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Plan

• local confluency

• Church Rosser theorem

• Redexes and residuals

• Finite developments theorem

• Standardization theorem

Confluency

Consistency

 Question: Can we get M 2 and M 3 ??

2 =β 3 !! Consequence:



Confluency

M N

 Question: If M =β N, then M P and N P for some P ??

 Then impossible to get 2 =β 3

Confluency

M

N P

Q

M N

 Corollary: [unicity of normal forms]

 Question:

If M N in normal form and M N � in normal form, then N = N �.

If M N and M P, then N Q and P Q for some Q ?

Confluency

M

N P

Q

How to prove confluency ?

 Goal: If M N and M P, there is Q such that N Q and P Q

Local confluency

If M N and M P there is Q such that N Q and P Q• Theorem 1:

M

N P

Q • Lemma 1: 

M N implies M{x := P} N{x := P}• Lemma 2: 

M N implies P{x := M} P{x := N}

• Substitution lemma: M{x := N}{y := P} = M{y := P}{x := N{y := P}}
when x not free in P

where I = λx .x

• Example: (λx .xx)(Iz) (λx .xx)z

Iz(Iz) zz



Confluency

• Fact: local confluency does not imply confluency

Q

M

N P

M

PN

Q

1

2
1

2
1

Confluency

We define such that ⊂ ⊂

I = λx .x
Iz(Iz) zz

• Example:

• Definition [parallel reduction]:

[Var Axiom] x x [Const Axiom] c c

[App Rule]
M M � N N �

MN M �N � [Abs Rule]
M M �

λx .M λx .M �

[ //Beta Rule]
M M � N N �

(λx .M)N M �{x := N �}

z zx x

Iz z

z zx x

Iz z

Confluency

M

N P

Q

• Goal is  to prove strongly local confluency:

• Example: (λx .xx)(Iz) (λx .xx)z

Iz(Iz) zz

M

N P

Confluency

• Proof of confluency :



Confluency

• Lemma 4: 

Proof: by structural induction on M.

Case 3: M = λy .M1 λy .N1 = N with M1 N1. By induction M1{x := P}
N1{x := Q}. So M{x := P} = λy .M1{x := P} λy .N1{x := Q} = N.

M N and P Q implies M{x := P} N{x := Q}

Case 4: M = M1M2 N1N2 = N with M1 N1 and M2 N2. By induction
M1{x := P} N1{x := Q} and M2{x := P} N2{x := Q}. So
M{x := P} = M1{x := P}M2{x := P} N1{x := Q}N2{x := Q} = N{x := Q}.

Case 5: M = (λy .M1)M2 N1{y := N2} = N with M1 N1 and M2 N2.
By induction M1{x := P} N1{x := Q} and M2{x := P} N2{x := Q}. So
M{x := P} = (λy .M1{x := P})(M2{x := P}) N1{x := Q}{y := N2{x := Q}} =
N1{y := N2}{x := Q} = N by substitution lemma, since y �∈ var(Q) ⊂ var(P). �

Case 1: M = x x = N. Then M{x := P} = P Q = N{x := Q}

Case 2: M = y y = N. Then M{x := P} = y y = N{x := Q}

Confluency

Proof: by structural induction on M.

Case 1: M = x . Then M = x x = N and M = x x = P. We have too
N x = Q and P x = Q.

Case 2: M = λy .M1 λy .N1 = N with M1 N1. Same for M = λy .M1

λy .P1 = P with M1 P1. By induction N1 Q1 and P1 Q1 for some Q1. So
N = λy .N1 λy .Q1 = Q and P = λy .P1 λy .Q1 = Q.

Case 3: M = M1M2 N1N2 = N and M = M1M2 P1P2 = P with Mi

Ni ,Mi Pi (1 ≤ i ≤ 2). By induction Ni Qi and Pi Qi for some Qi . So
N Q1Q2 = Q and P Q1Q2 = Q.

• Lemma 5: If M N and M P, then N Q and N Q for some Q.

Case 5: symmetric.

Case 4: M = (λx .M1)M2 N1{x := N2} = N and M = (λx .M1)M2 P �P2 = P
with Mi Ni (1 ≤ i ≤ 2) and λx .M1 P �, M2 P2. Therefore P � = λx .P1

with M1 P1. By induction Ni Qi and Pi Qi for some Qi .
So N Q1{x := Q2} = Q by lemma 4. And P Q1{x := Q2} = Q by definition.

Confluency

Proof: ....

• Lemma 6: If M N, then M N.

If M N, then M N.• Lemma 7: 

Proofs: obvious.

• Theorem 2 [Church-Rosser]:
If M N and M P, then N Q and P Q for some Q.

Case 6: M = (λx .M1)M2 N1{x := N2} = N and M = (λx .M1)M2 P1{x :=
P2} = P with Mi Ni ,Mi Pi (1 ≤ i ≤ 2). By induction Ni Qi and
Pi Qi for some Qi .
So N Q1{x := Q2} = Q and P Q1{x := Q2} = Q by lemma 4. �

Confluency

• previous axiomatic method is due to Martin-Löf 

• Martin-Löf’s method models inside-out parallel reductions

• there are other proofs with explicit redexes

• Curry’s finite developments



Finite developments

Residuals of redexes
• tracking redexes while contracting others 

• examples:

∆(Ia) Ia(Ia)

∆(Ia) Ia(Ia))

Ia(∆(Ib)) Ia(Ib(Ib))

∆∆ ∆∆

Ia(∆(Ib)) Ia(Ib(Ib))

I (∆(Ia)) I (Ia(Ia))

∆ = λx . xx I = λx .x K = λxy .x

(λx .Ia)(Ib) Ia

Residuals of redexes
M

S
N• when R is redex in M and

the set R/S of residuals of R in N is defined by inspecting relative positions

of R and S in M:

1-

2-

M = · · · R · · · S · · ·
S

· · · R · · · S � · · · = NR and S disjoint,

2a-

S in R = (λx .A)B

2b-

3- R in S = (λy .C )D

3a-

3b-

R is S , no residuals of R.4-

S in A, M = · · · (λx . · · · S · · · )B · · ·
S

· · · (λx . · · · S � · · · )B · · · = N

S in B, M = · · · (λx .A)(· · · S · · · ) · · ·
S

· · · (λx .A)(· · · S � · · · ) · · · = N

R in C , M = · · · (λy . · · ·R · · · )D · · ·
S

· · · · · ·R{y := D} · · · · · · = N

R in D, M = · · · (λy .C )(· · · R · · · ) · · ·
S

· · · (· · · R · · · ) · · · (· · · R · · · ) · · · = N

Residuals of redexes

• when ! is a reduction from M to N, i.e.

the set of residuals of R by ! is defined by transitivity on the length of !

and is written 

ρ : M N

R/ρ

• residuals depend on reductions. Two reductions between same terms may  
produce two distinct sets of residuals.

• notice that we can have S ∈ R/ρ and R �= S

residuals may not be syntacticly equal (see previous 3rd example)

• a redex is residual of a single redex (the inverse of the residual relation is a 
function): R ∈ S/ρ and R ∈ T/ρ implies S = T



Exercices
• Find redex R and reductions ! and " between M and N such that residuals 

of R by ! and " differ. Hint: consider M = I (Ix)

• Show that residuals of nested redexes keep nested.

• Show that residuals of disjoint redexes may be nested.

• Show that residuals of a redex may be nested after several reduction steps.

Created redexes

(λx .xa)I Ia

(λxy .xy)ab (λy .ay)b

IIa Ia

∆∆ ∆∆

• A redex is created by reduction ! if it is not a residual by ! of a redex in 
initial term. Thus R is created by ! when ρ : M N and �S , R ∈ S/ρ

Residuals of redexes

Relative reductions

Finite developments

• Let F    be a set of redexes in M. A reduction relative to F   only contracts 
residuals of F.

• When there are no more residuals of F  to contract, we say the relative 
reduction is a development of F.

• Theorem 3 [finite developments] (Curry)  Let F  be a set of redexes in M. Then:

- relative reductions cannot be infinite; they all end in a development of F

- all developments end on a same term N

- let R be a redex in M. Then residuals of R by finite developments of F are the 
same.



Finite developments

• Therefore we can define (without ambiguity) a new parallel step reduction:

ρ : M
F

N

• Two corollaries:

and when R is a redex in M, we can write R/F for its residuals in N

M

N P

Q

F G

G/F F/G

Cube LemmaLemma of Parallel Moves

M

N P

Q

F G

H

Labeled calculus

• Lambda calculus with labeled redexes

• F -labeled reduction

• Labeled substitution

M, N, P ::= x, y, z, ... (variables)

| ( λx.M ) (M as function of x)

| ( M  N ) (M applied to N)

| c, d, ... (constants )

| ( λx.M )  N (labeled redexes)r

(λx .M)rN M{x := N} when r ∈ F

. . . as before

((λx .M)rN){y := P} = ((λx .M){y := P})r (N{y := P})

• Finite developments will be shown with a labeled calculus.

Labeled calculus

• Theorem For any F, the labeled calculus is confluent.

• Theorem For any F, the labeled calculus is strongly normalizable (no infinite 
labeled reductions).

• Lemma  For any F-reduction  ρ : M N, a labeled redex in N has label r

if and only if it is residual by ! of a redex with label r in M.

• Theorem 3 [finite developments] (Curry)

Labeled calculus

• Proof of confluency is again with Martin-Löf’s axiomatic method.

• Proof of residual property is by simple inspection of a reduction step.

• Proof of termination is slightly more complex with following lemmas:

• Theorem M ∈ SN for all M.

• Lemma 2 M,N ∈ SN (strongly normalizing) implies M{x := N} ∈ SN

• Lemma 1 [Barendregt-like] M{x := N} (λy .P)rQ impliesint

M = (λy .A)rB with A{x := N} P, B{x := N} Q

or

M = x and N (λy .P)rQ

• Notation M N if M reduces to N without contracting a toplevel redex.int



Labeled calculus proofs

Proof

Case 1: M = x . Then M∗ = N and N (λy .P)rQ.

Case 2: M = y . Then M∗ = y . Impossible.

Case 2: M = λy .M1. Again impossible.

Case 3: M = M1M2 or M = (λy .M1)sM2 with s �= r . These cases are also impossible.

Case 4: M = (λy .M1)rM2. Then M∗
1 P and M∗

2 Q.

Let P∗ be P{x := N} for any P.

• Lemma 1 [Barendregt-like] M{x := N} (λy .P)rQ impliesint

M = (λy .A)rB with A{x := N} P, B{x := N} Q

or

M = x and N (λy .P)rQ

Labeled calculus proofs
• Lemma 2 M,N ∈ SN (strongly normalizing) implies M{x := N} ∈ SN

Proof: by induction on �depth(M), ||M|| �. Let P∗ be P{x := N} for any P.

Case 1: M = x . Then M∗
= N ∈ SN . If M = y . Then M∗

= y ∈ SN .

Case 2: M = λy .M1. Then M∗
= λy .M∗

1 and by induction M∗
1 ∈ SN .

Case 3: M = M1M2 and never M∗
(λy .A)

rB. Same argument on M1 and M2.

Case 4: M = M1M2 and M∗
(λy .A)

rB. We can always consider first time when this

toplevel redex appears. Hence we have M∗
(λy .A)

rB. By lemma 1, we have two

cases:

int

Case 4.2: M = x . Impossible.

Case 4.1: M = (λy .M3)rM2 with M∗
3 A and M∗

2 B. Then M∗ =
(λy .M∗

3 )rM∗
2 . As M3 ∈ SN and M2 ∈ SN , the internal reductions from M∗

terminate by induction. If r �∈ F , there are no extra reductions. If r ∈ F , we
can have M∗

3 A, M∗
2 B and (λy .A)rB A{y := B}. But M

M3{y := M2} and (M3{y := M2})∗ A{y := B}. As depth(A{y := B} ≤
depth(M3{y := M2)} < depth(M), we get A{y := B} ∈ SN by induction.

Labeled calculus proofs

• Theorem M ∈ SN for all M.

Proof: by induction on ||M||.

Case 1: M = x . Obvious.

Case 2: M = λx .M1. Obvious since M1 ∈ SN by induction.

Case 3: M = M1M2 and M1 �= (λx .A)r . Then all reductions are internal to M1 and M2.

Therefore M ∈ SN by induction on M1 and M2.

Case 4: M = (λx .M1)
rM2 and r �∈ F . Same argument on M1 and M2.

Case 5: M = (λx .M1)
rM2 and r ∈ F . Then M1 and M2 in SN by induction. But we

can also have M (λx .A)rB A{x := B} with A and B in SN . By Lemma 2, we

know that A{x := B} ∈ SN .

Standardization



Standard reduction

R

S

M = · · · (λx .A)B · · · (λy .C )D · · ·

or

M = · · · (λx . · · · (λy .C )D · · · )B · · ·

or

M = · · · (λx .A)(· · · (λy .C )D · · · ) · · ·
S

R

R

S

Redex R is to the left of redex S if the λ of R is to the left of the λ of S .

The reduction M = M0

R1

M1

R2

M2 · · ·
Rn

Mn = N is standard iff for all
i , j (0 < i < j ≤ n), redex Rj is not a residual of redex R �

j to the left of Ri in
Mi−1.

M =

N =

Standard reduction

standard

Standardization

• The normal reduction (each step contracts the leftmost-outermost redex) is a 
standard reduction.

• Theorem [standardization] (Curry) Any reduction can be standardized.  

• Corollary [normalization]  If M has a normal form, the normal reduction reaches 
the normal form. 

st

norm

nf

• Lemma 1

[one cannot create a redex through another more-to-the-left]

Standardization lemma

• Proof of standardization thm: [Klop] application of the finite developments 
theorem and previous lemma.

M N

R

S

R’

M N

R

S

R’
T’T

• Notation: 

Let R,S be redexes in M such that R <� S . Let M
S

N.

Then R/S = {R �}. Furthermore, if T � <� R �, then ∃T , T <� R,T � ∈ T/S .

write R <� S if redex R is to the left of redex S .



Standardization axioms

• 3 axioms are sufficient to get lemma 1

• Axiom 2 [context-freeness]

• Axiom 3 [left barrier creation]

S �≤� R and R � ∈ R/S and T � ∈ T/S implies

R <� S and �T �, T ∈ T �/S implies R <� T

• Axiom 1 [linearity] S �≤� R implies ∃!R �, R � ∈ R/S

T � R iff T � � R � where � is <� or >�

Standardization proof
• Proof: 

M
F1 F2 FnM1 M2 Mn−1

R1

R2

R3

R4

R5

Mn = N

∅ ∅ ∅

∅

∅

∅

∅

∅∅

∅

P1

P2

P3

P4

P5

F1
1

F2
1

F3
1

F4
1

F5
1

F1
2

F2
2

F3
2

F4
2

F5
2

F1
n

F2
n

F3
n

F4
n

F5
n

N

N

N

N

N

R �
1

R �
2 R ��

2 Rn
2

Rn
5

R �
3

R �
4 R ��

4

R ��
5R �

5

Each square is an application of the

lemma of parallel moves. Let ρi be the

horizontal reductions and σj the vertical

ones. Each horizontal step is a parallel

step, vertical steps are either elementary

or empty.

We start with reduction ρ0 from M to N.

Let R1 be the leftmost redex in M with

residual contracted in ρ0. By lemma 1,

it has a single residual R �
1 in M1, M2,

. . . until it belongs to some Fk . Here

R �
1 ∈ F2. There are no more residuals

of R1 in Mk+1, Mk+2, . . . .

Let R2 be leftmost redex in P1 with resid-

ual contracted in ρ1. Here the unique

residual is contracted at step n. Again

with R3 leftmost with residual contracted

in ρ2. Etc.

Standardization proof
• Proof (cont’d): 

Now reduction σ0 starting from M can-
not be infinite and stops for some p. If
not, there is a rightmost column σk with
infinitely non-empty steps. After a while,
this reduction is a reduction relative to a
set F j

i , which cannot be infinite by the
Finite Development theorem.

Then ρp is an empty reduction and there-
fore the final term of σ0 is N.

M
F1 F2 FnM1 M2 Mn−1

R1

R2

R3

R4

R5

Mn = N

∅ ∅ ∅

∅

∅

∅

∅

∅∅

∅

P1

P2

P3

P4

P5

F1
1

F2
1

F3
1

F4
1

F5
1

F1
2

F2
2

F3
2

F4
2

F5
2

F1
n

F2
n

F3
n

F4
n

F5
n

N

N

N

N

N

R �
1

R �
2 R ��

2 Rn
2

Rn
5

R �
3

R �
4 R ��

4

R ��
5R �

5

NN

Standardization proof
• Proof (cont’d): 

M
F1 F2 FnM1 M2 Mn−1

R1

R2

R3

R4

R5

Mn = N

∅ ∅ ∅

∅

∅

∅

∅

∅∅

∅

P1

P2

P3

P4

P5

F1
1

F2
1

F3
1

F4
1

F5
1

F1
2

F2
2

F3
2

F4
2

F5
2

F1
n

F2
n

F3
n

F4
n

F5
n

N

N

N

N

N

R �
1

R �
2 R ��

2 Rn
2

Rn
5

R �
3

R �
4 R ��

4

R ��
5R �

5

We claim σ0 is a standard reduction. Sup-
pose Rk (k > i) is residual of Si to the
left of Ri in Pi−1.

By construction Rk has residual S j
k along

ρi−1 contracted at some j step. So S j
k is

residual of Si .

By the cube lemma, it is also residual of
some S j

i along σj−1. Therefore there is

S j
i in F j

i residual of Si leftmore or outer
than Ri .

Contradiction.



Redex creation

Created redexes
• A redex is created by reduction ! if it is not a residual by ! of a redex in 

initial term. Thus R is created by ! when ρ : M N and �S , R ∈ S/ρ

(λx .xa)I Ia

(λxy .xy)ab (λy .ay)b

IIa Ia

∆∆ ∆∆

• By Finite Developments thm, a reduction can be infinite iff it does not stop 
creating new redexes.

∆∆ ∆∆ ∆∆ ∆∆ · · ·

• If the length of creation is bounded, there is also a generalized finite developments 
theorem.

Created redexes in typed calculus

• only 2 cases for creation of redexes within a reduction step

(λx . · · · xN · · · )(λy .M) · · · (λy .M)N � · · ·

(λx .λy .M)NP (λy .M �)P

σ → τ σ σ

σ → τ

τ
τ

• length of creation is bounded by size of types of initial term

creates

creates

Other properties



Other properties
• confluency with eta-rules, delta-rules

• generalized finite developments theorem

• permutation equivalence

• redex families

• finite developments vs strong normalization

• completeness of reduction strategies

• head normal forms

• Bohm trees

• continuity theorem

• sequentiality of Bohm trees

• models of the type-free lambda-calculus

• typed lambda-calculi

• continuations and reduction strategies

• ...

• process calculi and lambda-calculus 

• abstract reduction systems

• explicit substitutions

• implementation of functional languages

• lazy evaluators

• SOS

• all theory of programming languages

• ...

• connection to mathematical logic

• calculus of constructions

• ...

Homeworks

Exercices

1-

2-

3-

4-

• Show that:

M η N P implies M Q η P for some Q

M η N P implies M Q η P for some Q

M β,η N implies M P η N for some P

M N and M η P implies N η Q and P
1

Q for some Q

5-

6- M β,η N and M β,η P implies N β,η Q and P β,η Q for some Q

M η N and M η P implies N η Q and P η Q for some Q

is confluent.Therefore β,η

• Show same property for #-reduction and $-expansion ( ∪ η)∗

Exercices
7-

8-

9-

Show there is no M such that M Kac and M Kbc where K = λx .λy .x .

Find M such that M Kab and M Kac .

(difficult) Show that is not confluent.

Show that ∆∆M1M2 · · · Mn has no normal form for any M1, M2, . . .Mn (n ≥ 0).

10- Show that ∆∆(II ) has no normal form when I = λx .x and ∆ = λx .xx .

11-

12- Show there is no M whose reduction graph is exactly following:

M

N

M1 M2 M3

13- Show that rightmost-outermost reduction may miss normal forms.


