
Polymorphic types
jean-jacques.levy@inria.fr

August 5, 2013

http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Notes adapted from
Assia Mahboubi

(coq school 2010, Paris) and
Benjamin Pierce (software

foundations course, UPenn)

mailto:jean-jacques.levy@inria.fr
mailto:jean-jacques.levy@inria.fr

• easy proofs by simplification and reflexivity

• higher-order functions

• data types

• notation in Coq

• enumerated sets

• pattern-matching on constructors

Plan

Enumerated types

Inductive declarations

An arbitrary type as assumed by:

Variable T : Type.

gives no a priori information on the nature, the number, or the

properties of its inhabitants.

Inductive declarations

Inductive declarations

An inductive type declaration explains how the inhabitants of the

type are built, by giving names to each construction rule:

Print bool.
Inductive bool : Set := true : bool | false : bool.

Print nat.
Inductive nat : Set := O : nat | S : nat -> nat.

Each such rule is called a constructor.

Inductive declarations

Inductive declarations in Coq

Inductive types in Coq can be seen as the generalization of similar

type constructions in more common programming languages.

They are in fact an extremely rich way of defining data-types,

operators, connectives, specifications,...

They are at the core of powerful programming and reasoning

techniques.

Inductive declarations

Enumerated types (1/3)

Enumerated types are types which list and name exhaustively their

inhabitants.

Inductive bool : Set := true : bool | false : bool.

Set is deprecated. Now use Type.

Inductive color : Type := black : color | white : color.

Enumeratives types (1/5)

Enumerated types (2/3)

Enumerated types are types which list and name exhaustively their

inhabitants.

A new enumerated type:

Inductive day : Type :=

| monday | tuesday | wednesday |

| thursday | friday | saturday | sunday : day.

Check tuesday.
tuesday : day

Labels refer to distinct elements.

Enumeratives types (2/5)

Enumerated types (2/2)

Inspect the enumerated type inhabitants and assign values:

Definition negb (b : bool) :=
match b with true => false | false => true end.

Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday | tuesday => wednesday
| wednesday => thursday | thursday => friday
| friday | saturday | sunday => monday end.

Eval compute in (next_weekday friday).
= monday
: day

Enumeratives types (3/5)

Simplification and Reflexivity (1/2)

Definition andb (b1:bool) (b2:bool) : bool :=
match b1 with true => b2 | false => false end.

Definition orb (b1:bool) (b2:bool) : bool :=
match b1 with true => true | false => b2 end.

Example test_orb1: (orb true false) = true.
orb true false = true

Proof.
simpl.
true = true

reflexivity.
Qed.
test orb1 is defined

Simplification and reflexivity (3/4)Enumeratives types (4/5)

Inductive types (3/4)

Exercice Give definitions of predicates work_day
and weekend_day.

Exercice Give definitions of predicates black_if_workday
and white for weekends.

Enumeratives types (5/5)

Easy proofs

Polymorphic lists (1/5)

lists of any type X .

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.

Exercice 14 Check list, nil, cons.
Exercice 15 Check cons nat 1 (cons nat 2 (nil nat)).

Fixpoint length (X:Type) (l:list X) {struct l} : nat :=
match l with
| nil => 0
| cons h t => S (length X t)
end.

Example test_length1 :

length nat (cons nat 1 (cons nat 2 (nil nat))) = 2.

Proof. reflexivity. Qed.

No need to put X as argument of nil and cons in matching.

Polymorphic lists (1/5)

Polymorphic lists (2/5)

Fixpoint app (X:Type) (l1 l2 : list X) {struct l1}
: (list X) :=

match l1 with
| nil => l2
| cons h t => cons X h (app X t l2)
end.

Exercice 16 Associativity of append. Etc..

Fixpoint rev (X:Type) (l:list X) {struct l} : list X :=
match l with
| nil => nil X
| cons h t => app X (rev X t) (cons X h (nil X))
end.

Polymorphic lists (2/5)

Polymorphic lists (3/5)

Definition daylist := list day.

Definition new_weekend_days := [saturday, sunday].

Polymorphic lists (3/5)

Synthetizing arguments (1/3)

Fixpoint length (X:Type) (l:list X) {struct l} : nat :=
match l with
| nil => 0
| cons h t => S (length _ t)
end.

Example test_length2 :

length _ (cons _ 1 (cons _ 2 (nil _))) = 2.

Proof. reflexivity. Qed.

Synthetizing arguments (1/3)

Implicit arguments (2/3)

Implicit Arguments nil [X].
Implicit Arguments cons [X].
Implicit Arguments length [X].
Implicit Arguments app [X].
...

or simply with argument in braces at function definition.

Fixpoint length {X:Type} (l:list X) {struct l} : nat :=
match l with
| nil => 0
| cons h t => S (length t)
end.

Example test_length3 :

length (cons 1 (cons 2 (nil))) = 2.

Proof. reflexivity. Qed.

@length is notation for function with all arguments.

Synthetizing arguments (2/3)

Implicit arguments (3/3)

Also decreasing argument is implicit when clear from definition.

Fixpoint length {X:Type} (l:list X) : nat :=
match l with
| nil => 0
| cons h t => S (length t)
end.

Fixpoint app {X : Type} (l1 l2 : list X) : (list X) :=
match l1 with
| nil => l2
| cons h t => cons h (app t l2)
end.

Exercice 17 Write definition of rev with implicit arguments.

Synthetizing arguments (3/3)

Polymorphic lists (4/5)

Let iterative reverse be:

Fixpoint irev {X: Type} (l1 l2: list X) : list X :=

match l1 with

| [] => l2

| v1 :: l1’ => irev l1’ (v1 :: l2)

end.

Exercice 18 Show for any lists `
1

, `
2

, `
3

:

`
1

++ (`
2

++ `
3

) = (`
1

++ `
2

) ++ `
3

length(`
1

++ `
2

) = (length `
1

) + (length `
2

)

rev `
1

= irev `
1

[]

` ++ [] = `
rev(`

1

++ `
2

) = (rev `
2

) ++ (rev `
1

)

rev(rev `) = `
` = rev `0) `0 = rev `

Polymorphic lists (4/5)

Polymorphic binary trees (1/2)

Inductive binTree (X : Type) :=
| leaf : X -> binTree X
| node : X -> binTree X -> binTree X -> binTree X.

Fixpoint count_leaves {X: Type} (t : binTree X) :=
match t with
| leaf _ => 1
| node _ t1 t2 => (count_leaves t1) + (count_leaves t2)
end.

Polymorphic binary trees (1/2)

Polymorphic binary trees (2/2)

Lemma height_le_size : forall (X: Type) (t : binTree X),
height t <= size t.

Proof.
intros X t. induction t as [| x t1 IHt1 t2 IHt2].
- reflexivity.
- simpl. apply Le.le_n_S.
apply Max.max_case.
+ apply (Le.le_trans _ (size t1) _).
apply IHt1. apply Plus.le_plus_l.

+ apply (Le.le_trans _ (size t2) _).
apply IHt2. apply Plus.le_plus_r.

Qed.

Polymorphic binary trees (2/2)

Polymorphic Option and Product

A polymorphic non recursive option type:

Inductive option (X : Type) : Type :=
Some : X -> option X | None : option X

Use it for default value:

Fixpoint last {X : Type} (l : list X) : option X :=

match l with

| [] => None

| v :: nil => Some v

| _ :: l’ => last l’

end.

We also define polymorphic product.

Inductive prod {X Y : Type} : Type :=
pair : X -> Y -> prod X Y

The notation X * Y denotes (prod X Y).

The notation (x, y) denotes (pair x y) (implicit argument).

Polymorphic Option and Product

Higher order polymorphic functions

Fixpoint map X Y: Type (f : X->Y) (l : list X) struct l: list Y :=

match l with

| [] => []

| x :: l’ => (f x) :: map f l’

end.

Example map_negb : map negb [true, false] = [false, true].

Example map_next_weekday :

map next_weekday [monday, friday] = [tuesday, monday].

Exercice 19 Show

map f (rev `) = rev(map f `)
map f (`

1

++ `
2

) = (map f `
1

) ++ (map f `
2

)

Higher order functions

Functions (1)
jean-jacques.levy@inria.fr

5th Asian-Pacific Summer School on Formal Methods
Tsinghua Univ., Beijing

August 5, 2013

http://jeanjacqueslevy.net/courses/13eci

mailto:jean-jacques.levy@inria.fr
mailto:jean-jacques.levy@inria.fr
http://pauillac.inria.fr/~levy/courses/tsinghua/reductions
http://pauillac.inria.fr/~levy/courses/tsinghua/reductions

http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

