

Plan

- local confluency
- Church Rosser theorem
- Redexes and residuals
- Finite developments theorem
- Standardization theorem

Consistency

Question: Can we get $M \xrightarrow{*} 2$ and $M \xrightarrow{*} 3$??

Consequence: $2 =_{\beta} 3 !!$

Confluency

Question: If $M =_{\beta} N$, then $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ for some P??

Confluency

Goal: If $M \xrightarrow{*} N$ and $M \xrightarrow{*} P$, there is Q such that $N \xrightarrow{*} Q$ and $P \xrightarrow{*} Q$

Then impossible to get $2 =_{\beta} 3$

Confluency

Question: If $M \xrightarrow{\bullet} N$ and $M \xrightarrow{\bullet} P$, then $N \xrightarrow{\bullet} Q$ and $P \xrightarrow{\bullet} Q$ for some Q?

Local confluency

Confluency

• Fact: local confluency does not imply confluency

Confluency

• Goal is to prove strongly local confluency:

Confluency

• Definition [parallel reduction]:

[Var Axiom] $x \not\rightarrow x$ [Const Axiom] $c \not\rightarrow c$

[App Rule] $\frac{M \not \longrightarrow M' \quad N \not \implies N'}{MN \not \longrightarrow M'N'}$ [Abs Rule] $\frac{M \not \implies M'}{\lambda x.M \not \implies \lambda x.M'}$

 $[//Beta Rule] \xrightarrow{M \not \# M'} M' \xrightarrow{N} M' \land N \not \# N' \land (\lambda x.M) N \not \# M' \{x := N'\}$

• Example:

 $I = \lambda x.x$

Confluency

Confluency

• Lemma 4: $M \not\rightarrow N$ and $P \not\rightarrow Q$ implies $M\{x := P\} \not\rightarrow N\{x := Q\}$

Proof: by structural induction on *M*.

Case 1: $M = x \not \longrightarrow x = N$. Then $M\{x := P\} = P \not \longrightarrow Q = N\{x := Q\}$

Case 2: $M = y \not \longrightarrow y = N$. Then $M\{x := P\} = y \not \longrightarrow y = N\{x := Q\}$

Case 3: $M = \lambda y.M_1 \not\implies \lambda y.N_1 = N$ with $M_1 \not\implies N_1$. By induction $M_1\{x := P\} \not\implies N_1\{x := Q\}$. So $M\{x := P\} = \lambda y.M_1\{x := P\} \not\implies \lambda y.N_1\{x := Q\} = N$.

Case 4: $M = M_1M_2 \not \implies N_1N_2 = N$ with $M_1 \not \implies N_1$ and $M_2 \not \implies N_2$. By induction $M_1\{x := P\} \not \implies N_1\{x := Q\}$ and $M_2\{x := P\} \not \implies N_2\{x := Q\}$. So $M\{x := P\} = M_1\{x := P\}M_2\{x := P\} \not \implies N_1\{x := Q\}N_2\{x := Q\}$.

Case 5: $M = (\lambda y.M_1)M_2 \implies N_1\{y := N_2\} = N$ with $M_1 \implies N_1$ and $M_2 \implies N_2$. By induction $M_1\{x := P\} \implies N_1\{x := Q\}$ and $M_2\{x := P\} \implies N_2\{x := Q\}$. So $M\{x := P\} = (\lambda y.M_1\{x := P\})(M_2\{x := P\}) \implies N_1\{x := Q\}\{y := N_2\{x := Q\}\} = N_1\{y := N_2\}\{x := Q\} = N$ by substitution lemma, since $y \notin var(Q) \subset var(P)$. \Box

Confluency

• Lemma 5: If $M \not\rightarrow N$ and $M \not\rightarrow P$, then $N \not\rightarrow Q$ and $N \not\rightarrow Q$ for some Q.

Proof: by structural induction on *M*.

Case 1: M = x. Then $M = x \not \longrightarrow x = N$ and $M = x \not \implies x = P$. We have too $N \not \implies x = Q$ and $P \not \implies x = Q$.

Case 2: $M = \lambda y.M_1 \not \longrightarrow \lambda y.N_1 = N$ with $M_1 \not \longrightarrow N_1$. Same for $M = \lambda y.M_1 \not \longrightarrow \lambda y.P_1 = P$ with $M_1 \not \longrightarrow P_1$. By induction $N_1 \not \longrightarrow Q_1$ and $P_1 \not \longrightarrow Q_1$ for some Q_1 . So $N = \lambda y.N_1 \not \longrightarrow \lambda y.Q_1 = Q$ and $P = \lambda y.P_1 \not \implies \lambda y.Q_1 = Q$.

Case 3: $M = M_1M_2 \not \longrightarrow N_1N_2 = N$ and $M = M_1M_2 \not \implies P_1P_2 = P$ with $M_i \not \implies N_i, M_i \not \implies P_i$ $(1 \le i \le 2)$. By induction $N_i \not \implies Q_i$ and $P_i \not \implies Q_i$ for some Q_i . So $N \not \implies Q_1Q_2 = Q$ and $P \not \implies Q_1Q_2 = Q$.

Case 4: $M = (\lambda x.M_1)M_2 \not \longrightarrow N_1\{x := N_2\} = N$ and $M = (\lambda x.M_1)M_2 \not \longrightarrow P'P_2 = P$ with $M_i \not \longrightarrow N_i$ $(1 \le i \le 2)$ and $\lambda x.M_1 \not \longrightarrow P'$, $M_2 \not \longrightarrow P_2$. Therefore $P' = \lambda x.P_1$ with $M_1 \not \longrightarrow P_1$. By induction $N_i \not \longrightarrow Q_i$ and $P_i \not \longrightarrow Q_i$ for some Q_i . So $N \not \longrightarrow Q_1\{x := Q_2\} = Q$ by lemma 4. And $P \not \not \longrightarrow Q_1\{x := Q_2\} = Q$ by definition.

Confluency

Proof:

Case 6: $M = (\lambda x.M_1)M_2 \not\implies N_1\{x := N_2\} = N \text{ and } M = (\lambda x.M_1)M_2 \not\implies P_1\{x := P_2\} = P \text{ with } M_i \not\implies N_i, M_i \not\implies P_i (1 \le i \le 2).$ By induction $N_i \not\implies Q_i$ and $P_i \not\implies Q_i$ for some Q_i . So $N \not\implies Q_1\{x := Q_2\} = Q$ and $P \not\implies Q_1\{x := Q_2\} = Q$ by lemma 4. \Box

- Lemma 6: If $M \rightarrow N$, then $M \not\leftrightarrow N$.
- Lemma 7: If $M \not\rightarrow N$, then $M \not\rightarrow N$.

Proofs: obvious.

• Theorem 2 [Church-Rosser]: If $M \stackrel{*}{\longrightarrow} N$ and $M \stackrel{*}{\longrightarrow} P$, then $N \stackrel{*}{\longrightarrow} Q$ and $P \stackrel{*}{\longrightarrow} Q$ for some Q.

Confluency

- previous axiomatic method is due to Martin-Löf
- Martin-Löf's method models inside-out parallel reductions
- there are other proofs with explicit redexes

Case 5: symmetric.

Residuals of redexes

- tracking redexes while contracting others
- examples:

 $\Delta(\underline{la}) \rightarrow \underline{la}(\underline{la}) \qquad \Delta = \lambda x. xx \quad I = \lambda x.x \quad K = \lambda xy.x$ $\underline{la}(\Delta(Ib)) \rightarrow \underline{la}(Ib(Ib))$ $\underline{l(\Delta(Ia))} \rightarrow \underline{l(Ia(Ia))}$ $\Delta(\underline{la}) \rightarrow \underline{la}(Ia))$ $\underline{la}(\Delta(Ib)) \rightarrow \underline{la}(Ib(Ib))$ $\Delta\Delta \rightarrow \Delta\Delta$ $(\lambda x.Ia)(\underline{lb}) \rightarrow \underline{la}$

Residuals of redexes

• when *R* is redex in *M* and $M \xrightarrow{S} N$ the set *R*/*S* of **residuals** of *R* in *N* is defined by inspecting relative positions of *R* and *S* in *M*:

1- *R* and *S* disjoint,
$$M = \cdots R \cdots S \cdots \xrightarrow{S} \cdots R \cdots S' \cdots = N$$

2. $S \text{ in } R = (\lambda x.A)B$ 2a. $S \text{ in } A, M = \cdots (\lambda x. \cdots S \cdots)B \cdots \xrightarrow{S} \cdots (\lambda x. \cdots S' \cdots)B \cdots = N$ 2b. $S \text{ in } B, M = \cdots (\lambda x.A)(\cdots S \cdots) \cdots \xrightarrow{S} \cdots (\lambda x.A)(\cdots S' \cdots) \cdots = N$ 3. $R \text{ in } S = (\lambda y.C)D$ 3a. $R \text{ in } C, M = \cdots (\lambda y. \cdots R \cdots)D \cdots \xrightarrow{S} \cdots \cdots R\{y := D\} \cdots = N$ 3b. $R \text{ in } D, M = \cdots (\lambda y.C)(\cdots R \cdots) \cdots \xrightarrow{S} \cdots (\cdots R \cdots) \cdots (\cdots R \cdots) \cdots = N$ 4. R is S, no residuals of R.

Residuals of redexes

- when ρ is a reduction from M to N, i.e. ρ: M → N
 the set of residuals of R by ρ is defined by transitivity on the length of ρ and is written R/ρ
- notice that we can have S ∈ R/ρ and R ≠ S
 residuals may not be syntacticly equal (see previous 3rd example)
- residuals **depend on reductions**. Two reductions between same terms may produce two distinct sets of residuals.
- a redex is residual of a single redex (the inverse of the residual relation is a function): R ∈ S/ρ and R ∈ T/ρ implies S = T

Exercices

- Find redex *R* and reductions *ρ* and *σ* between *M* and *N* such that residuals of *R* by *ρ* and *σ* differ. Hint: consider *M* = *I*(*Ix*)
- Show that residuals of nested redexes keep nested.
- Show that residuals of disjoint redexes may be nested.
- Show that residuals of a redex may be nested after several reduction steps.

Created redexes

A redex is created by reduction ρ if it is not a residual by ρ of a redex in initial term. Thus R is created by ρ when ρ : M ^{*}→ N and ∄S, R ∈ S/ρ

 $\begin{array}{ll} (\lambda x.xa)I \longrightarrow Ia \\ (\lambda xy.xy)ab \longrightarrow (\lambda y.ay)b \end{array} & IIa \longrightarrow Ia \\ \Delta \Delta \longrightarrow \Delta \Delta \end{array}$

Residuals of redexes

Relative reductions

Finite developments

- Let \mathcal{F} be a set of redexes in *M*. A reduction relative to \mathcal{F} only contracts residuals of \mathcal{F} .
- When there are no more residuals of \mathcal{F} to contract, we say the relative reduction is a **development of** \mathcal{F} .
- Theorem 3 [finite developments] (Curry) Let \mathcal{F} be a set of redexes in *M*. Then:
 - relative reductions cannot be infinite; they all end in a development of $\ensuremath{\mathcal{F}}$
 - all developments end on a same term N
 - let *R* be a redex in *M*. Then **residuals** of *R* by finite developments of \mathcal{F} are the same.

Finite developments

• Therefore we can define (without ambiguity) a new parallel step reduction:

$$\rho: M \xrightarrow{\mathcal{F}} N$$

and when *R* is a redex in *M*, we can write R/\mathcal{F} for its residuals in *N*

• Two corollaries:

Labeled calculus

· Finite developments will be shown with a labeled calculus.

Lambda calculus with labeled redexes

N, P	::=	х, у, z,	(variables)
	Ι	(λ <i>x.M</i>)	(<i>M</i> as function of <i>x</i>)
	Ι	(M N)	(M applied to N)
	Ι	c, d,	(constants)
	T	(λ <i>x.M</i>) ^r N	(labeled redexes)

• *F*-labeled reduction

М,

 $(\lambda x.M)^r N \longrightarrow M\{x := N\}$

when $r \in \mathcal{F}$

- Labeled substitution
 - ... as before

$$((\lambda x.M)^r N)\{y := P\} = ((\lambda x.M)\{y := P\})^r (N\{y := P\})$$

Labeled calculus

- **Theorem** For any \mathcal{F} , the labeled calculus is **confluent**.
- **Theorem** For any \mathcal{F} , the labeled calculus is **strongly normalizable** (no infinite labeled reductions).
- Lemma For any *F*-reduction ρ: M → N, a labeled redex in N has label r if and only if it is residual by ρ of a redex with label r in M.

• Theorem 3 [finite developments] (Curry)

Labeled calculus

- · Proof of confluency is again with Martin-Löf's axiomatic method.
- Proof of residual property is by simple inspection of a reduction step.
- Proof of termination is slightly more complex with following lemmas:
- Notation $M \stackrel{\star}{\longrightarrow} N$ if M reduces to N without contracting a toplevel redex.
- Lemma 1 [Barendregt-like] $M\{x := N\} \stackrel{*}{\underset{int}{\longrightarrow}} (\lambda y.P)^r Q$ implies $M = (\lambda y.A)^r B$ with $A\{x := N\} \stackrel{*}{\longrightarrow} P$, $B\{x := N\} \stackrel{*}{\longrightarrow} Q$ or M = x and $N \stackrel{*}{\longrightarrow} (\lambda y.P)^r Q$
- Lemma 2 $M, N \in SN$ (strongly normalizing) implies $M\{x := N\} \in SN$
- **Theorem** $M \in SN$ for all M.

Labeled calculus proofs

Lemma 1 [Barendregt-like] M{x := N} ★ (λy.P)^rQ implies M = (λy.A)^rB with A{x := N} ★ P, B{x := N} ★ Q or M = x and N ★ (λy.P)^rQ
Proof Let P* be P{x := N} for any P. Case 1: M = x. Then M* = N and N ★ (λy.P)^rQ. Case 2: M = y. Then M* = y. Impossible. Case 2: M = λy.M₁. Again impossible. Case 3: M = M₁M₂ or M = (λy.M₁)^sM₂ with s ≠ r. These cases are also impossible. Case 4: M = (λy.M₁)^rM₂. Then M₁^{*} ★ P and M₂^{*} ★ Q.

Labeled calculus proofs

• **Theorem** $M \in SN$ for all M.

Proof: by induction on ||M||.

Case 1: M = x. Obvious.

Case 2: $M = \lambda x. M_1$. Obvious since $M_1 \in SN$ by induction.

Case 3: $M = M_1 M_2$ and $M_1 \neq (\lambda x. A)^r$. Then all reductions are internal to M_1 and M_2 . Therefore $M \in SN$ by induction on M_1 and M_2 .

Case 4: $M = (\lambda x. M_1)^r M_2$ and $r \notin \mathcal{F}$. Same argument on M_1 and M_2 .

Case 5: $M = (\lambda x.M_1)^r M_2$ and $r \in \mathcal{F}$. Then M_1 and M_2 in \mathcal{SN} by induction. But we can also have $M \stackrel{*}{\longrightarrow} (\lambda x.A)^r B \longrightarrow A\{x := B\}$ with A and B in \mathcal{SN} . By Lemma 2, we know that $A\{x := B\} \in \mathcal{SN}$.

Labeled calculus proofs

• Lemma 2 $M, N \in SN$ (strongly normalizing) implies $M\{x := N\} \in SN$

Proof: by induction on $\langle depth(M), ||M|| \rangle$. Let P^* be $P\{x := N\}$ for any P.

Case 1: M = x. Then $M^* = N \in SN$. If M = y. Then $M^* = y \in SN$.

Case 2: $M = \lambda y.M_1$. Then $M^* = \lambda y.M_1^*$ and by induction $M_1^* \in SN$.

Case 3: $M = M_1 M_2$ and never $M^* \stackrel{*}{\longrightarrow} (\lambda y. A)^r B$. Same argument on M_1 and M_2 .

Case 4: $M = M_1 M_2$ and $M^* \xrightarrow{\bullet} (\lambda y.A)^r B$. We can always consider first time when this toplevel redex appears. Hence we have $M^* \xrightarrow[int]{\bullet} (\lambda y.A)^r B$. By lemma 1, we have two cases:

Case 4.1: $M = (\lambda y.M_3)^r M_2$ with $M_3^* \stackrel{*}{\longrightarrow} A$ and $M_2^* \stackrel{*}{\longrightarrow} B$. Then $M^* = (\lambda y.M_3^*)^r M_2^*$. As $M_3 \in SN$ and $M_2 \in SN$, the internal reductions from M^* terminate by induction. If $r \notin \mathcal{F}$, there are no extra reductions. If $r \in \mathcal{F}$, we can have $M_3^* \stackrel{*}{\longrightarrow} A$, $M_2^* \stackrel{*}{\longrightarrow} B$ and $(\lambda y.A)^r B \rightarrow A\{y := B\}$. But $M \rightarrow M_3\{y := M_2\}$ and $(M_3\{y := M_2\})^* \stackrel{*}{\longrightarrow} A\{y := B\}$. As depth $(A\{y := B\} \leq SN)$ by induction.

Case 4.2: M = x. Impossible.

Standard reduction

Redex *R* is to the left of redex *S* if the λ of *R* is to the left of the λ of *S*.

$$M = \cdots (\lambda x.A)B \cdots (\lambda y.C)D \cdots$$

or
$$M = \cdots (\lambda x.\cdots (\lambda y.C)D \cdots)B \cdots$$

or
$$M = \cdots (\lambda x.A)(\cdots (\lambda y.C)D \cdots)\cdots$$

$$R$$

The reduction $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ is standard iff for all $i, j \ (0 < i < j \le n)$, redex R_j is not a residual of redex R'_j to the left of R_i in M_{i-1} .

Standardization

• Theorem [standardization] (Curry) Any reduction can be standardized.

- The normal reduction (each step contracts the leftmost-outermost redex) is a standard reduction.
- **Corollary [normalization]** If *M* has a normal form, the normal reduction reaches the normal form.

Standardization lemma

- **Notation:** write $R <_{\ell} S$ if redex R is to the left of redex S.
- Lemma 1 Let R, S be redexes in M such that $R <_{\ell} S$. Let $M \xrightarrow{S} N$. Then $R/S = \{R'\}$. Furthermore, if $T' <_{\ell} R'$, then $\exists T, T <_{\ell} R, T' \in T/S$. [one cannot create a redex through another more-to-the-left]

• **Proof of standardization thm:** [Klop] application of the finite developments theorem and previous lemma.

Standard reduction

Standardization axioms

- 3 axioms are sufficient to get lemma 1
- Axiom 1 [linearity] $S \leq_{\ell} R$ implies $\exists ! R', R' \in R/S$
- Axiom 2 [context-freeness] $S \not\leq_{\ell} R$ and $R' \in R/S$ and $T' \in T/S$ implies $T \Re R$ iff $T' \Re R'$ where \Re is $<_{\ell}$ or $>_{\ell}$
- Axiom 3 [left barrier creation] $R <_{\ell} S$ and $\nexists T', T \in T'/S$ implies $R <_{\ell} T$

Standardization proof

• Proof (cont'd):

Now reduction σ_0 starting from M cannot be infinite and stops for some p. If not, there is a rightmost column σ_k with infinitely non-empty steps. After a while, this reduction is a reduction relative to a set \mathcal{F}_i^j , which cannot be infinite by the Finite Development theorem.

Then ρ_p is an empty reduction and therefore the final term of σ_0 is *N*.

Standardization proof

• Proof:

Each square is an application of the lemma of parallel moves. Let ρ_i be the horizontal reductions and σ_j the vertical ones. Each horizontal step is a parallel step, vertical steps are either elementary or empty.

We start with reduction ρ_0 from M to N. Let R_1 be the leftmost redex in M with residual contracted in ρ_0 . By lemma 1, it has a single residual R'_1 in M_1 , M_2 , ... until it belongs to some \mathcal{F}_k . Here $R'_1 \in \mathcal{F}_2$. There are no more residuals of R_1 in M_{k+1} , M_{k+2} ,

Let R_2 be leftmost redex in P_1 with residual contracted in ρ_1 . Here the unique residual is contracted at step n. Again with R_3 leftmost with residual contracted in ρ_2 . Etc.

Standardization proof

• Proof (cont'd):

We claim σ_0 is a standard reduction. Suppose R_k (k > i) is residual of S_i to the left of R_i in P_{i-1} .

By construction R_k has residual S_k^j along ρ_{i-1} contracted at some j step. So S_k^j is residual of S_i .

By the cube lemma, it is also residual of some S_i^j along σ_{j-1} . Therefore there is S_i^j in \mathcal{F}_i^j residual of S_i leftmore or outer than R_i .

Contradiction.

Created redexes in typed calculus

• only 2 cases for creation of redexes within a reduction step

· length of creation is bounded by size of types of initial term

Created redexes

- A redex is created by reduction ρ if it is not a residual by ρ of a redex in initial term. Thus R is created by ρ when ρ : M ^{*}→ N and ∄S, R ∈ S/ρ
 - $(\lambda x.xa)I \longrightarrow la$ $(\lambda xy.xy)ab \longrightarrow (\lambda y.ay)b$

 $IIa \longrightarrow Ia$ $\Delta \Delta \longrightarrow \Delta \Delta$

- By Finite Developments thm, a reduction can be infinite iff it does not stop creating new redexes.
 - $\Delta\Delta \longrightarrow \Delta\Delta \longrightarrow \Delta\Delta \longrightarrow \Delta\Delta \longrightarrow \cdots$
- If the length of creation is bounded, there is also a generalized finite developments theorem.

Other properties

- confluency with eta-rules, delta-rules
- generalized finite developments theorem
- permutation equivalence
- redex families
- finite developments vs strong normalization
- completeness of reduction strategies
- head normal forms
- Bohm trees

• ...

- · continuity theorem
- · sequentiality of Bohm trees
- models of the type-free lambda-calculus
- typed lambda-calculi
- continuations and reduction strategies

- · process calculi and lambda-calculus
- abstract reduction systems
- explicit substitutions
- implementation of functional languages
- lazy evaluators
- SOS
- all theory of programming languages
- ...
- connection to mathematical logic
- · calculus of constructions
- ...

Exercices

- Show that:
 - **1-** $M \rightarrow_{\eta} N \rightarrow P$ implies $M \rightarrow Q \stackrel{*}{\rightarrow}_{\eta} P$ for some Q
 - **2-** $M \xrightarrow{\star}_{\eta} N \xrightarrow{\star} P$ implies $M \xrightarrow{\star} Q \xrightarrow{\star}_{\eta} P$ for some Q
 - **3-** $M \xrightarrow{*}_{\beta,\eta} N$ implies $M \xrightarrow{*} P \xrightarrow{*}_{\eta} N$ for some P
 - **4-** $M \rightarrow N$ and $M \rightarrow_{\eta} P$ implies $N \stackrel{*}{\rightarrow}_{\eta} Q$ and $P \stackrel{1}{\rightarrow} Q$ for some Q
 - **5-** $M \xrightarrow{*}_{\eta} N$ and $M \xrightarrow{*}_{\eta} P$ implies $N \xrightarrow{*}_{\eta} Q$ and $P \xrightarrow{*}_{\eta} Q$ for some Q
- **6-** $M \xrightarrow{*}_{\beta,\eta} N$ and $M \xrightarrow{*}_{\beta,\eta} P$ implies $N \xrightarrow{*}_{\beta,\eta} Q$ and $P \xrightarrow{*}_{\beta,\eta} Q$ for some QTherefore $\xrightarrow{*}_{\beta,\eta}$ is confluent.
- Show same property for β -reduction and η -expansion ($\rightarrow \cup \leftarrow_{\eta}$)*

Exercices

- 7- Show there is no *M* such that $M \xrightarrow{\star} Kac$ and $M \xrightarrow{\star} Kbc$ where $K = \lambda x \cdot \lambda y \cdot x$.
- 8- Find M such that $M \xrightarrow{\bullet} Kab$ and $M \xrightarrow{\bullet} Kac$.
- 9- (difficult) Show that * is not confluent.
- **10-** Show that $\Delta\Delta(II)$ has no normal form when $I = \lambda x.x$ and $\Delta = \lambda x.xx$.
- **11-** Show that $\Delta \Delta M_1 M_2 \cdots M_n$ has no normal form for any M_1, M_2, \dots, M_n $(n \ge 0)$.
- **12-** Show there is no M whose reduction graph is exactly following:

13- Show that rightmost-outermost reduction may miss normal forms.