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The lambda-calculus

¢ Lambda terms

M,N,P = XxVz..
[ (AxM)
| (MN)

| cd, ..

¢ Calculations “reductions’

(Ax-M)N) — M{x := N}

(variables)
(M as function of x)
(M applied to N)

(constants )



Abbreviations

MMMy - - - M, for (- (MM)Mp) - - - M)

(Axixa -+ X . M) for (Axt.(Axz. -+ (Axn . M) -+ +))

external parentheses and parentheses after a dot may be forgotten

Exercice 1

Write following terms in long notation:

AX.X, AXAY.X, AXy.X, Axyz.y, Axyz.zxy, Axyz.z(xy),
(A Ay x)MN, (Axy x)MN, (Axy.y)MN, (Axy.y)(MN)

Examples

(AxX)N — N

(AF.F N)(Ax.x) = (Ax )N —> N

(M) (AxxN) —> (AxxN)(AxxN) —> (Ax.xN)N —> NN
(M) (k) —> (Axxx)(Axxx) —> -

Yr = (Ax.f(xx))(Ax.f(xx)) —> F((Ax.F(xx))(Ax.f(xx))) = F(YF)

F(Ye) = FE(Y) = - = £7(Yy) = -

Substitution
x{y =P} =x cly=P}=c
y=prPr=P

(MN){y := P} = M{y := P} N{y := P}
Ay M{y =P} =Iy.M

(AMx-M){y := P} = XX M{x:=x"}H{y:=P}

where x’ = x if y not free in M or x not free in P,

otherwise x’ is the first variable not free in M and P.

(we suppose that the set of variables is infinite and enumerable)

Free variables

var(x) = {x} var(c) =10
var(MN) = var(M) U var(N)
var(Ax.M) = var(M) — {x}

Conversion rules

XM =, M M{x:=x} (x" & var(M))
(M MN  —5  M{x:=N}
MXMx  —, M (x & var(M))

* left-hand-side of conversion rule is a redex (reductible expression)
* a-redex, B-redex, n-redex, ...

» we forget indices when clear from context, often 8

Reduction step

* let R be aredex in M. Then one can contrat redex R in M and get N:

R
M — N



Reductions Exercice 3

¢ Show that M —> N implies var(N) C var(M).

M=gllhen M=M= M —> M = My =N (n20) ¢ Find terms M such that:

» same with explicit contracted redexes M — M
- . R M=My —> My — My — ---M, =M (M; all distinct)
M=My —> M, —> My--- —> M, =N M=5xM
M =5 Ax.M
* and with named reductions M =5 MM
e = —R-1> 0 —R-2> M. _R_n) M. =N M =g MN{N; --- N, forall Ny, Ny, ... N,

¢ Find term Y such that, for any M:

* we speak of redex occurences when specifying reduction steps,
YM =5 M(YM)

but it is convenient to confuse redexes and redex occurences when clear from

context * Find Y’such that, for any M:
Y'M —=> M(Y'M)
* (difficult) Show there is only one redex R such that R — R
Lambda theories Normal forms
M =5 N when Mand N are related by a zigzag of reductions A

An expression M without redexes is in normal form
M and N are said interconvertible

M A
\ ¢ |f M reduces to a normal form, then M has a normal form
\od
M /\/\ N M —=> N, N in normal form
\

Exercice 4

Also M =, N, M =, N, M =5, N, ... * which of following terms are in 8-normal form ?

Interconvertibility is symmetric, reflexive, transivite closure of reduction relation in Bn-normal form ?

or with notations of mathematical logic: . Axx (o x) (Ax.x)
aFM=N, BFM=N, n-M=N, S+nF-M=N,.. % Ay x Oy x) (Ax.yx)

the syntactic equality M = N will often stand for M =, N. AXY . Xy Axy . x((Ax.xx)(Ax.xx))y

Axy . x((Ax.y (xx))(Ax.y(xx)))



Exercice 5

e Show that if M is in normal form and M > N, then M = N

¢ Show that:
1- \x.M => N implies N = x.N' and M —=> N’

2- MN => P implies M <> M', N—=> N’ and P= M'N'
or M= MM, N-=> N and M'{x:=N}-=>P

3- xMiMy - - - M, <> N implies My <> Ny, My => Ny, ... M, => N,
and XN1N2--~N,, =N

4- M{x := N} => A\y.P implies M <> \y.M’ and M'{x:= N} => P
or M= xMiMy--- M, and NMi{x := N}-- - M,{x := N} => \y.P

Reduction (axiomatic def.)

We can define reduction —> axiomatically by following axioms and rules:

¢ Definition [beta reduction]:

M — M N — N
[Appl Rule] mrm—rn [App2 Rule] rem——my
M — M

[Abs Rule] oM W [//Beta Axiom| (Ax.M)N — M{x := N}

Exercice 6

Give axiomatic definition for =, —, , =>4, .

‘Confluency
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Confluency

Question: If M <> N and M —=> P, then N > Q and P => Q@ for some Q ?

*
M \A
M N
W, 4
/ \ * s o * 2
G ¢ S 4
AR
N . P f e e
\\‘ "o \$ K \3 *"
4
4k — T ™
Q . ’
. '
. 4
\‘* *'l

Corollary: [unicity of normal forms]

If M —> N in normal form and M <> N’ in normal form, then N = N'.



Local confluency

¢ Theorem 1 [lemma 11**]: If M — N and M — P, then N <> Q and P > Q

for some @

z t
/ \ e Lemma1: M — N implies P{x:= M} = P{x:= N}

e Lemma2: M — N implies M{x := P} — N{x:= P}

Q t
¢ Substitution lemma: M{x := N}{y =P} = M{y := P}{x:= N{y = P}}

when x not free in P

Local confluency

¢ Substitution lemma: M{x:= N}{y =P} = M{y := P}{x:= N{y := P}}

when x not free in P
Proof:
Write A* = A{x := N}{y := P} and AT = A{y := P}{x := N{y := P}} for any A.
Case 1: M = x. Then M* = N{y := P} = M.

Case 22 M =y. Then M* = P = P{x := A} for any A since x & var(P). Therefore
M* = P{x = N{y := P}} = M.

Case 3: M = M;M,. This case is easy by induction.

Case 4: M = \z.M;. We assume (by a-conversion) that z is a fresh variable neither

in N, nor in P. Then induction is easy, since M* = Az.Mj and M = )\z.MI. This
case is then similar to the previous one.

Confluency

¢ Fact: local confluency does not imply confluency

M M
N/ 1\ / \
/ \ /P N P
Q¥ 2 /
\ / N Q
i
10 km/hr
1 km/hr
Confluency
We define #> such that — C #> C =>
* Definition [parallel reduction]:
[Var Axiom] x #> x [Const Axiom] ¢ #> ¢
M # M N #> N M #> M
[App Rule] = [Abs Rule] S b~ w7
M #> M N #> N
[//Beta Rule] (55 iR M {x = W'}
* Example:
X #> X z >z X #» x z #>» z
Iz #> z Iz #> z
| = Ax.x

Iz(Iz) +#> zz



Confluency

* Goalis to prove strongly local confluency:

2N

* Example: (Ax.xx)(lz) #> (Ax.xx)z

1z(Iz) -#>

Confluency

* Proof of confluency :

A

A% &%<<f

<x

Confluency

Lemma4: M -#> N and P #> Q implies M{x := P} #>» N{x:= Q}

Lemmab5: If M %> Nand M +#> P,then N #> Q and N #> Q for some Q.

Proofs L6/L7: structural induction + substitution lemma.

Lemma6: If M — N, then M 4> N.
Lemma7: f M #> N, then M => N.

Proofs L6/L7: obvious.

e Theorem 2 [Church-Rosser]:
If M=> N and M => P, then N => Q and P =>» Q for some Q.

Confluency

* previous axiomatic method is due to Tait and Martin-Lof
* Tait--Martin-L6f's method models inside-out parallel reductions

* there are other proofs with explicit redexes

\

* Curry’s finite developments



Lials of redexes
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Residuals of redexes

* tracking redexes while contracting others

* examples:
A(la) — la(la) A=X.xx |=Xxx K=Myx

la(A\(Ib)) —> la(Ib(Ib))
(A=) — ((a(i)
A(la) —> la(la))
la(A\(1b)) —> la(lb(1b))
AA — AA

(Ax.fa)(Ib) — la

Residuals of redexes

s
* when RisredexinMand M — N
the set R/S of residuals of R in N is defined by inspecting relative positions
of Rand Sin M:

S
1- Rand Sdisjoint, M= ---R---§--- —> ... R---§' ... = N

2- Sin R = (\x.A)B

s
2a-SinA M= (Ax. S )B--—> - (Ax.. S )B =N

2b-5inB,M:~-~(/\X.A)(~~~S~~~)~-~—S>~~~(>\X.A)(~~~5' ... )oo=N
3-RinS=(\y.C)D
3a-RinC,M:~--(>\y.~~-5~-~)D~-~—s> ...... R{y:=D}----- =N

3-RinD,M=---Oy.O)(---R-+)--—> - (--R-) (- B)-=N

4- Ris S, no residuals of R.

Residuals of redexes

¢ when p is a reduction from Mto N,i.e. p: M—=> N
the set of residuals of R by p is defined by transitivity on the length of p
and is written R/p

* notice thatwe can have S€ R/pand R# S
residuals may not be syntacticly equal (see previous 3rd example)

¢ residuals depend on reductions. Two reductions between same terms may
produce two distinct sets of residuals.

* aredex is residual of a single redex (the inverse of the residual relation is a
function): Re€ S/pand R€ T/pimplies S =T



Exercice 7

Find redex R and reductions p and o between M and N such that residuals
of R by p and o differ. Hint: consider M = /(Ix)

Show that residuals of nested redexes keep nested.

Show that residuals of disjoint redexes may be nested.

Show that residuals of a redex may be nested after several reduction steps. p O I I I eWO r kS

Created redexes

* Aredex is created by reduction p if it is not a residual by p of a redex in
initial term. Thus R is created by o when p: M => N and #S, R € S/p

(Ax.xa)l —> la

la —> la
(Axy.xy)ab —> (\y.ay)b AA — AA
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Residuals of redexes

Exercices 8

(AXXX)((AF.£3)(AX.X)) ¢ Show that:
=
/ 1-M —, N — P implies M — Q >, P for some Q

(Af.13) (Ax.X)((AL.£3)(Ax.X))

2- M 2>, N => P implies M <> Q —>,, P for some Q

3- M =>4, N implies M => P >, N for some P
(Af f3)(Ax.x)((Ax.x)3) (AX.X)3((Af.f3)(Ax.x)) (Ax.xx)((Ax.x)3) 1
J \ /AX 4- M — N and M —>, P implies N <>, Q and P —> Q for some Q
(M) (Ax03 )33 3B Ax) 5- M >, N and M <>, P implies N <>, Q and P >, Q for some Q
\ i \ '/ 6- M >4, Nand M =>4, P implies N =>4, Q and P =>4, @ for some Q
(Ax.x)33 3((Ax.x)3) (Ax.xx)3

Therefore —>4,, is confluent.

» Show same property for 8-reduction and n-expansion (— U <—,)*
33



Exercices

7- Show there is no M such that M <> Kac and M <> Kbc where K = Ax.\y.x.
8- Find M such that M > Kab and M <> Kac.

9- (difficult) Show that <= is not confluent.



