]-O-Caml (4)

jean-jacques.levy@inria.fr
pauillac.inria.fr/~levy/qinghua/j-o-caml

Qinghua, November 27

loe EEimL

F 1“10‘1\ lwmu lOZIMmMaKke

Plan of this class

polymorphic mutable data

modules and signatures

manipulating terms as AST

reading bitmaps

ariane 5 story

Exercices

* Conway sequences - solution 2

let conway x =
let rec conwayl n a x = match x with
| [] -> if n > @ then [1;a] else []
| b ::y ->1if a = b then conwayl (n+l) a y else
if n>0 thenn :: a :: conwayl 1 b y else conwayl 1 b y
in conwayl @ @ x ;;

Polymorphism

variables and functions are polymorphic in Caml

* type inference gives the principal type (unique most general)

* no need to keep type information at runtime, since strong type checking
differs from Lisp, Scheme, Java which keep and check type information

* in Caml, polymorphism only appears around let statements

let id = function x -> x in
print_int (id 43); print_string (id "jocaml") ;;
43jocaml- : unit = O
function x -> x ;;
- : 'a > "a=<fun>

Polymorphic mutable data

* mutable values can’t have real polymorphic types (see below)
* they are not considered as real values

only values have true polymorphic types
* mutable values have “once polymorphic” types

let succ x = x + 1 ;3
val succ : int -> int = <fun>
let loc = ref (function x -> x) in
loc := succ; !loc "jocaml" ;;
Characters 55-63:
loc := succ; !loc "jocaml" ;;
AAAAAAAA
Error: This expression has type string but an expression was expe
.cted of type int
ref (function x -> x) ;;
~ : ('"_a -> '"_a) ref = {contents = <fun>}

Modules and Signatures

* module declaration groups related functions

module FIFO = struct
type 'a t = {mutable hd: 'a list; mutable tl: 'a list}
let create(Q ={hd =[]; t1 = [1}
let add f a = f.tl <- a :: f.tl
end;;
module FIFO :
sig
type 'a t = { mutable hd : 'a list; mutable tl : 'a list; }
val create : unit -> 'a t
val add : 'a t -> 'a -> unit
end
|

 qualified names to refer to functions and types

let f = FIFO.create(Q);;

val f : '_a FIFO.t = {FIFO.hd = []; FIFO.t1 = []}
FIFO.add f 3;;

- tunit = O

5

- : int FIFO.t = {FIFO.hd = []; FIFO.tl = [3]}

Modules and Signatures

* implementation may be hidden by forcing signature

module FIFO = (struct

type 'a t = {mutable hd: 'a list; mutable tl:

let create() = {hd = []; t1 = [1}
let add f a = f.tl <- a :: f.tl
end :
sig
type 'a t
val create : unit -> 'a t
val add : 'a t -> 'a -> unit
end) ;;
module FIFO : sig type 'a t val create : unit ->
'a t -> 'a -> unit end

* qualified names to refer to functions and types
let f = FIFO.create() ;;
val f : '"_a FIFO.t = <abstr>
FIFO.add f 3;;
- :unit = 0O
#f 5

- : 1int FIFO.t = <abstr>
FIFO.add f "jocaml";;
Characters 11-19:

FIFO.add f "jocaml";;

'a list}

'a t val add :

Modules and Signatures

modules group set of type, exception, variable, function definitions

type of a module is its signature
signature can be restricted by giving it explicitly

hiding implementation of some types produce abstract types

several functions may also be hidden (usually auxiliary functions)

abstract types may have several implementations (FIFO as circular

buffers, FIFO as lists)

if type is abstract, the user of this type will not see differences between

implementations
signatures are described in the Ocaml libraries
compiled signatures are in files with suffix . cmi

modules may be nested

Exercice

* Write remove function which removes the head of the queue in FIFO module

(with creation of EmptyQueue exception)

* Give an alternative implementation of FIFOs with circular buffers.

* Give a module definition for addition and multiplication for big numbers (as in exercic
lecture 2)

Reading bitmaps
e function to read bitmaps on standard input + 2 useful functions
[format is: width(w) height(h) and h lines of w numbers]

let ncols = read_int() 1in

let nlignes = read_int() in

let b = bmap_read nlignes ncols in
bmap_display b;

pause();

let bmap_display b =
let bi = make_image b in
draw_image bi margin margin; ;

let pause () =
match wait_next_event [Button_down] with

- >0 ;;

Reading bitmaps

¢ format is: nlines and ncolumns

let bmap_read nlignes ncols =
let b = Array.make_matrix nlignes ncols @ in
for i = @ to nlignes - 1 do
let s = read_line() in
let xs = ref (Str.split (Str.regexp "[“t1+") s) in
for j = @ to ncols - 1 do
let ¢ = int_of_string (List.hd !xs) in
b.(i).(j) <- rgb c c c;
xs := List.tl !xs;
done;
done;
b;;

bien d'objets
1S une image?

Jean-Jacques Lévy
INRIA

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Labeling

11 1] [L]
L [11 3
— 1 2
T
N |]
| - 3 | |
[]]
R G 7 5 u
|| [] | |
[1
11
—10
L [[[T 1] | |
A > 3| Al]] Tebug Refiresh] Clos-! | > ¥ 4| 1] o] Debug Refresh] Clos-!

16 objects in this picture

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Algorithm

1) first pass

- scan pixels left-to-right, top-to-bottom giving a new object id each time a new
object is met

2) second pass

- generate equivalences between ids due to new adjacent relations met during
scan of pixels.

3) third pass

- compute the number of equivalence classes
Complexity:

- scan twice full image (linear cost)

- try to efficiently manage equivalence classes (Union-Find by Tarjan)

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

