Concurrency 2

Functions vs Processes

⇒ Interaction

Jean-Jacques Lévy

jeanjacqueslevy.net/dea
Concurrence ⇒ Non-determinism

Suppose \(x \) is a global variable. At beginning, \(x = 0 \)

Consider

\[
P = [x := x + 1; x := x + 1 || x := 2 \times x]
\]

after \(P \), then \(x \) may have several values (\(x \in \{2, 3, 4\} \))

Hence \(P \) is not a function from memory states to memory states.

In concurrent programming, execution is not deterministic since it is
upto an external agent (the scheduler).

Let \(\Sigma = \text{Variables} \mapsto \text{Values} \) be the set of memory states.
Let \(\llbracket P \rrbracket \) be the meaning of \(P \).

A concurrent program is not a (partial) function from memory states to
memory states. \(\llbracket P \rrbracket \not\in \Sigma \mapsto \Sigma \).

A concurrent program is a relation on memory states. \(\llbracket P \rrbracket \in \Sigma \mapsto 2^\Sigma \).
Consider

\[P = \left[x := 1 \right] \]
\[Q = \left[x := 0; x := x + 1 \right] \]

\[P \] and \[Q \] are same functions on memory states: \(\sigma \mapsto \sigma[1/x] \)

However

after \(P \parallel P \), then \(x \in \{1\} \)
after \(P \parallel Q \), then \(x \in \{1, 2\} \)

A semantic (meaning) is \textit{compositional} \iff \([P] = [Q] \) implies \([C[P]] = [C[Q]] \) for any context \(C[\] \).

In previous example, in any compositional semantics, \([P] \neq [Q] \).

Conclusion

\(P \) and \(Q \) are \textit{not} equivalent processes.
Concurrent processes are often non terminating.

An operating system never terminates; same for the software of a vending machine, or a traffic-light controller, or a human, etc.

A process P is a set of pairs (f_i, P_i), atomic action and a derivative process. It starts by performing f_i and then becomes process P_i.

Atomic steps usually terminate.

Roughly speaking, let \mathcal{P} be the set of processes. Then $\mathcal{P} = 2^{(\Sigma \rightarrow \Sigma)} \times \mathcal{P}$

Is this equation meaningful? Answer: Scott’s domains, denotational semantics. Remarkable and difficult theory of Plotkin (Scott’s powerdomains 1976).

We try the simpler theory of labeled transition systems.
Labeled Transition Systems

A LTS is triple \((\mathcal{P}, \mathcal{A}ct, T)\) where

- \(\mathcal{P}\) is the set of processes
- \(\mathcal{A}ct\) is the set of actions
- \(T \subseteq \mathcal{P} \times \mathcal{A}ct \times \mathcal{P}\) is the transition relation

Let write \(P \xrightarrow{\mu} Q\) for \((P, \mu, Q) \in T\).
Read \(P\) interacts with environment with action \(\mu\), then becomes \(Q\).

\(Q\) is a derivative of \(P\) if \(P = P_0 \xrightarrow{\mu_1} P_1 \xrightarrow{\mu_2} P_2 \cdots \xrightarrow{\mu_n} P_n = Q\) for \(n \geq 0\).
Example (1/3)

A vending machine for coffee/tea. At beginning, P_0
A different vending machine for coffee/tea. At beginning, P'_0

Is this LTS equivalent to previous one?
Two new vending machines P''_0 and P'''_0

Why these LTS are not equivalent to previous ones?
Let abstract Act (actions) as an alphabet $\{a, b, c, \ldots\}$. (Act may be infinite)

Then LTS look like automata (with possibly infinite number of states).

Consider the language of traces.

Let $P = P_0 \xrightarrow{\mu_1} P_1 \xrightarrow{\mu_2} P_2 \cdots \xrightarrow{\mu_n} P_n$ ($n \geq 0$), then

$\text{trace}(P = P_0 \xrightarrow{\mu_1} P_1 \xrightarrow{\mu_2} P_2 \cdots \xrightarrow{\mu_n} P_n) = \mu_1 \mu_2 \cdots \mu_n$

We say that $\mu_1 \mu_2 \cdots \mu_n$ is a trace of P

Let $\text{Traces}(P) = \{w \mid w \text{ is a trace of } P\}$
Concurrency ⇔ Automata (2/2)

In previous examples, write k for coffee, t for tea, c for $\cdot 20e$, d for drink.

$\text{Traces}(P_0) = \text{prefixes}((c(k+t)d)^*)$,
$\text{Traces}(P'_0) = \text{prefixes}(c((k+t)dc)^*)$,
$\text{Traces}(P''_0) = \text{prefixes}((ckd+ctd)^*)$,
$\text{Traces}(P'''_0) = \text{prefixes}((c+c(k+t)dc)^*)$,

Exercice 1 Show $\text{Traces}(P_0) = \text{Traces}(P'_0) = \text{Traces}(P''_0) = \text{Traces}(P'''_0)$

However, P_0 and P'_0 seem equivalent
but both P''_0 and P'''_0 look distinct from P_0.

Why?

After c, the set of choices are distinct in P_0 and P''_0.
Coffee button is always enabled in P_0, but not in P''_0.
Same for tea button.

In P'''_0, both tea and coffee may be disabled after c.
Simulation – Bisimulation

Definition 1 \(Q \) simulates \(P \) (we write \(P \preceq Q \)) if whenever \(P \xrightarrow{\mu} P' \), there is \(Q' \) such that \(Q \xrightarrow{\mu} Q' \) and \(P' \preceq Q' \).

Definition 2 \(P \) strongly bisimilar to \(Q \) (we write \(P \sim Q \)) if whenever

- \(P \xrightarrow{\mu} P' \), there is \(Q' \) such that \(Q \xrightarrow{\mu} Q' \) and \(P' \sim Q' \).
- \(Q \xrightarrow{\mu} Q' \), there is \(P' \) such that \(P \xrightarrow{\mu} P' \) and \(P' \sim Q' \).

Graphically,

Exercice 2 Give intuition for \(P_0 \preceq P_0'''' \preceq P_0 \)

Exercice 3 Give intuition for \(P_0 \sim P_0', P_0 \not\sim P_0'', P_0 \not\sim P_0''' \)
Definition of bisimulation (1/3)

Definition 3 A bisimulation is a binary relation \mathcal{R} on processes such that $P \mathcal{R} Q$ implies whenever

- $P \xrightarrow{\mu} P'$, there is Q' such that $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$.
- $Q \xrightarrow{\mu} Q'$, there is P' such that $P \xrightarrow{\mu} P'$ and $P' \mathcal{R} Q'$.

An alternative definition for strong bisimulation is:

Definition 4 Let $\sim = \bigcup \{ \mathcal{R} \mid \mathcal{R} \text{ is a bisimulation} \}$

Proposition 5 \sim is an equivalence relation.

(reflexive, symmetric, transitive)

Exercice 4 Show above proposition.

Exercice 5 What is the least bisimulation?
Definition of bisimulation (2/3)

First definition of bisimulation is circular. To make it clear, better is to return to standard theory on fixpoints in complete lattices.

A complete lattice \mathcal{D} is any set with
- a partial ordering \preceq (reflexive, transitive, antisymmetric)
- for any subset $E \subseteq \mathcal{D}$, there is an upper bound $\cup E$ and a lower bound $\cap E$ in \mathcal{D}.

Examples: 2^P with \subseteq, $2^P \times P$ with \subseteq, etc.

f function $D \mapsto D$ is monotonic iff $x \preceq y$ implies $f(x) \preceq f(y)$.

Theorem 6 [Tarski] In a complete lattice \mathcal{D}, any monotonic function f has a least fixpoint $\text{lfp}(f)$ and greatest fixpoint $\text{gfp}(f)$.

Moreover $\text{lfp}(f) = \cap\{x \mid f(x) \preceq x\}$ and $\text{gfp}(f) = \cup\{x \mid x \preceq f(x)\}$

Exercice 6 Prove it.
Definition of bisimulation (3/3)

Proposition 7 \(\sim \) is the largest relation \(\sim' \) such that \(P \sim' Q \) implies whenever

- \(P \xrightarrow{\mu} P' \), there is \(Q' \) such that \(Q \xrightarrow{\mu} Q' \) and \(P' \sim' Q' \).
- \(Q \xrightarrow{\mu} Q' \), there is \(P' \) such that \(P \xrightarrow{\mu} P' \) and \(P' \sim' Q' \).

Proof : Consider the complete lattice of binary relations on \(\mathcal{P} \) with \(\subseteq \). Take \(P f(\mathcal{R}) Q \) defined as whenever

- \(P \xrightarrow{\mu} P' \), there is \(Q' \) such that \(Q \xrightarrow{\mu} Q' \) and \(P' \mathcal{R} Q' \).
- \(Q \xrightarrow{\mu} Q' \), there is \(P' \) such that \(P \xrightarrow{\mu} P' \) and \(P' \mathcal{R} Q' \).

Then \(f \) is monotonic, since \(\mathcal{R} \subseteq \mathcal{S} \) implies \(f(\mathcal{R}) \subseteq f(\mathcal{S}) \).

Moreover \(\mathcal{R} \) is a bisimulation iff \(\mathcal{R} \subseteq f(\mathcal{R}) \).

Hence \(\sim = \cup \{ \mathcal{R} \mid \mathcal{R} \subseteq f(\mathcal{R}) \} = \text{gfp}(f) \).

Therefore \(\sim = f(\sim) \) and \(\sim \) is largest \(\sim' \) such that \(\sim' = f(\sim') \).

First definition of \(\sim \) was correct (just add “largest”).
Co-induction

In order to show $P \sim Q$, it is sufficient to show that $P \mathcal{R} Q$ for some bisimulation \mathcal{R}.

I.e. $(P \mathcal{R} Q$ for some relation \mathcal{R} such that $\mathcal{R} \subseteq f(\mathcal{R})) \Rightarrow P \sim Q$.

Exercice 7 Show $P_0 \sim P_0'$, $P_0 \not\sim P_0''$, $P_0 \not\sim P_0'''$ in vending machines.

Exercice 8 Give an alternative definition for \preceq.

Exercice 9 Show $P_0 \preceq P_0''' \preceq P_0$.

Co-continuity (1/2)

Let D be a complete lattice. Then

f function $D \mapsto D$ is co-continuous iff $f(\cap S) = \cap f(S)$ for any descending chain $S = \{d_1, d_2, \ldots, d_n, \ldots\}$ where $d_1 \succeq d_2 \succeq \cdots \succeq d_n \succeq \cdots$

Theorem 8 [Kleene] $\text{gfp}(f) = \cap \{f^n(\top) \mid n \geq 0\}$ where \top is maximum element of D.

Consider lattice of binary relations $2^{P \times P}$ with \subseteq.

Let the graph of derivatives of P be **finitely branching**, i.e. $\{Q \mid P \xrightarrow{\mu} Q\}$ is finite for any P.

Take $P f(R) Q$ defined as whenever

- $P \xrightarrow{\mu} P'$, there is Q' such that $Q \xrightarrow{\mu} Q'$ and $P' R Q'$.
- $Q \xrightarrow{\mu} Q'$, there is P' such that $P \xrightarrow{\mu} P'$ and $P' R Q'$.

Then f is co-continuous.

If the graph of derivatives is finitely branching, then

$\sim = \cap \{f^n(D) \mid n \geq 0\}$
Exercice 10 Suppose P has a finite graph of derivatives. Give an algorithm for computing its minimal graph of derivatives, i.e. a graph where distinct states are not bisimilar. $O(n \log n)$ algorithm by Paige and Tarjan, (analogous of Hopcroft/Ullman algorithm for computing minimal finite automata).

Exercice 11 Suppose P and Q have finite graphs of derivatives. Give an algorithm for testing $P \sim Q$.

Exercices

Definition 9 \(\mathcal{R} \) is a bisimulation up-to \(\sim \) if \(P \mathcal{R} Q \) implies whenever

- \(P \xrightarrow{\mu} P' \), there is \(Q' \) such that \(Q \xrightarrow{\mu} Q' \) and \(P' \sim \mathcal{R} \sim Q' \).
- \(Q \xrightarrow{\mu} Q' \), there is \(P' \) such that \(P \xrightarrow{\mu} P' \) and \(P' \sim \mathcal{R} \sim Q' \).

Exercice 12 Let \(\mathcal{R} \) is a bisimulation up-to \(\sim \). Show \(\mathcal{R} \subseteq \sim \). (by firstly showing that \(\sim \mathcal{R} \sim \) is a bisimulation).

Let \(\mu^+ \in \text{Act}^+ \) (not empty words of actions)

Write \(P \xrightarrow{\mu^+} Q \) if \(P = P_0 \xrightarrow{\mu_1} P_1 \xrightarrow{\mu_2} P_2 \cdots \xrightarrow{\mu_n} P_n = Q \) and \(\mu = \mu_1\mu_2\cdots\mu_n \) \((n > 0)\).

Exercice 13 Show that following definition of strong bisimulation is equivalent to previous one.

Definition 10 \(\mathcal{R} \) is a (strong) bisimulation if \(P \mathcal{R} Q \) implies whenever

- \(P \xrightarrow{\mu^+} P' \), there is \(Q' \) such that \(Q \xrightarrow{\mu^+} Q' \) and \(P' \sim \mathcal{R} \sim Q' \).
- \(Q \xrightarrow{\mu^+} Q' \), there is \(P' \) such that \(P \xrightarrow{\mu^+} P' \) and \(P' \sim \mathcal{R} \sim Q' \).
History

David Park invented bisimulation as maximal fixpoints. (1975)

Robin Milner wrote a full book on them for CCS. (1979)

Davide Sangiorgi did the theory of bisimulation in the pi-calculus. (1990)

Marcelo Fiore et al put them in data types. (1992)

Many people speak now of bisimulations, as a generic names for equivalences on infinite computations.

For instance, Dave Sands and others use them for equivalence of Bohm trees in the lambda-calculus (which I never understood !!).