Polymorphic types

jean-jacques.levy@inria.fr

2013-8-8

http://sts.thss.tsinghua.edu.cn/Coqschool2013

Notes adapted from Assia Mahboubi (coq school 2010, Paris) and Benjamin Pierce (software foundations course, UPenn)
Plan

• polymorphic lists
• polymorphic functions
• implicit arguments
• induction on polymorphic lists
• polymorphic trees, products, options
• higher-order functions
COMPUTER BUGS ARE NEVER EXPECTED
COMPUTER BUGS ARE NEVER EXPECTED
- Testing
- Static analysis
- Formal methods
Polymorphic datatypes
Polymorphic lists (1/5)

Lists of any type X.

Inductive list $\text{(X:Type)} : \text{Type} :=$
 $\mid \text{nil} : \text{list X}$
 $\mid \text{cons} : X \to \text{list X} \to \text{list X}$.

Exercice 14 Check list, nil, cons.
Exercice 15 Check $\text{cons nat 1 (cons nat 2 (nil nat))}$.

Definition daylist := list (day).
Definition natlist := list (nat).

Check (cons day monday (cons day tuesday (nil day))).
Check (cons nat 2 (cons nat 3 (nil nat))).
Check (cons _ monday (cons _ tuesday (nil _))).
Fixpoint app (X:Type) (l1 l2 : list X) {struct l1} : (list X) :=
 match l1 with
 | nil => l2
 | cons h t => cons X h (app X t l2)
end.

Exercice 16 Associativity of append. Etc..

Fixpoint rev (X:Type) (l:list X) {struct l} : list X :=
 match l with
 | nil => nil X
 | cons h t => app X (rev X t) (cons X h (nil X))
end.
Synthetizing arguments (1/4)

Fixpoint length (X:Type) (l:list X) {struct l} : nat :=
 match l with
 | nil => 0
 | cons h t => S (length _ t)
 end.

Example test_length2 :
 length _ (cons _ 1 (cons _ 2 (nil _))) = 2.
Proof. reflexivity. Qed.
Implicit Arguments (2/3)

- Arguments nil [X].
- Arguments cons [X] _ _.

Check cons 2 nil.
Check cons monday nil.

or simply with argument in braces at function definition.

Fixpoint length {X:Type} (l:list X) {struct l} : nat :=
 match l with
 | nil => 0
 | cons h t => S (length t)
 end.

Example test_length3 :
 length (cons 1 (cons 2 (nil))) = 2.
Proof. reflexivity. Qed.

@length is notation for function with all arguments.
Notation "x :: l" := (cons x l) (at level 60, right associativity).

Notation "[]" := nil.
Notation "[x , .. , y]" := (cons x .. (cons y nil) ..).

Check 3 :: 4 :: nil.
Check monday :: tuesday :: nil.
Check [3, 4, 5].
Also decreasing argument is implicit when clear from definition.

Fixpoint length \(\{X:\text{Type}\} \) (l:list X) : nat :=
 match l with
 | nil => 0
 | cons h t => S (length t)
end.

Fixpoint app \(\{X : \text{Type}\} \) (l1 l2 : list X) : (list X) :=
 match l1 with
 | nil => l2
 | nil => l2
 | cons h t => cons h (app t l2)
end.

Exercice 17 Write definition of \textit{rev} with implicit arguments.
Polymorphic lists (4/5)

Let iterative reverse be:

Fixpoint irev {X: Type} (l1 l2: list X) : list X :=
 match l1 with
 | [] => l2
 | v1 :: l1' => irev l1' (v1 :: l2)
end.

Exercice 18 Show for any lists \(l_1, l_2, l_3 \):

\[
l_1 ++ (l_2 ++ l_3) = (l_1 ++ l_2) ++ l_3
\]

length\((l_1 ++ l_2)\) = (length \(l_1\)) + (length \(l_2\))

rev \(l_1\) = irev \(l_1\) []

\(l \ ++ \ [] = l\)

rev(\(l_1 ++ l_2\)) = (rev \(l_2\)) ++ (rev \(l_1\))

rev(rev \(l\)) = \(l\)

\(l = \text{rev} \ l' \Rightarrow \ l' = \text{rev} \ l\)
Inductive binTree (X : Type) :=
| leaf : X -> binTree X
| node : X -> binTree X -> binTree X -> binTree X.

Fixpoint count_leaves {X: Type} (t : binTree X) :=
 match t with
 | leaf _ => 1
 | node _ t1 t2 => (count_leaves t1) + (count_leaves t2)
 end.
Lemma height_le_size : forall (X: Type) (t : binTree X),
 height t <= size t.
Proof.
intros X t. induction t as [| x t1 IHt1 t2 IHt2].
- reflexivity.
- simpl. apply Le.le_n_S.
 apply Max.max_case.
 + apply (Le.le_trans _ (size t1) _).
 apply IHt1. apply Plus.le_plus_l.
 + apply (Le.le_trans _ (size t2) _).
 apply IHt2. apply Plus.le_plus_r.
Qed.
Polymorphic Option and Product

A polymorphic non recursive option type:

Inductive option (X : Type) : Type :=
 Some : X -> option X | None : option X

Use it for default value:

Fixpoint last {X : Type} (l : list X) : option X :=
 match l with
 | [] => None
 | v :: nil => Some v
 | _ :: l' => last l'
 end.

We also define polymorphic product.

Inductive prod {X Y : Type} : Type :=
 pair : X -> Y -> prod X Y

The notation X * Y denotes (prod X Y).
The notation (x, y) denotes (pair x y) (implicit argument).
Higher order functions

Fixpoint map\{X Y: Type\} (f : X\rightarrow Y) (l : list X) {struct l} : list Y :=
 match l with
 | [] => []
 | x :: l' => (f x) :: map f l'
end.

Example map_negb : map negb [true, false] = [false, true].
Example map_next_weekday :
 map next_weekday [monday, friday] = [tuesday, monday].

Exercice 19 Show
map f (rev l) = rev(map f l)
map f (l_1 ++ l_2) = (map f l_1) ++ (map f l_2)