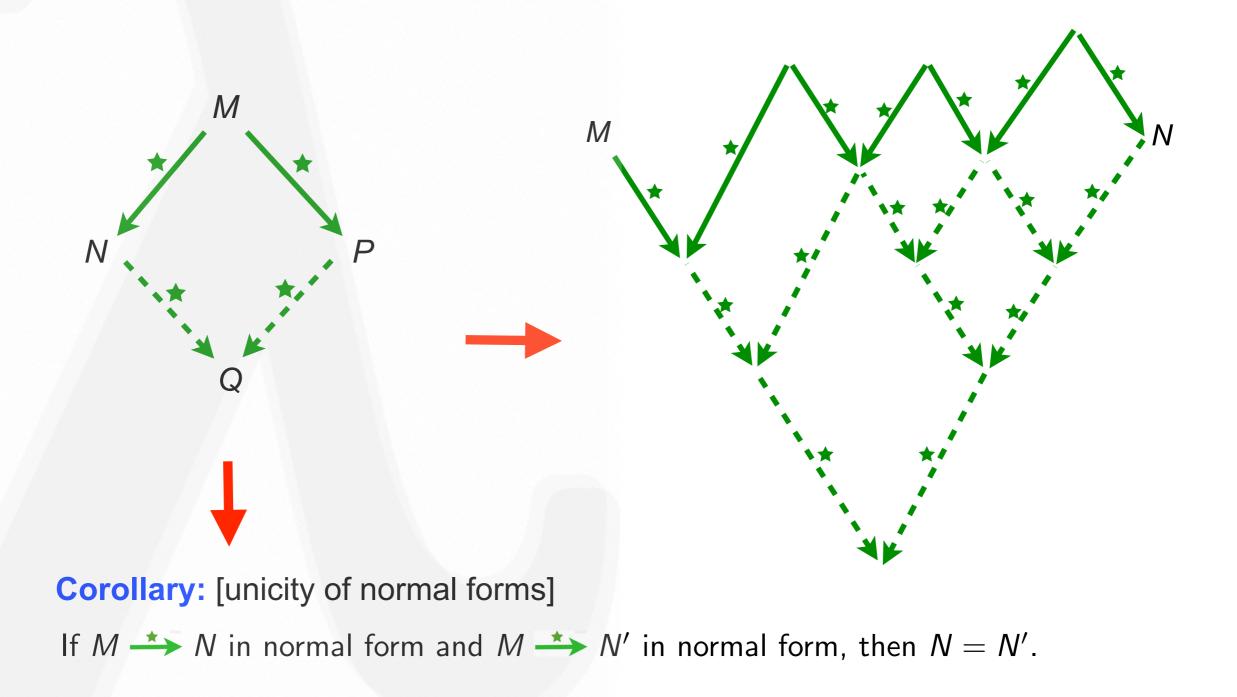
 $\begin{bmatrix} \text{App1 Rule} \end{bmatrix} \xrightarrow{M \longrightarrow M'}_{MN \longrightarrow M'N} \qquad \begin{bmatrix} \text{App2 Rule} \end{bmatrix} \xrightarrow{N \longrightarrow N'}_{MN \longrightarrow MN'}$ $\begin{bmatrix} \text{Abs Rule} \end{bmatrix} \xrightarrow{M \longrightarrow M'}_{\lambda x.M \longrightarrow \lambda x.M'} \qquad \begin{bmatrix} //\text{Beta Axiom} \end{bmatrix} (\lambda x.M)N \longrightarrow M\{x := N\}$

Exercice 6

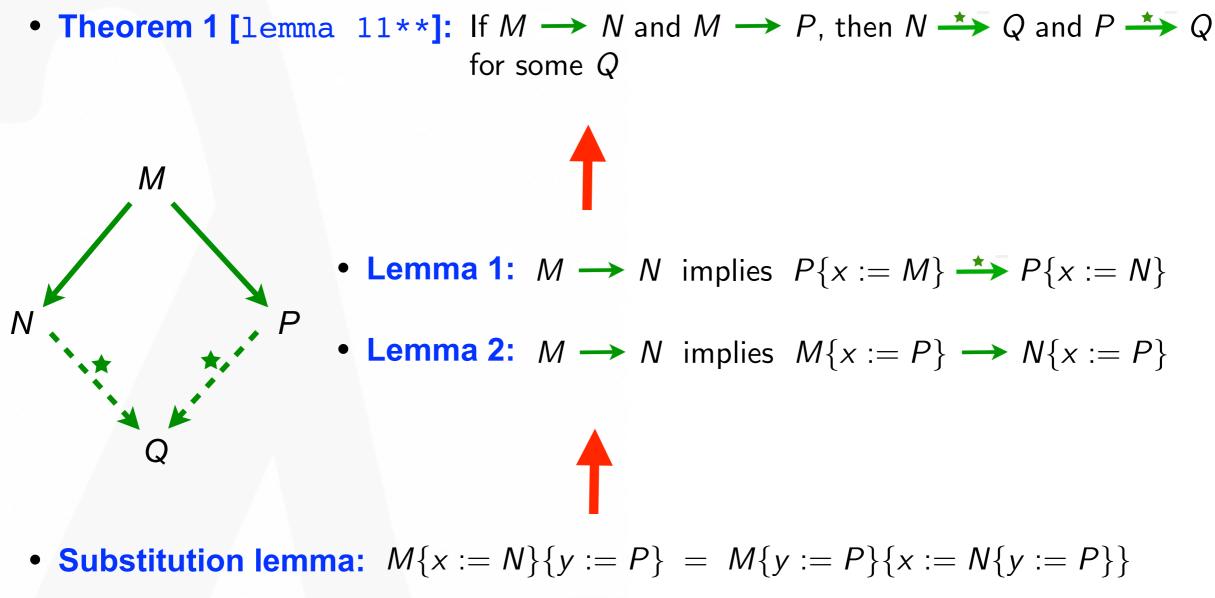
Give axiomatic definition for $\stackrel{\star}{\longrightarrow}$, \rightarrow_{η} , $\stackrel{\star}{\longrightarrow}_{\beta,\eta}$.

CENTRE DE RECHERCHE COMMUN

Question: If $M \xrightarrow{*} N$ and $M \xrightarrow{*} P$, then $N \xrightarrow{*} Q$ and $P \xrightarrow{*} Q$ for some Q?



Local confluency



when x not free in P

Local confluency

• Substitution lemma: $M\{x := N\}\{y := P\} = M\{y := P\}\{x := N\{y := P\}\}$ when x not free in P

Proof:

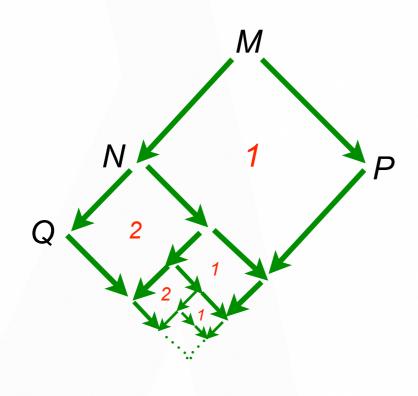
Write $A^* = A\{x := N\}\{y := P\}$ and $A^{\dagger} = A\{y := P\}\{x := N\{y := P\}\}$ for any A. Case 1: M = x. Then $M^* = N\{y := P\} = M^{\dagger}$. Case 2: M = y. Then $M^* = P = P\{x := A\}$ for any A since $x \notin var(P)$. Therefore

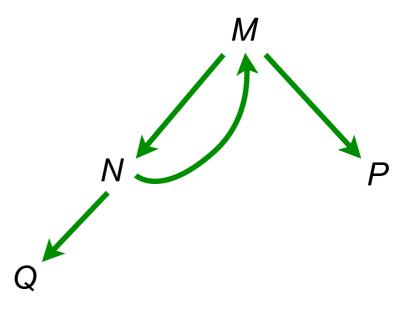
Case 2: M = y. Then $M^* = P = P\{x := A\}$ for any A since $x \notin var(P)$. Therefore $M^* = P\{x := N\{y := P\}\} = M^{\dagger}$.

Case 3: $M = M_1 M_2$. This case is easy by induction.

Case 4: $M = \lambda z.M_1$. We assume (by α -conversion) that z is a fresh variable neither in N, nor in P. Then induction is easy, since $M^* = \lambda z.M_1^*$ and $M^{\dagger} = \lambda z.M_1^{\dagger}$. This case is then similar to the previous one.

• Fact: local confluency does not imply confluency





10 km/hr

1 km/hr

We define # such that $\rightarrow \subset \# \subset \checkmark$

• Definition [parallel reduction]:

Var Axiom]
$$x \not\leftrightarrow x$$
[Const Axiom] $c \not\leftrightarrow c$

[App Rule]
$$\frac{M \not\!\!\!\!/ \longrightarrow M' \quad N \not\!\!\!\!/ \longrightarrow N'}{MN \not\!\!\!\!\!/ \longrightarrow M'N'}$$

[Const Axiom]
$$c \not\rightarrow c$$

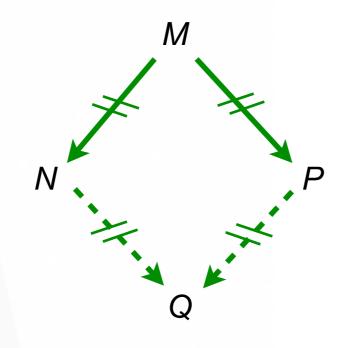
[Abs Rule]
$$\xrightarrow{M \not H} M'$$

 $\lambda x.M \not H \lambda x.M'$

$$[//Beta Rule] \xrightarrow{M \not\!\!\!\!/} M' \xrightarrow{N} M' \xrightarrow{N'} N' \\ (\lambda x.M)N \not\!\!\!\!\!/ M' \{x := N'\}$$

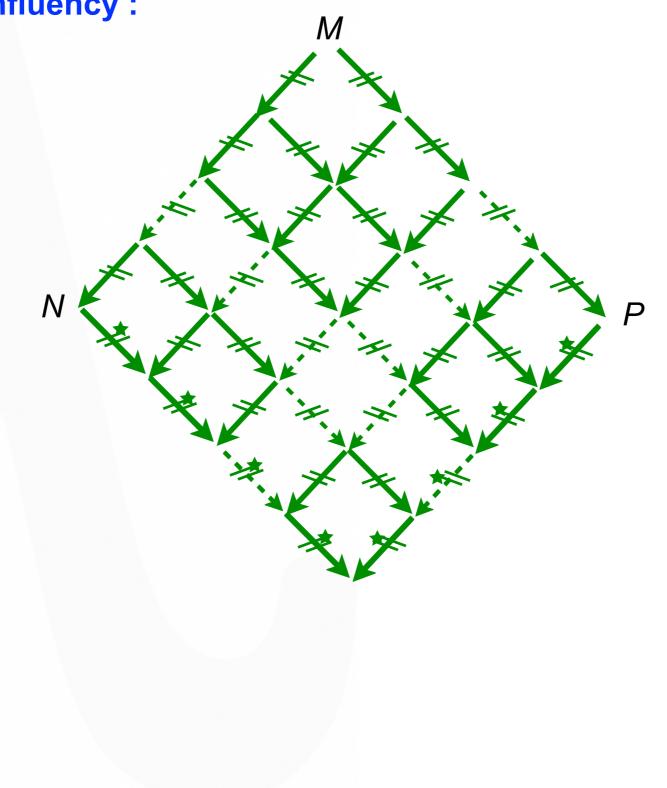
• Example:

• Goal is to prove **strongly local confluency**:



• Example: $(\lambda x.xx)(Iz)$ \cancel{H} $(\lambda x.xx)z$ \cancel{H} Iz(Iz) \cancel{H} zz

• Proof of confluency :



- Lemma 4: $M \not\rightarrow N$ and $P \not\rightarrow Q$ implies $M\{x := P\} \not\rightarrow N\{x := Q\}$
- Lemma 5: If $M \not\leftrightarrow N$ and $M \not\leftrightarrow P$, then $N \not\leftrightarrow Q$ and $N \not\leftrightarrow Q$ for some Q. Proofs L6/L7: structural induction + substitution lemma.

- Lemma 6: If $M \rightarrow N$, then $M \not\leftrightarrow N$.
- Lemma 7: If $M \not\rightarrow N$, then $M \not\rightarrow N$.

Proofs L6/L7: obvious.

Theorem 2 [Church-Rosser]:
 If M → N and M → P, then N → Q and P → Q for some Q.

- previous axiomatic method is due to Tait and Martin-Löf
- Tait--Martin-Löf's method models inside-out parallel reductions
- there are other proofs with explicit redexes

Curry's finite developments

- tracking redexes while contracting others
- examples:

 $\Delta(Ia) \rightarrow Ia(Ia)$ $Ia(\Delta(Ib)) \rightarrow Ia(Ib(Ib))$ $I(\Delta(Ia)) \rightarrow I(Ia(Ia))$ $\Delta(Ia) \rightarrow Ia(Ia))$ $Ia(\Delta(Ib)) \rightarrow Ia(Ib(Ib))$ $\Delta\Delta \rightarrow \Delta\Delta$ $(\lambda x.Ia)(Ib) \rightarrow Ia$

$$\Delta = \lambda x. xx \quad I = \lambda x. x \quad K = \lambda xy. x$$

when *R* is redex in *M* and *M* → *N* the set *R*/*S* of residuals of *R* in *N* is defined by inspecting relative positions of *R* and *S* in *M*:

1- *R* and *S* disjoint,
$$M = \cdots R \cdots S \cdots \xrightarrow{S} \cdots R \cdots S' \cdots = N$$

2-
$$S \text{ in } R = (\lambda x.A)B$$

2a- $S \text{ in } A, M = \cdots (\lambda x. \cdots S \cdots)B \cdots \stackrel{S}{\rightarrow} \cdots (\lambda x. \cdots S' \cdots)B \cdots = N$
2b- $S \text{ in } B, M = \cdots (\lambda x.A)(\cdots S \cdots)\cdots \stackrel{S}{\rightarrow} \cdots (\lambda x.A)(\cdots S' \cdots)\cdots = N$
3- $R \text{ in } S = (\lambda y.C)D$
3a- $R \text{ in } C, M = \cdots (\lambda y. \cdots R \cdots)D \cdots \stackrel{S}{\rightarrow} \cdots \cdots R\{y := D\} \cdots = N$
3b- $R \text{ in } D, M = \cdots (\lambda y.C)(\cdots R \cdots)\cdots \stackrel{S}{\rightarrow} \cdots (\cdots R \cdots)\cdots (\cdots R \cdots)\cdots = N$

4- R is S, no residuals of R.

- when ρ is a reduction from M to N, i.e. ρ: M → N
 the set of residuals of R by ρ is defined by transitivity on the length of ρ and is written R/ρ
- notice that we can have S ∈ R/ρ and R ≠ S
 residuals may not be syntacticly equal (see previous 3rd example)
- residuals depend on reductions. Two reductions between same terms may produce two distinct sets of residuals.
- a redex is residual of a single redex (the inverse of the residual relation is a function): R ∈ S/ρ and R ∈ T/ρ implies S = T

Exercice 7

- Find redex *R* and reductions ρ and σ between *M* and *N* such that residuals of *R* by ρ and σ differ. Hint: consider $M = I(I_X)$
- Show that residuals of nested redexes keep nested.
- Show that residuals of disjoint redexes may be nested.
- Show that residuals of a redex may be nested after several reduction steps.

Created redexes

• A redex is created by reduction ρ if it is not a residual by ρ of a redex in initial term. Thus R is created by ρ when $\rho : M \xrightarrow{\bullet} N$ and $\nexists S, R \in S/\rho$

$$(\lambda x.xa)I \longrightarrow Ia$$

$$(\lambda xy.xy)ab \longrightarrow (\lambda y.ay)b$$

$$\Delta \Delta \longrightarrow \Delta \Delta$$

Residuals of redexes $(\lambda x.xx)((\lambda f.f3)(\lambda x.x))$ $(\lambda f.f3)(\lambda x.x)((\lambda f.f3)(\lambda x.x))$ $(\lambda f.f3)(\lambda x.x)((\lambda x.x)3)$ $(\lambda x.x) 3 ((\lambda f.f3) (\lambda x.x))$ $(\lambda x.xx)((\lambda x.x)3)$ $(\lambda x.x)3((\lambda x.x)3)$ $(\lambda f.f3)(\lambda x.x)3$ $3((\lambda f.f3)(\lambda x.x))$ $(\lambda x.x)33$ $3((\lambda x.x)3)$ $(\lambda x.xx)3$ 33

Homeworks

CENTRE DE RECHERCHE COMMUN

Exercices 8

• Show that:

1- $M \rightarrow_{\eta} N \rightarrow P$ implies $M \rightarrow Q \stackrel{*}{\rightarrow}_{\eta} P$ for some Q

2- $M \xrightarrow{\star}_{\eta} N \xrightarrow{\star} P$ implies $M \xrightarrow{\star}_{\eta} Q \xrightarrow{\star}_{\eta} P$ for some Q

3- $M \xrightarrow{\star}_{\beta,\eta} N$ implies $M \xrightarrow{\star} P \xrightarrow{\star}_{\eta} N$ for some P

4- $M \longrightarrow N$ and $M \longrightarrow_{\eta} P$ implies $N \xrightarrow{*}_{\eta} Q$ and $P \xrightarrow{1} Q$ for some Q

5- $M \xrightarrow{\star}_{\eta} N$ and $M \xrightarrow{\star}_{\eta} P$ implies $N \xrightarrow{\star}_{\eta} Q$ and $P \xrightarrow{\star}_{\eta} Q$ for some Q

6- $M \xrightarrow{*}_{\beta,\eta} N$ and $M \xrightarrow{*}_{\beta,\eta} P$ implies $N \xrightarrow{*}_{\beta,\eta} Q$ and $P \xrightarrow{*}_{\beta,\eta} Q$ for some QTherefore $\xrightarrow{*}_{\beta,\eta}$ is confluent.

• Show same property for β -reduction and η -expansion ($\longrightarrow \cup \longleftarrow_{\eta}$)*

Exercices

- 7- Show there is no M such that $M \xrightarrow{*} Kac$ and $M \xrightarrow{*} Kbc$ where $K = \lambda x \cdot \lambda y \cdot x$.
- 8- Find M such that $M \xrightarrow{} Kab$ and $M \xrightarrow{} Kac$.
- 9- (difficult) Show that \leftarrow is not confluent.