Lambda-Calculus (II)

jean-jacques.levy@inria.fr
2nd Asian-Pacific Summer School on Formal Methods
Tsinghua University,
August 24, 2010
Plan

- local confluence
- Church Rosser theorem
- Redexes and residuals
- Finite developments theorem
- Standardization theorem
Confluence
Consistency

Question: Can we get $M \xrightarrow{*} 2$ and $M \xrightarrow{*} 3$?

Consequence: $2 =_{\beta} 3$!!
Question: If $M \equiv_{\beta} N$, then $M \rightarrow^* P$ and $N \rightarrow^* P$ for some P ??

Then impossible to get $2 \equiv_{\beta} 3$
Confluency

Question: If $M \xrightarrow{*} N$ and $M \xrightarrow{*} P$, then $N \xrightarrow{*} Q$ and $P \xrightarrow{*} Q$ for some Q?

Corollary: [unicity of normal forms]

If $M \xrightarrow{*} N$ in normal form and $M \xrightarrow{*} N'$ in normal form, then $N = N'$.
Confluency

Goal: If \(M \rightarrow^* N \) and \(M \rightarrow^* P \), there is \(Q \) such that \(N \rightarrow^* Q \) and \(P \rightarrow^* Q \)

How to prove confluency?
Local confluence

• **Theorem 1:** If $M \rightarrow N$ and $M \rightarrow P$ there is Q such that $N \xrightarrow{*} Q$ and $P \xrightarrow{*} Q$

• **Lemma 1:** $M \rightarrow N$ implies $P\{x := M\} \xrightarrow{*} P\{x := N\}$

• **Lemma 2:** $M \rightarrow N$ implies $M\{x := P\} \rightarrow N\{x := P\}$

• **Substitution lemma:** $M\{x := N\}\{y := P\} = M\{y := P\}\{x := N\}\{y := P\}$

 when x not free in P

• **Example:** $(\lambda x.xx)(Iz) \rightarrow (\lambda x.xx)z \rightarrow Iz(Iz) \xrightarrow{*} zz$

 where $I = \lambda x.x$
Confluency

- **Fact**: local confluency does not imply confluency
Confluency

We define \(\Rightarrow \) such that \(\rightarrow \subseteq \Rightarrow \subseteq \ast \rightarrow \)

- **Definition [parallel reduction]:**

 \[
 \begin{align*}
 \text{[Var Axiom]} & \quad x \Rightarrow x \\
 \text{[Const Axiom]} & \quad c \Rightarrow c \\
 \text{[App Rule]} & \quad \frac{M \Rightarrow M' \quad N \Rightarrow N'}{MN \Rightarrow M'N'} \\
 \text{[Abs Rule]} & \quad \frac{M \Rightarrow M'}{\lambda x.M \Rightarrow \lambda x.M'} \\
 \text{[//Beta Rule]} & \quad \frac{M \Rightarrow M' \quad M' \Rightarrow N' \quad N \Rightarrow N'}{(\lambda x.M)N \Rightarrow M'\{x := N'\}}
 \end{align*}
 \]

- **Example:**

 \[
 \begin{align*}
 x \Rightarrow x & \quad z \Rightarrow z \\
 \Rightarrow & \quad \Rightarrow \\
 Iz \Rightarrow z & \quad Iz \Rightarrow z \\
 Iz(Iz) \Rightarrow zz \\
 \end{align*}
 \]

 \(I = \lambda x.x \)
Confluency

• Goal is to prove **strongly local confluency**:

Example: \((\lambda x.xx)(iz)\) \(\not\Rightarrow\) \((\lambda x.xx)z\) \(\not\Rightarrow\) \(lz(lz)\) \(\not\Rightarrow\) \(zz\)
Confluency

- Proof of confluency:
Confluence

- **Lemma 4:** $M \not\rightarrow N$ and $P \not\rightarrow Q$ implies $M\{x := P\} \not\rightarrow N\{x := Q\}$

Proof: by structural induction on M.

Case 1: $M = x \not\rightarrow x = N$. Then $M\{x := P\} = P \not\rightarrow Q = N\{x := Q\}$

Case 2: $M = y \not\rightarrow y = N$. Then $M\{x := P\} = y \not\rightarrow y = N\{x := Q\}$

Case 3: $M = \lambda y.M_1 \not\rightarrow \lambda y.N_1 = N$ with $M_1 \not\rightarrow N_1$. By induction $M_1\{x := P\} \not\rightarrow N_1\{x := Q\}$. So $M\{x := P\} = \lambda y.M_1\{x := P\} \not\rightarrow \lambda y.N_1\{x := Q\} = N$.

Case 4: $M = M_1M_2 \not\rightarrow N_1N_2 = N$ with $M_1 \not\rightarrow N_1$ and $M_2 \not\rightarrow N_2$. By induction $M_1\{x := P\} \not\rightarrow N_1\{x := Q\}$ and $M_2\{x := P\} \not\rightarrow N_2\{x := Q\}$. So $M\{x := P\} = M_1\{x := P\}M_2\{x := P\} \not\rightarrow N_1\{x := Q\}N_2\{x := Q\} = N\{x := Q\}$.

Case 5: $M = (\lambda y.M_1)M_2 \not\rightarrow N_1\{y := N_2\} = N$ with $M_1 \not\rightarrow N_1$ and $M_2 \not\rightarrow N_2$. By induction $M_1\{x := P\} \not\rightarrow N_1\{x := Q\}$ and $M_2\{x := P\} \not\rightarrow N_2\{x := Q\}$. So $M\{x := P\} = (\lambda y.M_1\{x := P\})(M_2\{x := P\}) \not\rightarrow N_1\{x := Q\}\{y := N_2\{x := Q\}\} = N_1\{y := N_2\}\{x := Q\} = N$ by substitution lemma, since $y \notin \text{var}(Q) \subset \text{var}(P)$.

Confluency

• **Lemma 5:** If $M \rightarrow N$ and $M \rightarrow P$, then $N \rightarrow Q$ and $N \rightarrow Q$ for some Q.

Proof: by structural induction on M.

Case 1: $M = x$. Then $M = x \rightarrow x = N$ and $M = x \rightarrow x = P$. We have too $N \rightarrow x = Q$ and $P \rightarrow x = Q$.

Case 2: $M = \lambda y.M_1 \rightarrow \lambda y.N_1 = N$ with $M_1 \rightarrow N_1$. Same for $M = \lambda y.M_1 \rightarrow \lambda y.P_1 = P$ with $M_1 \rightarrow P_1$. By induction $N_1 \rightarrow Q_1$ and $P_1 \rightarrow Q_1$ for some Q_1. So $N = \lambda y.N_1 \rightarrow \lambda y.Q_1 = Q$ and $P = \lambda y.P_1 \rightarrow \lambda y.Q_1 = Q$.

Case 3: $M = M_1 M_2 \rightarrow N_1 N_2 = N$ and $M = M_1 M_2 \rightarrow P_1 P_2 = P$ with $M_i \rightarrow N_i, M_i \rightarrow P_i (1 \leq i \leq 2)$. By induction $N_i \rightarrow Q_i$ and $P_i \rightarrow Q_i$ for some Q_i. So $N \rightarrow Q_1 Q_2 = Q$ and $P \rightarrow Q_1 Q_2 = Q$.

Case 4: $M = (\lambda x.M_1)M_2 \rightarrow N_1\{x := N_2\} = N$ and $M = (\lambda x.M_1)M_2 \rightarrow P' P_2 = P$ with $M_i \rightarrow N_i (1 \leq i \leq 2)$ and $\lambda x.M_1 \rightarrow P', M_2 \rightarrow P_2$. Therefore $P' = \lambda x.P_1$ with $M_1 \rightarrow P_1$. By induction $N_i \rightarrow Q_i$ and $P_i \rightarrow Q_i$ for some Q_i. So $N \rightarrow Q_1\{x := Q_2\} = Q$ by lemma 4. And $P \rightarrow Q_1\{x := Q_2\} = Q$ by definition.

Case 5: symmetric.
Confluence

Proof:

Case 6: $M = (\lambda x.M_1)M_2 \rightarrow N_1\{x := N_2\} = N$ and $M = (\lambda x.M_1)M_2 \rightarrow P_1\{x := P_2\} = P$ with $M_i \rightarrow N_i, M_i \rightarrow P_i$ (1 ≤ i ≤ 2). By induction $N_i \rightarrow Q_i$ and $P_i \not\rightarrow Q_i$ for some Q_i.

So $N \rightarrow Q_1\{x := Q_2\} = Q$ and $P \rightarrow Q_1\{x := Q_2\} = Q$ by lemma 4. □

• **Lemma 6:** If $M \rightarrow N$, then $M \not\rightarrow N$.

• **Lemma 7:** If $M \not\rightarrow N$, then $M \rightarrow^* N$.

Proofs: obvious.

• **Theorem 2 [Church-Rosser]:**

If $M \rightarrow^* N$ and $M \rightarrow^* P$, then $N \rightarrow^* Q$ and $P \rightarrow^* Q$ for some Q.
Confluency

• previous axiomatic method is due to Martin-Löf
• Martin-Löf’s method models inside-out parallel reductions
• there are other proofs with explicit redexes

• Curry’s finite developments
Residuals of redexes

- tracking redexes while contracting others
- examples:

\[\Delta(la) \rightarrow la(la) \]
\[la(\Delta(lb)) \rightarrow la(lb(lb)) \]
\[l(\Delta(la)) \rightarrow l(la(la)) \]
\[\Delta(la) \rightarrow la(la) \]
\[la(\Delta(lb)) \rightarrow la(lb(lb)) \]
\[\Delta\Delta \rightarrow \Delta\Delta \]
\[(\lambda x. la)(lb) \rightarrow la \]

\[\Delta = \lambda x. xx \quad l = \lambda x. x \quad K = \lambda xy.x \]
Residuals of redexes

- when R is redex in M and $M \xrightarrow{S} N$

 the set R/S of residuals of R in N is defined by inspecting relative positions of R and S in M:

1- R and S disjoint, $M = \cdots R \cdots S \cdots \xrightarrow{S} \cdots R \cdots S' \cdots = N$

2- S in $R = (\lambda x.A)B$

 2a- S in A, $M = \cdots (\lambda x. \cdots S \cdots)B \cdots \xrightarrow{S} \cdots (\lambda x. \cdots S' \cdots)B \cdots = N$

 2b- S in B, $M = \cdots (\lambda x.A)(\cdots S \cdots) \cdots \xrightarrow{S} \cdots (\lambda x.A)(\cdots S' \cdots) \cdots = N$

3- R in $S = (\lambda y.C)D$

 3a- R in C, $M = \cdots (\lambda y. \cdots R \cdots)D \cdots \xrightarrow{S} \cdots R\{y := D\} \cdots = N$

 3b- R in D, $M = \cdots (\lambda y.C)(\cdots R \cdots) \cdots \xrightarrow{S} \cdots (\cdots R \cdots)(\cdots R \cdots) \cdots = N$

4- R is S, no residuals of R.
Residuals of redexes

• when ρ is a reduction from M to N, i.e. $\rho : M \rightarrow* N$
 the set of residuals of R by ρ is defined by **transitivity** on the length of ρ
 and is written R/ρ

• notice that we can have $S \in R/\rho$ and $R \neq S$
 residuals may **not** be syntactically **equal** (see previous 3rd example)

• residuals **depend on reductions**. Two reductions between same terms may
 produce two distinct sets of residuals.

• a redex is residual of a **single** redex (the inverse of the residual relation is a
 function): $R \in S/\rho$ and $R \in T/\rho$ implies $S = T$
Exercises

• Find redex \(R \) and reductions \(\rho \) and \(\sigma \) between \(M \) and \(N \) such that residuals of \(R \) by \(\rho \) and \(\sigma \) differ. Hint: consider \(M = I(lx) \)

• Show that residuals of nested redexes keep nested.

• Show that residuals of disjoint redexes may be nested.

• Show that residuals of a redex may be nested after several reduction steps.

Created redexes

• A redex is created by reduction \(\rho \) if it is not a residual by \(\rho \) of a redex in initial term. Thus \(R \) is created by \(\rho \) when \(\rho : M \rightarrow* N \) and \(\not\exists S, R \in S/\rho \)

\[
(\lambda x.xa)l \rightarrow l a \\
(\lambda xy.xy)ab \rightarrow (\lambda y.ay)b
\]

\[
lla \rightarrow la \\
\Delta\Delta \rightarrow \Delta\Delta
\]
Residuals of redexes

\[(\lambda x.xx)((\lambda f.3)(\lambda x.x))\]

\[(\lambda f.3)(\lambda x.x)((\lambda f.3)(\lambda x.x))\]

\[(\lambda f.3)(\lambda x.x)((\lambda x.x)3)\]

\[(\lambda x.x)((\lambda x.x)3)\]

\[(\lambda x.x)3((\lambda f.3)(\lambda x.x))\]

\[(\lambda f.3)(\lambda x.x)3\]

\[(\lambda x.x)3((\lambda x.x)3)\]

\[3((\lambda f.3)(\lambda x.x))\]

\[(\lambda x.x)33\]

\[3((\lambda x.x)3)\]

\[(\lambda x.xx)3\]

\[33\]
Relative reductions

\[(\lambda x.x)((\lambda f.3)(\lambda x.x))\]

\[(\lambda f.3)(\lambda x.x)((\lambda f.3)(\lambda x.x))\]

\[(\lambda f.3)(\lambda x.x)(\lambda x.x)3\]

\[(\lambda x.x)3((\lambda f.3)(\lambda x.x))\]

\[(\lambda x.x)((\lambda x.x)3)\]

\[(\lambda x.x)3((\lambda x.x)3)\]

\[3((\lambda f.3)(\lambda x.x))\]

\[(\lambda x.x)33\]

\[3((\lambda x.x)3)\]

\[(\lambda x.x)3\]

\[33\]
Finite developments

• Let \mathcal{F} be a set of redexes in M. A reduction relative to \mathcal{F} only contracts residuals of \mathcal{F}.

• When there are no more residuals of \mathcal{F} to contract, we say the relative reduction is a development of \mathcal{F}.

• **Theorem 3 [finite developments] (Curry)** Let \mathcal{F} be a set of redexes in M. Then:
 - relative reductions cannot be infinite; they all end in a development of \mathcal{F}
 - all developments end on a same term N
 - let R be a redex in M. Then residuals of R by finite developments of \mathcal{F} are the same.
Finite developments

• Therefore we can define (without ambiguity) a new parallel step reduction:

\[\rho : M \overset{\mathcal{F}}{\rightarrow} N \]

and when \(R \) is a redex in \(M \), we can write \(R/\mathcal{F} \) for its residuals in \(N \)

• Two corollaries:

Lemma of Parallel Moves

Cube Lemma
Labeled calculus

• Finite developments will be shown with a labeled calculus.

• Lambda calculus with labeled redexes

\[M, N, P ::= x, y, z, \ldots \quad \text{(variables)} \]
\[| (\lambda x. M) \quad \text{(M as function of x)} \]
\[| (M \ N) \quad \text{(M applied to N)} \]
\[| c, d, \ldots \quad \text{(constants)} \]
\[| (\lambda x. M)^r \ N \quad \text{(labeled redexes)} \]

• \mathcal{F}-labeled reduction

\[(\lambda x. M)^r N \rightarrow M\{x := N\} \quad \text{when $r \in \mathcal{F}$} \]

• Labeled substitution

\[\ldots \text{as before} \]
\[((\lambda x. M)^r N)\{y := P\} = ((\lambda x. M)\{y := P\})^r (N\{y := P\}) \]
Labeled calculus

• **Theorem** For any \mathcal{F}, the labeled calculus is **confluent**.

• **Theorem** For any \mathcal{F}, the labeled calculus is **strongly normalizable** (no infinite labeled reductions).

• **Lemma** For any \mathcal{F}-reduction $\rho : M \rightarrow N$, a labeled redex in N has label r if and only if it is **residual** by ρ of a redex with label r in M.

• **Theorem 3 [finite developments] (Curry)**
Labeled calculus

• Proof of confluency is again with Martin-Löf’s axiomatic method.
• Proof of residual property is by simple inspection of a reduction step.
• Proof of termination is slightly more complex with following lemmas:

• **Notation** $M \xrightarrow{\text{int}} N$ if M reduces to N without contracting a toplevel redex.

• **Lemma 1** [Barendregt-like] $M\{x := N\} \xrightarrow{\text{int}} (\lambda y. P)^r Q$ implies

 $M = (\lambda y. A)^r B$ with $A\{x := N\} \rightarrow^* P$, $B\{x := N\} \rightarrow^* Q$

 or

 $M = x$ and $N \rightarrow^* (\lambda y. P)^r Q$

• **Lemma 2** $M, N \in S\mathcal{N}$ (strongly normalizing) implies $M\{x := N\} \in S\mathcal{N}$

• **Theorem** $M \in S\mathcal{N}$ for all M.

Labeled calculus proofs

- **Lemma 1** [Barendregt-like] \(M\{x := N\} \rightarrow^* (\lambda y. P)^r Q \) implies

\[
M = (\lambda y. A)^r B \text{ with } A\{x := N\} \rightarrow^* P, B\{x := N\} \rightarrow^* Q
\]

or

\[
M = x \text{ and } N \rightarrow^* (\lambda y. P)^r Q
\]

Proof Let \(P^* \) be \(P\{x := N\} \) for any \(P \).

Case 1: \(M = x \). Then \(M^* = N \) and \(N \rightarrow^* (\lambda y. P)^r Q \).

Case 2: \(M = y \). Then \(M^* = y \). Impossible.

Case 2: \(M = \lambda y. M_1 \). Again impossible.

Case 3: \(M = M_1 M_2 \) or \(M = (\lambda y. M_1)^s M_2 \) with \(s \neq r \). These cases are also impossible.

Case 4: \(M = (\lambda y. M_1)^r M_2 \). Then \(M_1^* \rightarrow^* P \) and \(M_2^* \rightarrow^* Q \).
Labeled calculus proofs

- **Lemma 2** $M, N \in SN$ (strongly normalizing) implies $M\{x := N\} \in SN$

Proof: by induction on $\langle\text{depth}(M), ||M||\rangle$. Let P^* be $P\{x := N\}$ for any P.

Case 1: $M = x$. Then $M^* = N \in SN$. If $M = y$. Then $M^* = y \in SN$.

Case 2: $M = \lambda y.M_1$. Then $M^* = \lambda y.M_1^*$ and by induction $M_1^* \in SN$.

Case 3: $M = M_1 M_2$ and never $M^* \xrightarrow{\text{int}} (\lambda y.A)^r B$. Same argument on M_1 and M_2.

Case 4: $M = M_1 M_2$ and $M^* \xrightarrow{\text{int}} (\lambda y.A)^r B$. We can always consider first time when this toplevel redex appears. Hence we have $M^* \xrightarrow{\text{int}} (\lambda y.A)^r B$. By lemma 1, we have two cases:

Case 4.1: $M = (\lambda y.M_3)^r M_2$ with $M_3^* \xrightarrow{\text{int}} A$ and $M_2^* \xrightarrow{\text{int}} B$. Then $M^* = (\lambda y.M_3^*)^r M_2^*$. As $M_3 \in SN$ and $M_2 \in SN$, the internal reductions from M^* terminate by induction. If $r \not\in F$, there are no extra reductions. If $r \in F$, we can have $M_3^* \xrightarrow{\text{int}} A$, $M_2^* \xrightarrow{\text{int}} B$ and $(\lambda y.A)^r B \xrightarrow{\text{int}} A\{y := B\}$. But $M \xrightarrow{\text{int}} M_3\{y := M_2\}$ and $(M_3\{y := M_2\})^* \xrightarrow{\text{int}} A\{y := B\}$. As depth($A\{y := B\} < \text{depth}(A\{y := B\}) < \text{depth}(M)$, we get $A\{y := B\} \in SN$ by induction.

Case 4.2: $M = x$. Impossible.
Labeled calculus proofs

• **Theorem** \(M \in SN \) for all \(M \).

Proof: by induction on \(||M|| \).

Case 1: \(M = x \). Obvious.

Case 2: \(M = \lambda x. M_1 \). Obvious since \(M_1 \in SN \) by induction.

Case 3: \(M = M_1 M_2 \) and \(M_1 \neq (\lambda x. A)^r \). Then all reductions are internal to \(M_1 \) and \(M_2 \). Therefore \(M \in SN \) by induction on \(M_1 \) and \(M_2 \).

Case 4: \(M = (\lambda x. M_1)^r M_2 \) and \(r \notin F \). Same argument on \(M_1 \) and \(M_2 \).

Case 5: \(M = (\lambda x. M_1)^r M_2 \) and \(r \in F \). Then \(M_1 \) and \(M_2 \) in \(SN \) by induction. But we can also have \(M \rightarrow^+ (\lambda x. A)^r B \rightarrow A\{x := B\} \) with \(A \) and \(B \) in \(SN \). By Lemma 2, we know that \(A\{x := B\} \in SN \).
Standardization
Standard reduction

Redex R is **to the left of** redex S if the λ of R is to the left of the λ of S.

\[M = \cdots (\lambda x. A)B \cdots (\lambda y. C)D \cdots \]

or

\[M = \cdots (\lambda x. \cdots (\lambda y. C)D \cdots)B \cdots \]

or

\[M = \cdots (\lambda x. A)(\cdots (\lambda y. C)D \cdots)\cdots \]

The reduction $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ is **standard** iff for all i, j ($0 < i < j \leq n$), redex R_j is not a residual of redex R'_j to the left of R_i in M_{i-1}.
Standard reduction

\[M = (\lambda x.x)((\lambda f.f3)(\lambda x.x)) \]

\[(\lambda f.f3)(\lambda x.x)(\lambda f.f3)(\lambda x.x) \]

\[(\lambda f.f3)(\lambda x.x)((\lambda x.x)3) \]

\[(\lambda x.x)((\lambda x.x)3) \]

\[(\lambda x.x)3((\lambda x.x)3) \]

\[3((\lambda f.f3)(\lambda x.x)) \]

\[(\lambda x.x)(\lambda x.x)3 \]

\[N = 3((\lambda x.x)3) \]

\[(\lambda x.x)33 \]

\[(\lambda x.x)33 \]

\[33 \]
Standardization

- **Theorem [standardization] (Curry)** Any reduction can be standardized.

- The **normal reduction** (each step contracts the leftmost-outermost redex) is a standard reduction.

- **Corollary [normalization]** If M has a normal form, the normal reduction reaches the normal form.
Standardization lemma

- **Notation:** write $R <_\ell S$ if redex R is to the left of redex S.

- **Lemma 1** Let R, S be redexes in M such that $R <_\ell S$. Let $M \xrightarrow{S} N$. Then $R/S = \{R'\}$. Furthermore, if $T' <_\ell R'$, then $\exists T, T <_\ell R, T' \in T/S$. [one cannot create a redex through another more-to-the-left]

\[
\begin{align*}
M &\xrightarrow{S} N \\
R &\quad R' \\
\end{align*}
\]

- **Proof of standardization thm:** [Klop] application of the finite developments theorem and previous lemma.
Standardization axioms

• 3 axioms are sufficient to get lemma 1

• **Axiom 1 [linearity]** $S <_{\ell} R$ implies $\exists! R', R' \in R/S$

• **Axiom 2 [context-freeness]** $S <_{\ell} R$ and $R' \in R/S$ and $T' \in T/S$ implies $T \not\preceq R$ iff $T' \not\preceq R'$ where $\not\preceq$ is $<_{\ell}$ or $>_{\ell}$

• **Axiom 3 [left barrier creation]** $R <_{\ell} S$ and $\not\preceq T'$, $T \in T'/S$ implies $R <_{\ell} T$
Standardization proof

• Proof:

Each square is an application of the lemma of parallel moves. Let ρ_i be the horizontal reductions and σ_j the vertical ones. Each horizontal step is a parallel step, vertical steps are either elementary or empty.

We start with reduction ρ_0 from M to N. Let R_1 be the leftmost redex in M with residual contracted in ρ_0. By lemma 1, it has a single residual R'_1 in M_1, M_2, ... until it belongs to some F_k. Here $R'_1 \in F_2$. There are no more residuals of R_1 in M_{k+1}, M_{k+2},

Let R_2 be leftmost redex in P_1 with residual contracted in ρ_1. Here the unique residual is contracted at step n. Again with R_3 leftmost with residual contracted in ρ_2. Etc.
Standardization proof

• Proof (cont’d):

Now reduction σ_0 starting from M cannot be infinite and stops for some p. If not, there is a rightmost column σ_k with infinitely non-empty steps. After a while, this reduction is a reduction relative to a set F_i^j, which cannot be infinite by the Finite Development theorem.

Then ρ_p is an empty reduction and therefore the final term of σ_0 is N.
We claim σ_0 is a standard reduction. Suppose R_k ($k > i$) is residual of S_i to the left of R_i in P_{i-1}.

By construction R_k has residual S^j_k along ρ_{i-1} contracted at some j step. So S^j_k is residual of S_i.

By the cube lemma, it is also residual of some S^j_i along σ_{j-1}. Therefore there is S^j_i in F^j_i residual of S_i leftmore or outer than R_i.

Contradiction.
Redex creation
Created redexes

• A redex is **created by reduction** ρ if it is not a residual by ρ of a redex in initial term. Thus R is created by ρ when $\rho : M \rightarrow N$ and $\not\exists S$, $R \in S/\rho$

 $$(\lambda x. xa)I \rightarrow la$$
 $$(\lambda xy.xy)ab \rightarrow (\lambda y. ay)b$$
 $$lla \rightarrow la$$
 $$\Delta\Delta \rightarrow \Delta\Delta$$

• By Finite Developments thm, a reduction can be infinite iff it does not stop creating new redexes.

 $$\Delta\Delta \rightarrow \Delta\Delta \rightarrow \Delta\Delta \rightarrow \Delta\Delta \rightarrow \cdots$$

• If the length of creation is bounded, there is also a generalized finite developments theorem.
Created redexes in typed calculus

• only 2 cases for creation of redexes within a reduction step

\[(\lambda x. \cdots xN \cdots)(\lambda y. M) \rightarrow \cdots (\lambda y. M)N' \cdots\]

\(\sigma \rightarrow \tau\)

creates

\[(\lambda x.\lambda y. M)NP \rightarrow (\lambda y. M')P\]

\(\tau\)

\(\sigma \rightarrow \tau\)

creates

• length of creation is bounded by size of types of initial term
Other properties
Other properties

- confluence with **eta**-rules, **delta**-rules
- **generalized** finite developments theorem
- **permutation** equivalence
- redex **families**
- finite developments vs strong normalization
- completeness of reduction **strategies**
- **head** normal forms
- **Bohm** trees
- continuity theorem
- sequentiality of Bohm trees
- models of the type-free lambda-calculus
- **typed** lambda-calculi
- continuations and reduction strategies
- ...

- process calculi and lambda-calculus
- abstract reduction systems
- **explicit** substitutions
- implementation of functional languages
- lazy evaluators
- SOS
- all theory of **programming languages**
- ...

- connection to mathematical **logic**
- calculus of constructions
- ...

...
Homeworks
Exercises

• Show that:

1- \(M \xrightarrow{\eta} N \xrightarrow{\eta} P \) implies \(M \xrightarrow{} Q \xrightarrow{\eta} P \) for some \(Q \)

2- \(M \xrightarrow{*} N \xrightarrow{*} P \) implies \(M \xrightarrow{*} Q \xrightarrow{*} P \) for some \(Q \)

3- \(M \xrightarrow{\beta,\eta} N \) implies \(M \xrightarrow{*} P \xrightarrow{*} \eta N \) for some \(P \)

4- \(M \xrightarrow{} N \) and \(M \xrightarrow{\eta} P \) implies \(N \xrightarrow{*} Q \) and \(P \xrightarrow{1} Q \) for some \(Q \)

5- \(M \xrightarrow{*} N \) and \(M \xrightarrow{\eta} P \) implies \(N \xrightarrow{*} Q \) and \(P \xrightarrow{*} Q \) for some \(Q \)

6- \(M \xrightarrow{\beta,\eta} N \) and \(M \xrightarrow{\beta,\eta} P \) implies \(N \xrightarrow{*} Q \) and \(P \xrightarrow{*} Q \) for some \(Q \)

Therefore \(\xrightarrow{*} \) \(\beta,\eta \) is confluent.

• Show same property for \(\beta \)-reduction and \(\eta \)-expansion \((\xrightarrow{} \cup \leftarrow \eta)^* \)
Exercices

7- Show there is no M such that $M \xrightarrow{*} Kac$ and $M \xrightarrow{*} Kbc$ where $K = \lambda x.\lambda y.x$.

8- Find M such that $M \xrightarrow{*} Kab$ and $M \xrightarrow{*} Kac$.

9- (difficult) Show that $\xrightarrow{*}$ is not confluent.

10- Show that $\Delta \Delta (\Pi)$ has no normal form when $I = \lambda x.x$ and $\Delta = \lambda x.xx$.

11- Show that $\Delta \Delta M_1 M_2 \cdots M_n$ has no normal form for any $M_1, M_2, \ldots M_n \ (n \geq 0)$.

12- Show there is no M whose reduction graph is exactly following:

```
    M
   / \  \
  /   \  /
 M1   M2 M3
  |   |   |
  \   \   \       
    N
```

13- Show that rightmost-outermost reduction may miss normal forms.