
Inductive data types (I)
jean-jacques.levy@inria.fr

August 7, 2013

http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Notes adapted from
Assia Mahboubi

(coq school 2010, Paris) and
Benjamin Pierce (software

foundations course, UPenn)

mailto:jean-jacques.levy@inria.fr
mailto:jean-jacques.levy@inria.fr

Plan

• easy proofs by simplification and reflexivity

• recursive types

• recursive definitions

• structural induction

• example1: lists

• example2: trees

Enumerated types

• lambda notation for definition of functions

• Coq only allows typed lambda terms

Recap

Inductive declarations

An arbitrary type as assumed by:

Variable T : Type.

gives no a priori information on the nature, the number, or the

properties of its inhabitants.

Inductive declarations

Inductive declarations

An inductive type declaration explains how the inhabitants of the

type are built, by giving names to each construction rule:

Print bool.
Inductive bool : Set := true : bool | false : bool.

Print nat.
Inductive nat : Set := O : nat | S : nat -> nat.

Each such rule is called a constructor.

Inductive declarations

Inductive declarations in Coq

Inductive types in Coq can be seen as the generalization of similar

type constructions in more common programming languages.

They are in fact an extremely rich way of defining data-types,

operators, connectives, specifications,...

They are at the core of powerful programming and reasoning

techniques.

Inductive declarations

Enumerated types (1/3)

Enumerated types are types which list and name exhaustively their

inhabitants.

Inductive bool : Set := true : bool | false : bool.

Set is deprecated. Now use Type.

Inductive color : Type := black : color | white : color.

Enumeratives types (1/5)

Enumerated types (2/3)

Enumerated types are types which list and name exhaustively their

inhabitants.

A new enumerated type:

Inductive day : Type :=

| monday | tuesday | wednesday |

| thursday | friday | saturday | sunday : day.

Check tuesday.
tuesday : day

Labels refer to distinct elements.

Enumeratives types (2/5)

Enumerated types (2/2)

Inspect the enumerated type inhabitants and assign values:

Definition negb (b : bool) :=
match b with true => false | false => true end.

Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday | tuesday => wednesday
| wednesday => thursday | thursday => friday
| friday | saturday | sunday => monday end.

Eval compute in (next_weekday friday).
= monday
: day

Enumeratives types (3/5)

Simplification and Reflexivity (1/2)

Definition andb (b1:bool) (b2:bool) : bool :=
match b1 with true => b2 | false => false end.

Definition orb (b1:bool) (b2:bool) : bool :=
match b1 with true => true | false => b2 end.

Example test_orb1: (orb true false) = true.
orb true false = true

Proof.
simpl.
true = true

reflexivity.
Qed.
test orb1 is defined

Simplification and reflexivity (3/4)Enumeratives types (4/5)

Inductive types (3/4)

Exercice Give definitions of predicates work_day and
weekend_day.

Exercice Give definitions of predicates black_if_workday and
white for weekends.

Enumeratives types (5/5)

