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Consistency

Question: Can we get M > 2 and M = 3 7?

\

Consequence: 2=33 !l



Confluency Confluency

Question: If M =5 N, then M <> P and N => P for some P 77 Goal: If M => N and M > P, there is Q such that N <> Q and P > @
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Ap How to prove confluency ?

Then impossible to get 2 =33

Confluency Local confluency

Question: If M <> N and M —=> P, then N > Q and P => Q for some Q ? e Theorem 1: If M — N and M —> P there is Q such that N => Q and P => Q

e Example: (Ax.xx)(lz) — (Ax.xx)z

M ~N
0 . /\ S I1z(Iz) > zz
* * i * ,'N where | = Ax.x
+ "\ :' ‘\ *, ‘ N [? ?
!k ke * ’ ‘. O'
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N . , P ; * W Y \‘ ’.'
‘\\* to' \‘* " ‘\3 *’:' Q e Lemmal1: M — N implies P{X = M} > P{X = N}
-~ K4 4
y K — W ™ impli
Q . R * Lemma2: M — N implies M{x:= P} — N{x:= P}
. .
‘\* *l’ ?
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y o
Corollary: [unicity of normal forms] b * Substitution lemma: M{x := N}{y:= P} = M{y:= P}{x:= N{y = P}}
; when x not free in P

If M = N in normal form and M =5 N’ in normal form, then N = N'.



Confluency

¢ Fact: local confluency does not imply confluency

M
N P
Q
1 km/hr
Confluency
We define #> such that — C #>» C —>
* Definition [parallel reduction]:
[Var Axiom] x #> x [Const Axiom] ¢ #> ¢
M # M N #> N M #> M
[App Rule] [Abs Rule] M B O M

MN > M'N’

M #> M N #> N
[//Beta Rule] (i M {x = W'}

e Example:

X > X z > z X > X z >z

Iz #> z Iz #> z
| = Ax.x

Iz(Iz) +#> zz

Confluency

* Goal is to prove strongly local confluency:

M
N P

e Example: (Ax.xx)(lz) #> (Ax.xx)z *y

1z(Iz) #>  zz

Confluency

* Proof of confluency :
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Confluency

e Lemmad4: M -#> Nand P #> Q implies M{x := P} +#> N{x = Q}

Proof: by structural induction on M.
Case 1: M=x #» x=N. Then M{x :=P} =P #> Q= N{x:=Q}

Case2: M=y #>» y=N. Then M{x:=P} =y #> y=N{x:=Q}

Case 3: M =\y.M; #> \y.Ny = N with My -#> Nj. By induction My{x := P} +#>
Ni{x := Q}. So M{x := P} = Ay.Mi{x := P} +#> Ay.Ni{x:=Q} =N.

Case 4: M = MM, #> NiN, = N with My > Nj and M, -#> N,. By induction
Mi{x := P} #> Ni{x:= Q} and Mr{x := P} #> No{x:= Q}. So
M{x := P} = Mi{x := P} Ma{x := P} +#> Ni{x := Q}No{x := Q} = N{x := Q}.

Case 5: M = ()\y.Ml)M2 Ead Nl{y = Nz} = N with Ml -+> N1 and M2 > N2.
By induction Mi{x := P} +#> Ni{x := Q} and My{x := P} #> Npo{x := Q}. So
M{x = P} = (\y.Mi{x := P})(Mx{x := P}) #> Ni{x:= QH{y := No{x = Q}} =
Ni{y := No}{x := Q} = N by substitution lemma, since y ¢ var(Q) C var(P). O

Confluency

e Lemmab5: If M #> Nand M +#> P,then N #> Q and N +#> Q for some Q.

Proof: by structural induction on M.

Case 1: M =x. Then M =x #>» x= Nand M = x #> x = P. We have too
N #> x=Qand P #> x=Q.

Case 2: M = Ay.M; +#> Ay.Ny = N with My +#> N;. Same for M = \y.M; +#>
Ay.Py = P with My > P;. By induction Ny +#> @; and P; +#> @ for some @Q;. So
N = )\y.Nl -#> )\y.Ql =Qand P= )\y.Pl > /\y.Q]_ =Q.

Case 3: M = M1M2 > N1N2 = Nand M = M1M2 > P1P2 = P with M,' >
N;, M; +#> P; (1 S 2) By induction N; -#> Qi and P; #>» Q; for some Q;. So
N #> Q@ =Qand P #> Q1@ = Q.

Case 4: M = ()\X-MI)MZ -#> Nl{X = N2} =Nand M = ()\X.Ml)Mz -+> P,P2 =P
with M,' -+> N,‘ (1 S i S 2) and /\X.M]_ ad P/, M2 > P2. Therefore P/ = )\X.Pl
with My > P;. By induction N; #> Q; and P; +#> Q; for some Q;.

So N #> Qi{x:= Q}=Qbylemma4. And P #> Qi{x := Q2} = Q by definition.

Case 5: symmetric.

Confluency

Proof: ....

Case 6: M = (Ax.My)Mp #> Ni{x := No} = N and M = (Ax.My )Mo +#> Pi{x :=
Py} = P with M; %> N;,M; #> P; (1 < i < 2). By induction N; #> @Q; and
P; #>» Q; for some Q;.

So N #» Qi{x:=@}=Qand P #> Qi{x:=Q}=Qbylemmad. O

e Lemma6: If M — N, then M +#> N.

e Lemma7: If M #> N, then M => N.

Proofs: obvious.

* Theorem 2 [Church-Rosser]:
If M=> N and M => P, then N =>» Q@ and P => Q@ for some Q.

Confluency

* previous axiomatic method is due to Martin-Lof
* Martin-L6f’'s method models inside-out parallel reductions

* there are other proofs with explicit redexes

\

* Curry’s finite developments
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Residuals of redexes

* tracking redexes while contracting others

* examples:
A(la) — la(la) A=X.xx |=Xxx K=Myx

la(A\(Ib)) —> la(Ib(Ib))
(A=) — ((a(i)
A(la) —> la(la))
la(A\(1b)) —> la(lb(1b))
AA — AA

(Ax.fa)(Ib) — la

Residuals of redexes

s
* when RisredexinMand M — N
the set R/S of residuals of R in N is defined by inspecting relative positions
of Rand Sin M:

S
1- Rand Sdisjoint, M= ---R---§--- —> ... R---§' ... = N

2- Sin R = (\x.A)B

s
2a-SinA M= (Ax. S )B--—> - (Ax.. S )B =N

2b-5inB,M:~-~(/\X.A)(~~~S~~~)~-~—S>~~~(>\X.A)(~~~5' ... )oo=N
3-RinS=(\y.C)D
3a-RinC,M:~--(>\y.~~-5~-~)D~-~—s> ...... R{y:=D}----- =N

3-RinD,M=---Oy.O)(---R-+)--—> - (--R-) (- B)-=N

4- Ris S, no residuals of R.

Residuals of redexes

¢ when p is a reduction from Mto N,i.e. p: M—=> N
the set of residuals of R by p is defined by transitivity on the length of p
and is written R/p

* notice thatwe can have S€ R/pand R# S
residuals may not be syntacticly equal (see previous 3rd example)

¢ residuals depend on reductions. Two reductions between same terms may
produce two distinct sets of residuals.

* aredex is residual of a single redex (the inverse of the residual relation is a
function): Re€ S/pand R€ T/pimplies S =T



Exercices Relative reductions

¢ Find redex R and reductions p and o between M and N such that residuals

of R by p and o differ. Hint: consider M = /(Ix) /', AXXNALBAX0)
* Show that residuals of nested redexes keep nested. / “.
* Show that residuals of disjoint redexes may be nested. '," (AL.F3)(AX.X)((AL.£3)(AX.X)) N
* Show that residuals of a redex may be nested after several reduction steps. ..~ L / l ‘\
.’ (AL AXxX)(Ax.x)3) (AX.X)3((A£.F3)(Ax.X)) (Ax.xx)((Ax.x)3) ‘:
Created redexes f\ A)( --------- :
: o ) ) (ALF)AXX)3 s, (AXX)3((AxX)3) -7 3(ALF3)(Ax.x)
* Aredex is created by reduction p if it is not a residual by p of a redex in .
initial term. Thus R is created by p when p: M <> N and 3S, R€ S/p \ 'l"\ /
(\x.xa)l —> @ P (Ax.x)33 3((Ax.x)3) (Ax.xx)3
(Axy.xy)ab —> (Ay.ay)b AA — AA \ l /
33

Residuals of redexes Finite developments

(AXXX)((AF.F3)(AX.X)) * Let F be a set of redexes in M. A reduction relative to F only contracts
D —————
/ residuals of F.

* When there are no more residuals of F to contract, we say the relative
‘}W\X'X)IMB)MX'X» reduction is a development of F.
(ALF3)(AX.X)((AX.X)3) (AX.X)3((Af.£3)(AX.x)) (Ax.xx)((Ax.x)3)

J \ A)( * Theorem 3 [finite developments] (Curry) Let 7 be a set of redexes in M. Then:

(AFF3)(Ax.x)3 (AxX)3((Ax.x)3) (MEB)AxX) - relative reductions cannot be infinite; they all end in a development of

\ i \ / - all developments end on a same term N

- let R be a redex in M. Then residuals of R by finite developments of F are the
(Ax.x)33 3((Ax.x)3) (Ax.xx)3

b

33



Finite developments

* Therefore we can define (without ambiguity) a new parallel step reduction:

f
p:M—N

and when R is a redex in M, we can write R/F for its residuals in N

¢ Two corollaries:

Lemma of Parallel Moves Cube Lemma

Labeled calculus

Finite developments will be shown with a labeled calculus.

Lambda calculus with labeled redexes

M,N,P = XVY2z.. (variables)
| (Ax.M) (M as function of x)
| (M N) (M applied to N)
| cd, .. (constants )
| (AX.M)"N (labeled redexes)
F-labeled reduction
(AXM)'N — M{x:= N} when r € F

Labeled substitution

...as before
(MY N){y := P} = (MM)y = PYY (N{y := P})

Labeled calculus

* Theorem For any F, the labeled calculus is confluent.

* Theorem For any F, the labeled calculus is strongly normalizable (no infinite
labeled reductions).

* Lemma For any F-reduction p: M —> N, a labeled redex in N has label r
if and only if it is residual by p of a redex with label rin M.

\

* Theorem 3 [finite developments] (Curry)

Labeled calculus

* Proof of confluency is again with Martin-L6f's axiomatic method.
* Proof of residual property is by simple inspection of a reduction step.
* Proof of termination is slightly more complex with following lemmas:

* Notation M > N if M reduces to N without contracting a toplevel redex.

Lemma 1 [Barendregt-like] M{x := N} ==> (Ay.P)"Q implies
M = (A\y.A)'B with A{x := N} => P, B{x =N} = Q
or

M =xand N = (\y.P)" @

* Lemma2 M, N € SN (strongly normalizing) implies M{x := N} € S/

e Theorem M € SN for all M.



Labeled calculus proofs Labeled calculus proofs

¢ Lemma 1 [Barendregt-like] M{x := N} ==> (A\y.P)"Q implies
M = (Ay.A) B with A{x := N} => P, B{x := N} => Q
or Proof: by induction on || M]].
M =xand N = (\y.P)"Q

e Theorem M € SN for all M.

Case 1: M = x. Obvious.
Proof Let P* be P{x := N} for any P. Case 2: M = Ax.M;. Obvious since M; € SN by induction.

Case1: M =x. Then M* = N and N => (/\yP)’Q Case 3: M = MMy and My 7é ()\XA)r Then all reductions are internal to M; and M.

Therefore M € SN by induction on M; and M,.
Case 2: M =y. Then M* = y. Impossible.

Case 4: M = (Ax.M;) "M, and r ¢ F. Same argument on M; and M.
Case 2: M = \y.M;. Again impossible.

Case 5: M = (Ax.M;)"M, and r € F. Then My and M, in SN by induction. But we
Case 3: M = MyM, or M = (\y.M;)*M, with s # r. These cases are also impossible. can also have M =5 (Ax.A)’B —> A{x := B} with A and B in SN. By Lemma 2, we

know that A{x := B} € SN.

Case 4: M = (\y.My)"M,. Then Mj => P and Mj = Q.

Labeled calculus proofs

* Lemma 2 M, N € SN (strongly normalizing) implies M{x := N} € SN
Proof: by induction on (depth(M), ||[M[|). Let P* be P{x := N} for any P.
Case 1: M =x. Then M* =N € SN. If M=y. Then M* =y € SN.

Case 2: M = \y.M;. Then M* = Ay.M; and by induction My € SN.

andardizatio
Case 3: M = M;M, and never M* —=> (\y.A)"B. Same argument on M; and M,. 4 n ar IZ I n

Case 4. M = MyM, and M* <> (A\y.A)"B. We can always consider first time when this
toplevel redex appears. Hence we have M* ==> (\y.A)’B. By lemma 1, we have two
cases:

Case 4.1: M = (\y.M3)"M, with M; <> A and M; —=> B. Then M* =
(Ay-M3)'M3. As M3 € SN and M, € SN, the internal reductions from M*
terminate by induction. If r ¢ F, there are no extra reductions. If r € F, we
can have My <> A, Mj <> B and (\y.A)’B — A{y := B}. But M —
Ms{y := Mo} and (M3{y := Mp})* <> A{y := B}. As depth(A{y := B} <
depth(Ms{y := M»)} < depth(M), we get A{y := B} € SN by induction.

: CENTRE DE RECHERCHE
Case 4.2: M = x. Impossible. COMMUN NRIA
MICROSOFT RESEARCH



Standard reduction

Redex R is to the left of redex S if the \ of R is to the left of the \ of S.

= (A.A)B---(\y.C)D -
R T

or

M= (Ax.---(\y.C)D---)B
’\_/
or R 2
= (AxA) (- Ay.C)D )
e

R; R R,
The reduction M = My - My BAS My .-+ —> M, = N is standard iff for all

i, j (0 <i<j<n) redex R;is not a residual of redex R to the left of R; in

Mi_y.

Standard reduction

—
standard

M = (Ax.xx)((Af.f3)(Ax.x))
—_———

»

(Af.f3)(Ax.x)((Af.f3)(AX.X))

- |

(Af.f3)(Ax.x)((Ax.x)3) (AX.X)3((AF.f3)(Ax. x)) ()\x xx)((Ax.x)3)

-

(Af.f3)(Ax.x)3 (/\X Xx)3((Ax.x)3) 3((Af.f3)(Ax.x))

e >\ /

(Ax.x)33 N = 3((Ax.x)3) (Ax.xx)3

N

33

Standardization

* Theorem [standardization] (Curry) Any reduction can be standardized.

-------

* The normal reduction (each step contracts the leftmost-outermost redex) is a
standard reduction.

* Corollary [normalization] If M has a normal form, the normal reduction reaches
the normal form.

.......

Standardization lemma

¢ Notation: write R <; S if redex R is to the left of redex S.

s
e Lemma 1 Let R, S be redexes in M such that R <, S. Let M — N.
Then R/S = {R'}. Furthermore, if T' <, R', then 3T, T <, R, T' € T/S.
[one cannot create a redex through another more-to-the-left]

M—S_5 N

T
R R’

A\

* Proof of standardization thm: [Klop] application of the finite developments
theorem and previous lemma.



Standardization axioms

» 3 axioms are sufficient to get lemma 1

* Axiom 1 [linearity] S £, R implies 3R, R" € R/S

* Axiom 2 [context-freeness] S £y Rand R" € R/Sand T' € T/S
TRR iff TRR whereRis <;or >,

e Axiom 3 [left barrier creation] R <, S and AT’, T € T'/S implies R<, T

Standardization proof

¢ Proof:

Each square is an application of the
lemma of parallel moves. Let p; be the
horizontal reductions and o; the vertical
ones. Each horizontal step is a parallel
step, vertical steps are either elementary
or empty.

We start with reduction po from M to N.
Let R; be the leftmost redex in M with
residual contracted in pg. By lemma 1,
it has a single residual R{ in My, Ma,
...until it belongs to some Fi. Here
R{ € F,. There are no more residuals
of Rl in Mk+1, Mk+2, N -

Let R, be leftmost redex in P; with resid-
ual contracted in p;. Here the unique
residual is contracted at step n. Again
with R3 leftmost with residual contracted
in py. Etc.

<

&
R

‘_6‘
)
—
<
)

€€

I £
<<

I o
EVE

E V=

(4

SH S K
ECzE2E

lo,
— > —

implies

Standardization proof

* Proof (cont’d):

Now reduction o starting from M can-
not be infinite and stops for some p. If
not, there is a rightmost column o with
infinitely non-empty steps. After a while,
this reduction is a reduction relative to a
set ]—'{, which cannot be infinite by the
Finite Development theorem.

Then p, is an empty reduction and there-
fore the final term of oq is N.

Standardization

Proof (cont’d):

We claim oy is a standard reduction. Sup-
pose R (k > i) is residual of S; to the
left of R; in Pi_q.

By construction Ry has residual S/ along

pi—1 contracted at some j step. So 5{; is
residual of S;.

By the cube lemma, it is also residual of
some S! along oj_1. Therefore there is

S{ in ]—'{ residual of S; leftmore or outer

than R;.

Contradiction.

ol

proof

M3 M,QAMZ. - My P M,
= P P
Ry M —p N

LX 2>
R¢ Ri R R;l 4
Y 2 V_= =
SR S NN (=
L I A I

IR AEN R AT “*

=N



edex creation
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Created redexes

* Aredex is created by reduction p if it is not a residual by p of a redex in
initial term. Thus R is created by p when p: M <> N and 3S, R€ S/p

(Ax.xa)l — la lla — la
(Axy.xy)ab —> (A\y.ay)b AA — AA

* By Finite Developments thm, a reduction can be infinite iff it does not stop
creating new redexes.

AA — AA — AA — AA — ..

* If the length of creation is bounded, there is also a generalized finite developments
theorem.

Created redexes in typed calculus

¢ only 2 cases for creation of redexes within a reduction step

(Ax.---xN--)Ay.M) —> - (Ay.M)N' - -

o — T g ag
N—— creates —"

(Ax Ay MNP — (\y.M")P
= e

T

c—T 3
\—creates

¢ length of creation is bounded by size of types of initial term

ler properties
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Exercices

¢ Show that:

1-M —, N — P implies M — Q —*>,, P for some Q

Other properties

confluency with eta-rules, delta-rules * process calculi and lambda-calculus

generalized finite developments theorem * abstract reduction systems

explicit substitutions 2- M 2>, N —=> P implies M <> Q —>,, P for some Q
implementation of functional languages

finite developments vs strong normalization ¢ lazy evaluators 3- M =>4, N implies M <> P —>, N for some P

permutation equivalence

redex families

completeness of reduction strategies * SOS 1
4-M — N and M —,, P implies N <>, Q and P —> Q for some Q

* head normal forms all theory of programming languages

* Bohm trees R 5- M >, N and M <>, P implies N <>, Q and P >, Q for some Q

* continuity theorem ¢ connection to mathematical logic

* sequentiality of Bohm trees » calculus of constructions 6- M =>4, Nand M =>4, Pimplies N =>4, Q and P =>4, Q for some Q@
¢ models of the type-free lambda-calculus o ... Therefore —*> 4, is confluent.

* typed lambda-calculi

¢ continuations and reduction strategies » Show same property for 8-reduction and n-expansion (— U <—,)*

Exercices

7- Show there is no M such that M <> Kac and M = Kbc where K = Ax.\y.x.
8- Find M such that M > Kab and M <> Kac.
A 9- (difficult) Show that «* is not confluent.
O m eWO rks 10- Show that AA(/I) has no normal form when / = Ax.x and A = Ax.xx.
11- Show that AAM; M, - - - M, has no normal form for any My, My, ... M, (n > 0).
12- Show there is no M whose reduction graph is exactly following:
M
e
My My, M,

N1/

13- Show that rightmost-outermost reduction may miss normal forms.
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