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1 Introduction

The commonly accepted basis for functional programming is the A-calculus; and it is folklore
that the A-calculus is the prototypical functional language in purified form. But what is the
A-calculus? The syntax is simple and classical; variables, abstraction and application in the
pure calculus, with applied calculi obtained by adding constants. The further elaboration of the
theory, covering conversion, reduction, theories and models, is laid out in Barendregt’s already
classical treatise [Bar84]. It is instructive to recall the following crux, which occurs rather early
in that work (p. 39):

Meaning of \-terms: first attempt

e The meaning of a A-term is its normal form (if it exists).

o All terms without normal forms are identified.

This proposal incorporates such a simple and natural interpretation of the A-calculus as a pro-
gramming language, that if it worked there would surely be no doubt that it was the right one.
However, it gives rise to an inconsistent theory! (see the above reference).



Second attempt

e The meaning of A-terms is based on head normal forms via the notion of Bohm tree.

e All unsolvable terms (no head normal form) are identified.

This second attempt forms the central theme of Barendregt’s book, and gives rise to a very
beautiful and successful theory (henceforth referred to as the “standard theory”), as that work
shows.

This, then, is the commonly accepted foundation for functional programming; more pre-
cisely, for the lazy functional languages, which represent the mainstream of current functional
programming practice. Examples: MIRANDA [Tur85], LML [Aug84], LISPKIT [Hen80], OR-
WELL [Wad85], PONDER [Fai85], TALE [BvL86]. But do these languages as defined and
implemented actually evaluate terms to head normal form? To the best of my knowledge, not a
single one of them does so. Instead, they evaluate to weak head normal form, i.e. they do not
evaluate under abstractions.

Example

Az.(Ay.y)M is in weak head normal form, but not in head normal form, since it contains the
head redex (A\y.y)M.

So we have a mismatch between theory and practice. Since current practice is well-motivated
by efficiency considerations and is unlikely to be abandoned readily, it makes sense to see if a
good modified theory can be developed for it. To see that the theory really does need to be
modified:

Example

Let Q = (Az.zz)(Azx.zz) be the standard unsolvable term. Then
A2 =Q

in the standard theory, since Az.Q2 is also unsolvable; but Az.€2 is in weak head normal form,
hence should be distinguished from 2 in our “lazy” theory.
We now turn to a second point in which the standard theory is not completely satisfactory.

Is the A-calculus a programming language?

In the standard theory, the A-calculus may be regarded as being characterised by the type
equation
D =[D — D]

(for justification of this in a general categorical framework, see e.g. [Sco80, Koy82, LS86]).
It is one of the most remarkable features of the various categories of domains used in deno-
tational semantics that they admit non-trivial solutions of this equation. However, there is no



canonical solution in any of these categories (in particular, the initial solution is trivial — the
one-point domain).

I regard this as a symptom of the fact that the pure A-calculus in the standard theory is not
a programming language. Of course, this is to some extent a matter of terminology, but I feel
that the expression “programming language” should be reserved for a formalism with a definite
computational interpretation (an operational semantics). The pure A-calculus as ordinarily
conceived is too schematic to qualify.

A further indication of the same point is that studies such as Plotkin’s “LCF Considered as
a Programming Language” [Plo77] have not been carried over to the pure A-calculus, for lack of
any convincing way of doing do in the standard theory. This in turn impedes the development
of a theory which integrates the A-calculus with concurrency and other computational notions.

We shall see that by contrast with this situation, the lazy A-calculus we shall develop does
have a canonical model; that Plotkin’s ideas can be carried over to it in a very natural way;
and that the theory we shall develop will run quite strikingly in parallel with our treatment of
concurrency in [Abr87al.

The plan of the remainder of the paper is as follows. In the next section, we introduce the
intuitions on which our theory is based, in the concrete setting of A-terms. We then set up the
axiomatic framework for our theory, based on the notion of applicative transition systems. This
forms a bridge both to the standard theory, and to concurrency and other computational notions.
We then introduce a domain equation for applicative transition systems, and use it to derive a
domain logic in the sense of [Abr87c, Abr87b]. We prove Duality, Characterisation, and Final
Algebra theorems; and obtain a strikingly simple proof of a Computational Adequacy Theorem,
which asserts that a term converges operationally if and only if it denotes a non-bottom element
in our domain.

We then show how the ideas of [Plo77] can be formulated in our setting. Two distinctive
features of our approach are:

e the axiomatic treatment of concepts and results usually presented concretely in work on
programming language semantics

e the use of our domain logic as a tool in studying the equational theory over our “programs”
(A-terms).

Our results can also be interpreted as settling a number of questions and conjectures concern-
ing the Domain Interpretation of Martin-Lof’s Intuitionistic Type Theory raised at the 1983
Chalmers University Workshop on Semantics of Programming Languages [DNPS83].

Finally, we consider some extensions and variations of the theory.



2 The Lazy Lambda-Calculus

We begin with the syntax, which is standard.

Definition 2.1 We assume a set Var of variables, ranged over by z,y, z. The set A of A-terms,
ranged over by M, N, P, Q, R is defined by

M == z|X.M|MN.

For standard notions of free and bound variables etc. we refer to [Bar84]. The reader should
also refer to that work for definitions of notation such as: FV(M), C[-], A°. Our one point of
difference concerns substitution; we write M[N/z] rather than M([z := N].

Definition 2.2 The relation M{N (“M converges to principal weak head normal form N”) is
defined inductively over A° as follows:

MlAz.P PIN/z]IQ
MN{Q

o \z. M| x.M

Notation
M|} = IN.MIN (“M converges”)

My = (M) (“M diverges”)

It is clear that | is a partial function, i.e. evaluation is deterministic.

We now have an (unlabelled) transition system (A%, _|). The relation | by itself is too
“shallow” to yield information about the behaviour of a term under all experiments. However,
just as in the study of concurrency, we shall use it as a building block for a deeper relation, which
we shall call applicative bisimulation. To motivate this relation, let us spell out the observational
scenario we have in mind.

Given a closed term M, the only experiment of depth 1 we can do is to evaluate M and see if
it converges to some abstraction (weak head normal form) Az.M;. If it does so, we can continue
the experiment to depth 2 by supplying a term Nj as input to Mi, and so on. Note that what
the experimenter can observe at each stage is only the fact of convergence, not which term lies
under the abstraction. We can picture matters thus:

Stage 1 of experiment: M x.Mq;
environment “consumes” ),
produces N; as input

Stage 2 of experiment: M;[N;/z]{...



Definition 2.3 (Applicative Bisimulation) We define a sequence of relations {<; }xe, on

AC:
MSyN = true
MS, N = MUy z.M; = AN [NYAy.N, & VP € A% M,[P/z]S;, N1 [P/y]]
M<PN = VEcw M N

Clearly each <, and < is a preorder. We extend <” to A by:
M<BN = Vo:Var - A’ Mo<BNo
(where e.g. Mo means the result of substituting oz for each z € FV (M) in M). Finally,
M~BN = M<BN & N<SBM.

Using standard techniques [Mos74, Mil83], ~PB can be shown to be the maximal fixpoint of a
certain function, and hence to satisfy:

M<BEN «— Myrxz.M; = IN,.[NyIy.N; & VP € A°. My[P/z] <P N, [P/y]]

Further details are given in the next section.

The applicative bisimulation relation can be described in a more traditional way (from the
point of view of A-calculus) as a “Morris-style contextual congruence” [Mor68, Plo77, Mil77,
Bar84].

Definition 2.4 The relation <9 on A? is defined by

M<°N = vVC[]eA’.C[M]} = C[N]|.
This is extended to A in the same way as <5.
Proposition 2.5 <8 = <¢.

This is a special case of a result we will prove later. Our proof will make essential use of domain
logic, despite the fact that the statement of the result does not mention domains at all. The
reader who may be sceptical of our approach is invited to attempt a direct proof.

We now list some basic properties of the relation §B (superscript omitted).

Proposition 2.6 For all M,N,P € A:
(1) MSN & NSP = MSP
(t51) MSN = MJ[P/z]SN[P/z]
(tv) MSN = P[M/z|SP|N/z]
(v) Az.M ~ Ay.Mly/z]
(vi) MSN = M.MSAz.N

)

(’UZZ MZSNZ (Z = 1,2) = M]_MZSN:LNZ



PROOF. (i)—(7i%) and (v)—(vi) are trivial; (vi7) follows from (i7) and (iv), since taking C; = [-| My,
MIMQSNlMQ, and taking 02 = Nl[-], NlMQSNlNQ, whence MlMQSNlNQ. It remains to prove
(7v), which by 2.5 is equivalent to

M<PN = P[M/z]<CP[N/xz].

We rename all bound variables in P to avoid clashes with M and N, and replace z by [-] to
obtain a context P[-] such that

P[M/z] = P[M], P[N/z] = P[N].
Now let C[-] € A® and o € Var — A? be given. Let C,[] = C[P[-]o]. M<®N implies
Ci[Moly = Ci[Noly
which, since (P[M/z])o = (P[-]o)[Mo], yields
Cl(P[M/z))oly = C[(P[N/z])ol{,

as required. |
This Proposition can be summarised as saying that SB is a precongruence. We thus have an
(in)equational theory M = (A, C, =), where:

MFMCN = M<BN
MEM=N = M~PN.
What does this theory look like?
Proposition 2.7 (i) The theory A [Bar84] is included in M\; in particular,
M+ (Az.M)N = M[N/z] (B).
(ii) @ = (Az.zz)(Az.2) is a least element for C, i.e.
ME QLCz.

(iii) (n) is not valid in N, e.g.
M ¥ \x.Qx =,

but we do have the following conditional version of :
) MEF XxMz=M (M|, z¢gFV(M))

(M| = Vo € Var = A% (Mo)l)).

(iv) YK 1is a greatest element for C, i.e.

ME 2C YK



PROOF. (i) is an easy consequence of 2.6.
(ii). 1, hence Q<PM for all M e A°.

(iii). A\z.QzZ,Q, since (Az.Qz)|. Now suppose M, and let o : Var — A° be given.

(Mo)My.N. For any P € A°,

(Mo)PJQ < ((Mo)z)[P/z]yQ since xz & FV (M),
< (A\z.Mz)o)PlQ,

and so M ~8 \z.Mz, as required.
(iv). Note that YK{Ay.N, where N = (Az.K(zz))(Az.K(zz)), and that for all P,

NIP/yl4Ay.N.

Hence for all Py,...,P, (n>0),
YKP,... Pl

and so M<PYK for all M € A°. [
To understand (iv), we can think of YK as the infinite process

A
O

solving the equation

&=z

Then

This is a top element in our applicative bisimulation ordering because it converges under all
finite stages of evaluation for all arguments—the experimenter can always observe convergence

(or “consume an infinite A-stream”).

We can make some connections between the theory M and [Lon83], as pointed out to me by

Chih-Hao Ong. Firstly, 2.7(ii) can be generalised to:

e The set of terms in A? which are least in M are exactly the POy terms in the terminology

of [Lon83].

Moreover, YK is an O term in the terminology of [Lon83], although it is not a greatest element

in the ordering proposed there.



3 Applicative Transition Systems

The theory A\ defined in the previous section was derived from a particular operational model,
the transition system (A°,|}). What is the general concept of which this is an example?

Definition 3.1 A quasi-applicative transition system is a structure (A, ev) where

Notations:

ev:A— (A— A).

(1) allf = a€domev &ev(a)=f

(i)
(i4i)

al = a€domev

aft

a & dom ev

Definition 3.2 (Applicative Bisimulation) Let (A, ev) be a quasi-ats. We define

by

F : Rel(A) — Rel(A)

F(R) ={(a,b) :allf = blg&Vece A. f(c)Ry(c)}-
Then R € Rel(A) is an applicative bisimulation iff R C F(R); and <” € Rel(A) is defined by

a<Pb = aRb for some applicative bisimulation R.

Thus <P = J{R € Rel(A) : R C F(R)}, and hence is the maximal fixpoint of the monotone
function F'. Since the relation |} is a partial function, it is easily shown that the closure ordinal
of F is < w, and we can thus describe SB more explicitly as follows:

e a<Py =
e al)b =
e aSpb =
e a~Bp =

VEk € w.aS,b
true
alf = bllg&Vee A f(c)Spg(o)

a<Pb & b<Pa.

It is easily seen that ,SB , and also each <, is a preorder; ~B is therefore an equivalence.
We now come to our main definition.

Definition 3.3 An applicative transition system (ats) is a quasi-ats (A4, ev) satisfying:

Va,b,ce A.alf &b<Bec = f(0)<Bf(c).



An ats has a well-defined quotient (A/~B,ev/~B), where

B [F(0)], alf

ndefined otherwise.

ev/~P([a]) =

The reader should now refresh her memory of such notions as applicative structure, combi-
natory algebra and lambda model from [Bar84, Chapter 5).

Definition 3.4 A quasi-applicative structure with divergence is a structure (4, ,f) such that
(A,-) is an applicative structure, and {} C A is a divergence predicate satisfying

o = (= y)M
Given (A4, , 1), we can define
a< = all = bl&Vee Aa- c<Abc

as the maximal fixpoint of a monotone function along identical lines to 3.2.
Applicative transition systems and applicative structures with divergence are not quite equiv-
alent, but are sufficiently so for our purposes:

Proposition 3.5 Given an ats B = (A, ev), we define A= (A, ,1) by

a, af
f(b) alf.

Then
o< = a<P,

and moreover we can recover B from A by

bra- b, al
ev(a) =
undefined otherwise.

Furthermore, -+ is compatible with ,SB, i.€.
a;<Pbi (i =1,2) = a1- a2 <Pby- b i

We now turn to a language for talking about these structures.
Definition 3.6 We assume a fixed set of variables Var. Given an applicative structure A =
(4, ), we define CL(A), the combinatory terms over A, by

. Var C CL(A)

. {ca:a € A} CCL(A)

e M,NeCL(A) = MN € CL(A).



Let Env(A) = Var — A. Then the interpretation function
[1#: CL(A) — Env(A) — A
is defined by:

[« = po
ﬂca]];l = a
[MNT' = (IMI;)- (IND,).

Given an ats A = (A, ev), with derived applicative structure (A,- ), the satisfaction relation
between A and atomic formulae over CL(.A), of the forms

MCN, M=N, M| Mf{

is defined by:

ApEMCEN = [MJ}SPINT
ApEM=N = [M]}~5[N]}
ApeEML = MM
ApeMpy = [M'

while

AE¢ = Vpe Env(A). A p = ¢.

This is extended to first-order formulae in the usual way.

Note that equality in CL(.A) is being interpreted by bisimulation in 4. We could have
retained the standard notion of interpretation as in [Bar84] by working in the quotient structure
(A/~B,. /|~B). This is equivalent, in the sense that the same sentences are satisfied.

Definition 3.7 A lambda transition system (lts) is a structure (A, ev, k, s), where:
e (A, ev) is an ats

e k,s € A, and A satisfies the following axioms (writing K, S for ¢, ¢;):

e K|, Kzj
o Kzy=2=x

e S{, Szi, Szyl
o Sazyz = (22)(yz)

We now check that these definitions do indeed capture our original example.

10



Example

We define £ = (A, ev), where

P— N[P/z], M{lz.N
ev(M) =
undefined otherwise.
¢ is indeed an ats by 2.6(iv). Moreover, it is an lts via the definitions

k

S

AT Ay
Az Ay z.(z2)(yz).

We now see how to interpret A-terms in any lts.

Definition 3.8 Given an lts A, we define A(A), the A-terms over A, by the same clauses as for
CL(A), plus the additional one:

e zcVar,M € A(A) = Iz.M € A(A).

We define a translation

()or : A(A) = CL(A)

by
(Z)er = @
(Ca)CL = Cq
(MN)cr, = (M)cr(N)cL
Mz.M)cr, = Nx.(M)er
where

Xz.z = I(=SKK)
XM = KM (z¢& FV(M))
Nz.MN = S(A\z.M)(A\*z.N).

We now extend [-] to A(A) by:
M} = [(M)ecly

Definition 3.9 We define two sets of formulae over A:

o Atomic formulae:

AF={MCN, M =N, M|, N : M,N € A}

11



o Conditional formulae:
CF= {A\ Ml A \ Njtr = F : F € AF, M;, N; € A, I, J finite}
i€l j€J

Note that, taking I = J = &, AF C CF. Now given an lts A, S(A), the theory of A, is defined
by
$(A) = {CeCF: AEC}.

We also write S°(A) for the restriction of S(A) to closed formulae; and given a set Con of
constants and an interpretation Con — A, we write (A, Con) for the theory of conditional
formulae built from terms in A(Con).

Example (continued). We set Al = (£). This is consistent with our usage in the previous
section. We saw there that A/ satisfied much stronger properties than the simple combinatory
algebra axioms in our definition of 1ts. It might be expected that these would fail for general
Its; but this is to overlook the powerful extensionality principle built into our definition of the
theory of an ats through the applicative bisimulation relation.

Proposition 3.10 Let A be an ats. The aziom scheme of conditional extensionality over

CL(A):
(Jext) MUy &N| = (Vz.Mz=Nz] = M=N) (z¢FV(M)UFV(N))
is valid in A.

PROOF. Let p € Env(A).

e ApE My&N|&Ve. Mz = Nz

= [MJM & N[ & Va € A [M]4 a=[N]} a
since z ¢ FV (M) U FV(N)

= [M]} ~" [N

= [M]} ~" [N]}

= ApkE M=n. 1

Using this Proposition, we can now generalise most of 2.7 to an arbitrary Its.

Theorem 3.11 Let A= (A,ev,k,s) be an lts. Then
(i) (A, ., k,s) is a lambda model, and hence A C S(A).
(ii) A satisfies the conditional 1 aziom scheme:
Un) My = Xz.Mz=M (z¢& FV(M))
(iii) For all M € A°:
ME M| = AE M|

(iv) A = z CYK.
(v) C is a precongruence in I(A).

12



PROOF. (i). Firstly, by the very definition of lts, .A is a combinatory algebra. We now use the
following result due to Meyer and Scott, cited from [Bar84, Theorem 5.6.3, p. 117]:

e Let M be a combinatory algebra. Define
1 =1, = SKI), 1;.; = S(K1y).
Then M is a lambda model iff it satisfies
(I) Vz.az=bzx = la=1b
(I1) 1, K=K
(ITI1) 138 =S.

Thus it is sufficient to check that A satisfies (I)—(III). For (I), note firstly that A = 1lal & 1b|
by the convergence axioms for an lts. Hence we can apply 3.10 to obtain

A E [Vz.laz = 1bz] = 1la = 1b.
We now assume Vz.azx = bz and prove Vz. lax = 1bz:
laz = S(KI)az
(KI)z(ax)
(KI)z(bx)

S(KI)bz
= 1bzx.

(IT) and (III) are proved similarly.
(ii). Let p € Env(A), and assume A, p = M. We must prove that

A,p E Az.Mz =M.
Firstly, note that for any abstraction Az.P,
A E AP

by the definition of A\*z.P and the convergence axioms for an lts. Thus since z ¢ FV (M), we
can apply ({ext) to obtain

A, p E Vo.(Az.Mz)r = Mz] — Az.Mz = M.

It is thus sufficient to show
A E (Az.Mz)z = Mz.

But this is just an instance of (), which A satisfies by (i).

13



(iii). We calculate:

ME M| = Mil.N
= AF M=M.N
= Ak M=X.N
S AR My,
since A = Az.N|, as noted in (ii).

(iv). By (i) and (iii),
A E YK{ &Vz. (YK)z = YK.

Hence we can use the same argument as in 2.7(iv) to prove that
A E zCYK.

(v). This assertion amounts to the same list of properties as Proposition 2.6, but with respect
to §(A). The only difference in the proof is that 2.6(vii) follows immediately from 3.5 and the

fact that A is an ats, and can then be used to prove 2.6(iv) by induction on P. |
Part (iii) of the Theorem tells us that all the closed terms which we expect to converge must
do so in any Its. What of the converse? For example, do we have

AE Qf

in every 1ts? This is evidently not the case, since we have not imposed any axioms which require
anything to be divergent.

Observation 3.12 Let A = (A, ev) be an ats in which ev is total, i.e. dom ev = A. Then
$(A) is inconsistent, in the sense that

AE z=y.

This is of course because the distinctions made by applicative bisimulation are based on diver-
gence.

In the light of this observation and 3.11, it is natural to make the following definition in
analogy with that in [Bar84]:

Definition 3.13 An Its A is sensible if the converse to 3.11(iii) holds, i.e. for all M € A°:
A=EM| < MFM| <= 3z,N. \F M = lz.N.

(The second equivalence is justified by an appeal to the Standardisation Theorem [Bar84].)

14



4 A Domain Equation for Applicative Bisimulation

We now embark on the same programme as in [Abr87al; to obtain a domain-theoretic analysis of
our computational notions, based on a suitable domain equation. What this should be is readily
elicited from the definition of ats. The structure map

ev:A— (A— A)

is partial; the standard approach to partial maps in domain theory (pace Plotkin’s recent work
on predomains [Plo85]) is to make them into total ones by sending undefined arguments to a
“bottom” element, i.e. changing the type of ev to

A— (A= A),.

This suggests the domain equation
D=(D— D),

i.e. the denotation of the type expression rect.(t — t),. This equation is composed from the
function space and lifting constructions. Since SDom is closed under these constructions, D is a
Scott domain. Indeed, by the same reasoning it is an algebraic lattice. The crucial point is that
this equation has a non-trivial initial solution, and thus there is a good candidate for a canonical
model. To see this, consider the “approximants” Dy, with Dy = 1, Dyy1 = (Dy — Dg)1. Then

D = (1—)1)LE(1)L§
D, =2 (0— 0),, with four elements

etc. We now unpack the structure of D. Our treatment will be rather cursory, as it proceeds
along similar lines to our work in [Abr87a]. Firstly, there is an isomorphism pair

unfold : D — (D — D),, fold: (D — D), — D.
Next, we recall the categorical description of lifting, as the left adjoint to the forgetful functor
U:Dom,; - Dom

where Dom  is the sub-category of strict functions. Thus we have:
e A natural transformation up : Ipom — U o ().

e For each continuous map f : D — UFE its unique strict extension

|If‘t(f) : (D)J_ — FE.

15



Concretely, we can take

(D). = {1} U {<0,d>|d € D}
zCy = z=1
orx =<0,d>&y=<0,d>&dCpd
upp(d) = <0,d>
lift(f)(L) = Llg
lift(f)<0,d> = f(d).
We can now define
ev:D — (D — D)
by
ev(d) f, unfold(d) = <0, f>

undefined unfold(d) = L.

Thus (D, ev) is a quasi-ats, and we write d|} f, d{} etc. Note that we can recover d from ev(d) by

fold(<0, f>), dif
1p d1y.

The final ingredient in the definition of D is initiality. The only direct consequence of this which
we will use is contained in

Theorem 4.1 D is internally fully abstract, i.e.
Vd,d e D.dCd <« d<Bd.
PROOF. Unpacking the definitions, we see that for all d,d’' € D:
dCd < dif = dlig&Vd" € D.f(d") C g(d").

Thus the domain ordering is an applicative bisimulation, and so is included in ,SB . For the
converse, we need some additional notions. We define dy, fi for d € D, f € [D — D], k € w by:

° doft

dt = dpft
dif = dgt1dfx
fo:d = (fd)g-

We can use standard techniques to prove, from the initiality of D:

e Vde D.d= |_|dk.
kcw

16



The proof is completed with a routine induction to show that:
Vk€w.d<,d = dyCd,. |

As an immediate corollary of this result, we see that D is an ats. We thus have an interpretation
function
[1? : CL(D) - Env(D) —— D.

We extend this to A(D) by:
[\z.M]} = fold(up(Ad € D.[M]}7,..4))-
Note that the application induced from (D, ev) can be described by
d- d' = lift(Ap) unfold(d) d’

where
Ap:[D—-D]|—-D — D

is the standard application function; and is therefore continuous. This together with standard
arguments about environment semantics guarantees that our extension of [J” is well-defined.
Note also that [[)\x.M]]/’? # 1 p, as expected.
We can now define
k = [[/\a:./\y.a:]]f,
s = [[)\:v.)\y.)\z.(xz)(yz)]]f

for D. It is straightforward to verify
Proposition 4.2 D is an lts. i

Thus far, we have merely used our domain equation to construct a particular 1ts D. However,
its “categorical” or “absolute” nature should lead us to suspect that we can use D to study the
whole class of Its. The medium we will use for this purpose is a suitable domain logic in the
sense of [Abr87b].

17



5 A Domain Logic for Applicative Transition Systems
Definition 5.1 The syntax of our domain logic £ is defined by
¢ = t{oAY|(p =)L

Definition 5.2 (Semantics of £) Given a quasi ats A, we define the satisfaction relation
F4aCAXL:

a FEat = true

a fFa ¢AY = afFad&alFay

afa(@—=29)L = alf&VeEAD Ea ¢ = f(b) Fa ¢

Notation:

L(a) = {¢eL:afu ¢}
AE ¢<9yp = Vac€AalFq4 ¢ = a a4
AE ¢=9% = VYa€AalFad < alfFa
E¢<yp = VAAE ¢<9
A = (t—=1t)L
aCrb = L(a) C L(D).

Note that: Va € A.all <= a4 A

Lemma 5.3 Let A be a quasi ats. Then
Va,be A.a<Pb — aC* 0.

PROOF. We assume a<”b and prove V¢ € L.a =4 ¢ = b =4 ¢ by induction on ¢. The
non-trivial case is (¢ — ).

e a4 (=)L

allf

blg & Ve. f(¢)SPg(c)

Vec Ea ¢ = f(0SPg9(0) & fle) Fa ¢

Ve.c Ea ¢ = g(c) Ea o ind. hyp.
ba (9= 1

el

To get a converse to this result, we need a condition on A.
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Definition 5.4 A quasi ats A is approzimable iff
Ya,bi,...,bp € A.aby...bpdl = F1,---, dn.

a Fa (1= (pn—=>MN1 )L & b Fa ¢y 1<i<n.

This is a natural condition, which says that convergence of a function application is caused by
some finite amount of information (observable properties) of its arguments.
As expected, we have

Theorem 5.5 (Characterisation Theorem) Let A be an approzimable quasi ats. Then
<B _ <L

PROOF. By 5.3, §B C 55. For the converse, suppose a%Bb. Then for some k, aﬁ,]fb, and so for
some c1,---,¢, € A:

acy---cid & bey - - e
By approximability, for some ¢1,---, ¢ € L,
a Fa (1= (k= ANL)L&e Fa ¢i, 1<i<k.

Clearly b4 (¢1 — -+ (¢p — A) 1 -+) 1, and so aZ%b. |
As a further consequence of approximability, we have:

Proposition 5.6 An approzimable quasi ats is an ats.

PROOF. Suppose allf and b<Bc. We must show f(b)<Pf(c). It is sufficient to show that for all
k€w,d,...,d, € A:
fO)dy...dill = f(e)dy...dpl.

Now f(b)d; ...dg| implies abd; ... dg|; hence by approximability, for some ¢, ¢1,... ¢ € L:

o Fa (= (B2 (B> N1

and
bEa ¢ b Fa ¢, 1<i<k.

By 5.5, ¢ =4 ¢, and so abd; ...dx =4 A, and f(c)d: ...dgd as required. |
We now introduce a proof system for assertions of the form ¢ <, ¢ =1 (¢,9 € L).
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Proof System For L

(REF) ¢<¢  (TRANS) ¢—‘/’<¢§§5
L é<v < b=
=-D 5=y E-5) 525 9<s
(t -1) ¢<t
(-1 E=EEER By grp<e pnv <y
(=)= <) P2 < ¢1 1 <o

(1 = 1)L < (P2 = 92)1
(=)L =A) (@21 AP)L=(d— 1)L A(d— 92)L
(=)L—1) (@=L <(t—>1)L-

We write L F A or just - A to indicate that an assertion A is derivable from these axioms and
rules. Note that the converse of ((—), — t) is derivable from (¢t — I) and ((—),— <); by abuse
of notation we refer to the corresponding equation by the same name.

Theorem 5.7 (Soundness Theorem) F ¢ <9 = E ¢ <.

PROOF. By a routine induction on the length of proofs. |

So far, our logic has been presented in a syntax-free fashion so far as the elements of the
ats are concerned. Now suppose we have an lts A. A-terms can be interpreted in A, and for
M € A% p € Env(A), we can define:

M, plEad = [MI} Ead

We can extend this to arbitrary terms M € A in the presence of assumptions I' : Var — L on
the variables:

M,TEa¢ = VpeEnv(A).pEal = [M])aé

where
p Ea T = VaxeVarprl=gT.

We write
M,T = ¢ = VA M, T =4 ¢.

We now introduce a proof system for assertions of the form M, T' - ¢.
Notation: I' < A =Vz € Var.I'z < Az.
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Proof System For Program Logic

M,TF t
M,T F ¢ M,T F 4
M, T - oA
<A MAF ¢ ¢p<9
M, T F
z, Mz — ¢ b &
M, Tz— ¢ b o
Ae. M, T F (¢ =),
M,TF (p—4), NT F ¢
MN,T F
Theorem 5.8 (Soundness of Program Logic) For all M, T, ¢:

M,T+¢ = MTE ¢ |

The proof is again routine. Note the striking similarity of our program logic with type inference,
in particular with the intersection type discipline and Extended Applicative Type Structures of
[CDHLS84]. The crucial difference lies in the entailment relation <, and in particular the fact
that their axiom (in our notation)

t<(t—1t)L

is not a theorem in our logic; instead, we have the weaker ((—),). This reflects a different
notion of “function space”; we discuss this further in section 7.

We now come to the expected connection between the domain logic £ and the domain D.
The connecting link is the domain equation used to define D, and from which £ is derived.
Since this equation corresponds to the type expression o = rect.(t — t),, it falls within the
scope of the general theory developed in [Abr87b]. The logic £ presented in this section is a
streamlined version of £(o) as defined in [Abr87b]. Once we have shown that £ is equivalent to
L(o0), we can apply the results of [Abr87b] to obtain the desired relationships between £ ~ L(0)
and D ~ D(0).!

Firstly, note that £ as presented contains no disjunctive structure, while the constructs —,
(1)L appearing in o generate no inconsistencies according to the definition of C in [Abr87b]. Thus
(the Lindenbaum algebra of) L (o), the purely conjunctive part of £(o), is a meet-semilattice,
and applying [Abr87b, Theorem 2.3.4], we obtain

Spec (‘C(U)/:Ua SO’/:U) = Filt(‘CA (0)/207 Sa/:U)'

It remains to show that L is pre-isomorphic to L4 (o). We can describe the syntax of Lx(o) as
follows:

'The reader unfamiliar with [Abr87b] who is prepared to take Theorems 5.12 and 5.14 on trust is advised to
skip the details till after 5.14.
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o Ly(o0):
¢ u= t|pAD| (@)L (4€ Llo—0))

e La(oc—0):

¢ u= t| gAY |(d— ) (4,9 € L(0)).

Using ((). — A) and (— —t) (i.e. the nullary instances of (— —A)) from [Abr87b], we obtain
the following normal forms for L, (o):

¢ = t[PdAY| (¢ )L

In this way we see that L C Lx(c), and that each ¢ € L, (o) is equivalent to one in L. Moreover,
the axioms and rules of L are easily seen to be derivable in L4(c). For example, ((—), —t) is
derivable, since

La(o) F (=)= (t)L=0E—>1)L.
It remains to show the converse, i.e. that for ¢, 9 € L:
La(o) F ¢<yp = L F $<H.
For this purpose, we use ((—)1 — A) and ((—), — t) to get normal forms for L.

Lemma 5.9 (Normal Forms) Every formula in L is equivalent to one in N L, where:
o NL={\cr¢i:1finite, ¢ € SNL, i € I}
o SNL={(¢1 = (pp—>Nr--)1:k>0,¢€NL,1<i<k}

Now by [Abr87b, Propositions 3.4.5 and 3.4.6], we have

Lemma 5.10 For ¢, ¥ with

o= Neoi=d), o= Na—-v)o:

iel jeJ
Lo) F ¢<yp < Vi€ L) - N L) F v < ¢} <)

Proposition 5.11 For ¢, € NL, if L(o) F ¢ < 1) then there is a proof of ¢ < 1p using only
the meet-semilattice laws and the derived rule ((—)1).

PROOF. By induction on the complexity of ¢ and v, and the preceding Lemma. |
We have thus shown that
L(o) = La(o) = L,

and we can apply the Duality Theorem of [Abr87b] to obtain
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Theorem 5.12 (Stone Duality) L is the Stone dual of D:
(i) D = FikL
(i) (K(D)? = (L/=</=)
(where KC(D) is the sub-poset of finite elements of D).
Corollary 5.13 D = ¢ <9 <= L F ¢ <.

We can now deal with the program logic over A-terms in a similar fashion. The denotational
semantics for A in D given in the previous section can be used to define a translation map

()" : A — Ao).

The logic presented in this section is equivalent to the endogenous logic of [Abr87b] in the sense
that
M,T+F ¢ < M*" T+ ¢

where M € A, T': Var — L, ¢ € L C L(o). We omit the details, which by now should be routine.
As a consequence of this result, we can apply the Completeness Theorem for Endogenous Logic
from [Abr87b], to obtain:

Theorem 5.14 D is L-complete, i.e. for all M € A, T :Var - L, ¢ € L C L(0):
M,TF ¢ < M, T =p ¢.

In the previous section, we defined an 1ts over D; and we have now shown that D is isomorphic
as a domain to Filt L. We can in fact describe the 1ts structure over Filt £ directly; and this
will show how D, defined by a domain equation reminiscent of the D, construction, can also
be viewed as a graph model or “PSE algebra” in the terminology of [Lon83].

Notation. For X C I, X1 is the filter generated by X. This can be defined inductively by:

e X C xt
o te Xt
e ppeXt = pAypeXt
epcXt, LFH o<y = ypeXi.
Definition 5.15 The quasi-applicative structure with divergence
(Filt L, , 1)
is defined as follows:
f = z={t}
ey = {¢:3p.(p 29 €x& eyt Ut}
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It is easily verified that in this structure
<Py — wCy,
and hence that application is monotone in each argument, and Filt £ is an ats. Thus we have
an interpretation function
[JF" £ : CL(Filt £) — Env(Filt £) — Filt £
which is extended to A(Filt £) by

D MIF"E = {(6 - )1 2 € [MIF" S 3,

We then define
Definition 5.16
s = [Pzdydz(zz)(yz)]F" £
= [AzXy.z]FE

Proposition 5.17 Filt £ is an lts. Moreover, Filt L and D are isomorphic as combinatory
algebras.

PROOF. It is sufficient to show that the isomorphism of the Duality Theorem preserves appli-
cation, divergence and the denotation of A-terms, since it then preserves s and k and so is a
combinatory isomorphism, and Filt £ is an lts, since D is.

Firstly, we show that application is preserved, i.e. for dy,ds € D:

(%) L(d1- d2) = L(d1)- L(d>)

The right to left inclusion follows by the same argument as the soundness of the rule for appli-
cation in 5.7. For the converse, suppose 9 € L(d;- d2), L ¥ 1 = t. By the Duality Theorem,
each 1 in £ corresponds to a unique ¢ € K(D) with £(¢) = 1. Since application is continuous
in D, ¢ C dy- da, ¢ # L implies that for some b € K(D), fold(<0, [b,¢]>) C di and b C dy. (Here
[b, ] is the one step function mapping d to c if b C d, and to L otherwise). Let £(b) = 1¢, then
(¢ =)L € L(d1) and ¢ € L(d2), as required.

Next, we show that denotations of A-terms are preserved, i.e. for all M € A, p € Env(D):

(%) L(IM]7) = [MIZ5,"

This is proved by induction on M. The case when M is a variable is trivial; the case for
application uses (x). For abstraction, we argue by structural induction over £. We show the
non-trivial case. Let ¢, b be paired in the isomorphism of the Duality Theorem. Then

Ae.M, p Ep (¢ =)L

M, plz —b] =p

M, L() o (plz — b)) Fric ¢ ind. hyp.
M, (L() o p)[z — 1¢] FFine ¥

Az.M, L()op Frite (¢ — )L

[
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Finally, divergence is trivially preserved, since the only divergent elements in D, Filt £ are L,
{t}, and these are in bi-unique correspondence under the isomorphism of the Duality Theorem.

Theorem 5.18 (Computational Adequacy) For all M € A,
M| [[M]]fL £1

where p; rx— L.

PROOF. Firstly, let oy : 7 = Q. M| = (Moq)Az.N = [M]P = [ z.N]D # L. For the
converse, let I'; : z — t.

[M]2 #1L = [M]G"F £ {t} by5.17

= M,T,F A
= M,T, A by 5.8
= My. |

The triviality of this proof is notable, since analogous results in the literature have required
lengthy arguments involving recursively defined inclusive predicates (cf. [Plo85]).

We can now proceed in exact analogy to [Abr87a], and use Stone Duality to convert the
Characterisation Theorem into a Final Algebra Theorem.

Definition 5.19 We define a number of categories of transition systems:

ATS Objects: applicative transition systems; morphisms A — B: maps f : A — B satisfying
a Fa ¢ = fla) F5 ¢

LTS The subcategory of ATS of 1ts and morphisms which preserve application, s and k.

CLTS The full subcategory of LTS of those A satisfying continuity:

Yp#tab Fa b = Jba Fa (02 ¢Y)L &b Fa o,

and also

[,(S) — |[S]]Filt[,’ E(k) — [[k,]]Filt/.','

Note that continuity implies approximability.

Theorem 5.20 (Final Algebra) (i) D is final in ATS.
(ii) Let A be an approzimable lts. The map

ta: A= D

from (i) is an LTS morphism iff A is continuous.
(#ii) D is final in CLTS.
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PROOF. (i). Given A in ATS, define
tg: A= D

by
th = ANFikL S D
where 7 is the isomorphism from the Stone Duality Theorem. For a € A,
L(a) =Lono L(a) =Lotyla),
and so t4 is an ATS morphism; moreover, it is unique, since for d,d’ € D:
L(d)=L(d) = Kd)=K(d) = d=4d.

(ii). That £() is a combinatory morphism iff A is in CLTS is an immediate consequence of the
definitions; the result then follows from the fact that n is a combinatory isomorphism.
(iii). Immediate from (ii). i

Note that if A is approximable, we have:

a<Pb = ta(a)<Pad).

Thus we can regard the Final Algebra Theorem as giving a syntax-free fully abstract semantics
for approximable ats. However, from the point of view of applications to programming language
semantics, this is not very useful. In the next section, we shall study full abstraction in a
syntax-directed framework, using our domain logic as a tool.
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6 Lambda Transition Systems considered as Programming Lan-
guages

The classical discussion of full abstraction in the A-calculus [Plo77, Mil77] is set in the typed
A-calculus with ground data. As remarked in the Introduction, this material has not to date
been transferred successfully to the pure untyped A-calculus. To see why this is so, let us recall
some basic notions from [Plo77, Mil77].

Firstly, there is a natural notion of program, namely closed term of ground type. Programs
either diverge, or yield a ground constant as result. This provides a natural notion of observable
behaviour for programs, and hence an operational order on them. This is extended to arbitrary
terms via ground contexts; in other words, the point of view is taken that only program behaviour
is directly observable, and the meaning of a higher-type term lies in the observable behaviour of
the programs into which it can be embedded. Thus both the presence of ground data, and the
fact that terms are typed, enter into the basic definitions of the theory.

By contrast, we have a notion of atomic observation for the lazy A-calculus in the absence
of types or ground data, namely convergence to weak head normal form. This leads to the
applicative bisimulation relation, and hence to a natural operational ordering. We can thus
develop a theory of full abstraction in the pure untyped A-calculus. Our results will correspond
recognisably to those in [Plo77], although the technical details contain many differences. One
feature of our development is that we work axiomatically with classes of lts under various
hypotheses, rather than with particular languages. (Note that operational transition systems
and “programming languages” such as M\ actually are lts under our definitions.)

Definition 6.1 Let A be an lts. D is fully abstract for A if F(A) = (D).

This definition is consistent with that in [Plo77, Mil77], provided we accept the applicative
bisimulation ordering on A as the appropriate operational preorder. The argument for doing so
is made highly plausible by Proposition 2.5, which characterises applicative bisimulation as a
contextual preorder analogous to those used in [Plo77, Mil77]. We shall prove 2.5 later in this
section.

We now turn to the question of conditions under which D is fully abstract for A. As emerges
from [Plo77, Mil77], this is essentially a question of definability.

Definition 6.2 An ats A is L-expressive if for all ¢ € L, for some a € A:
Lla)=1¢ = {peLl: L+ $<}.

In the light of Stone Duality, L-expressiveness can be read as: “all finite elements of D are
definable in A”.

Definition 6.3 Let A be an ats.

o (onvergence testing is definable in A if for some ¢ € A, A satisfies:

— ¢l
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-z = cxf}
-z = cx=L

In this case, we use C as a constant to denote c.

o Parallel convergence is definable in A if for some p € A, A satisfies:

- pl, pzl

- z| = pzy|

-yl = pzyl

-z &yt = pryf .

In this case, we use P to denote such a p.

Note that if C is definable, it is unique (up to bisimulation); this is not so for P.

The notion of parallel convergence is reminiscent of Plotkin’s parallel or, and will play a
similar role in our theory. (A sharper comparison will be made later in this section.) The notion
of convergence testing is less expected. We can think of the combinator C as a sort of “1-strict”
version of F = Az. A\y.y:

Czy=Kzy=y ifzl|

Czxyft if z1.

This 1-strictness allows us to test, sequentially, a number of expressions for convergence. Under
the hypothesis that C is definable, we can give a very satisfactory picture of the relationship
between all these notions.

Theorem 6.4 (Full Abstraction) Let A be a sensible, approzimable Its in which C is defin-
able. The following conditions are equivalent:
(i) Parallel convergence is definable in A.
(i) A is L-ezpressive.
(iii) A is L-complete.
(i) ta is a combinatory embedding with K(D) C I'm t4.

(v) D is fully abstract for A.

PROOF. We shall prove a sequence of implications to establish the theorem, indicating in each
case which hypotheses on A are used.
(1)) = (i1) (A sensible, C definable).
Since A is sensible, €2 diverges in A.
Notation. Given a set Con of constants, A(Con) is the set of A-terms over Con.
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For each ¢ € NL we shall define terms My, Ty € A({P,C}) such that, for all ¢y € NL:
o My Fap <= LF ¢4
TyMy| if My Ea o,
Ty Myt otherwise.

The definition is by induction on the complexity of
¢ = NBig = (dig = Nie)L
i€l
If I =@, My = Q. Otherwise, we define My = M(¢p,k), where k = max {k; | i € I}:
M(p,0) = KQ
M(¢p,i+1) = Az;.CNIM(p,i)

where
j = k—1
N = Z{Nij!jﬁki}
N} = C(Ty,,21)(C(Ty, ,22)(- - (C(Tp,, 7)) - - )
Yo = 0
Y {Ntue = PN(D o).
Ty = Ao [[{aMy,, .- My,, i€ T}

[[z = Ko
[[{viuve = cn(]]e).

We must show that these definitions have the required properties. Firstly, we prove for all

¢ € NL:
(1) My Fa ¢
(2) a Fa ¢ = Tyal

by induction on ¢:

o Viela; Fa dij 1<j<ki)

= Mgyai...apl by induction hypothesis (2),
My Fa o

* a4

= Tyal by induction hypothesis (1).
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We complete the argument by proving, for all ¢, € NL:

LE ¢
L <o
My Ea ¢
My Ea .

2SS ES
&
!
-

LR

The proof is by induction on n + m, where n, m are the number of sub-formulae of ¢, respec-
tively. Let

¢ = Nier(dig = (big, > N)1--7)1,
Y = NjesWja = (g = AL
3):
o My Fa v
= Vi€ S MyMy,, ... My, | by (1) ,
= VjedTie Lk <k &Ty, My, U, 1<I<k
= My, Ea b, 1<1<k; ind. hyp. (5)
= LF Y, <y, 1<ILE; ind. hyp. (4)
= LF ¢<y
(4): Symmetrical to (3).
(5):
o T,Myl
= VieLMyMy, ... My, |
= VieL3je Tk <kj&Ty, My U, 1<I<k
= My, Ea i 1<1<k ind. hyp. (6)
= LF ¢ <, 1<I<k ind. hyp. (3)
= LEFyY<o
= My Fa ¢ by (1).

(6): Symmetrical to (5).
(15) = (4i1) (A approximable).
Notation. For each ¢ € L, ay € A is the element representing ¢. Given I' : Var — L,
pr € Env(A) is defined by
PTL = arg-
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Finally, T'; : Var — £ is the constant map x — t.
We begin with some preliminary results.

(1) AEo<t¢p <= LFEP<1.
One half is the Soundness Theorem for £. For the converse, note that

ALY = asEa
= LF¢<.

(2) Vi ENLpAt&abbay = I.aba(p— ) &blad.

This is shown by induction on .

o ablFu N i (I#9)

= Viel.ablEg;

= VieL3¢ials (¢ — ;)1 &b =4 ¢ by ind. hyp.

= Viel.alF=a (N di = i) &bl=a Ny b

= ala (Nier i = Nier i) L &b Fa Nies ¢i-

o abEa (o (b= A1)

= abay, ...ay )

= b, 1y, Pp-bEA P& ay, Ea b (1 <0 < k)
&alFa(d— (1= (b = AN)L-)L,

since A is approximable
S LEpi<d (1<i<h)
= LE(p—= (1= (d = A1
<(p—=(hr = (e = A)L)L
= afFa(p—>Y)L&bEad

(3) VM e A M Ea¢ < M,pr[Fa ¢
The right to left implication is clear, since pr =4 I'. We prove the converse by induction on M.

2T s <= AETz<¢
— LFTz<¢ by(l)
< arz Fa¢
< z,or FA ¢
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The case for Az.M is proved by induction on ¢. We show the non-trivial case.

o  Az.M,prEa(d—)L
= M, pr[z— ag] Fat
— M,T[z— ¢] =49 by (outer) induction hypothesis
— Me.MT =4 (p— ).
e MN,prlay
= [M]L[N] Fay
— 3. [ML Fa(p = 9) L &[Nl Fad by (2)
= MTlEA(p—= %) &N,T =4 ind. hyp.
— MN,T =49.
(4):
(1) ,Iz= @l Eay = LEP<y
(1) MaMTEA(d—-Y)L &= MTzodFay
(122) MN.T Eay <= 3o.M,TEa(p—9)L
& N,T |=4 ¢.

4(1) is proved using (1).
4(i7):

o M. MTE4(p— )L
= VpapEaT&alEad = Mo.M[talEatp
= VYo.pEallz = ¢ = M,pl=ah
since [[Asc.M]];,“.a = [M]];}m._m],
= M,Tz— ¢] Fav.
The converse follows from the soundness of L.
A(iid):
MN,T Fat <= MN,prfFat by (3)
= [MILINL Fad
= 3. [M) Ea(d—9) L &[N Ea¢ by (2)
= M Ea(¢d>9¢) &N, TEag Dby (3)
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We can now prove
MTEAd = M,TEHG

by induction on M, using (4).
Firstly, note that (i77) implies

AE¢<tp <= LFP< 1.

One half is the Soundness Theorem. For the converse, suppose A = ¢ < ¢ and L ¥ ¢ < 9.
Then I =4 (¢ — 1)1 but I¥ (¢ — 4).1, and so A is not L-complete.
Now suppose that P is not definable in A, and consider

d)E()\—>(t—>>\)J_)J_/\(t—>()\—>)\)J_)J_,

P=0t—=>0E—>N)1)1.

Clearly, £ ¥ ¢ < 1. However, for a € A, if a E4 ¢, then x| or y| implies azyl}; since P is not
definable in A, and in particular, a does not define P, we must have azyl} even if zf} and y1,
and hence a =4 9. Thus A = ¢ < 1 and so by our opening remark, A is not £-complete.

(15) = (iv) (A approximable).

Clearly Im t 4 2 K(D), by 5.14(ii). Also, since A is approximable, we can apply the Charac-
terisation Theorem to deduce that ¢4 is injective (modulo bisimulation). To show that ¢4 is a
combinatory morphism, we argue as in 5.17. Application is preserved by ¢4 using (2) from the
proof of (3) = (i73) and 5.17. The proof is completed by showing that ¢4 preserves denotations
of A-terms, i.e.

VM € A, p € Env(A). t4(IM]}) = [M]P,,-

The proof is by induction on M. Since it is very similar to the corresponding part of the proof
of 5.17, we omit it. The only non-trivial point is that in the case for abstraction we need:
Vac€AaEsd = M,plz—al Eatp
if and only if
M, plz — ag] =a 9,

which is proved similarly to (3) in (4i) = (4i7).
(iv) = (v).

Assuming (iv), A is isomorphic (modulo bisimulation) to a substructure of D. Since formulas
in HF are (equivalent to) universal (IIY) sentences, this yields $(D) C S(A). Since K(D) C Imt 4,
to prove the converse it is sufficient to show, for H € HF:

D,p#¥ H = 3pg:Var— K(D).D,py ¥ H.

Let H =P = F, where P = \;.; M|} A /\jeJ N;1. There are four cases, corresponding to the
form of F.
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Case 1: F= MC N. D,p¥ P = F implies D,p = P and D,p ¥ M C N. Since D is
algebraic, D, p ¥ M C N implies that for some b € K(D), b C IIM]],? and b IZ [[N]]pD. Since the
expression [[M]],? is continuous in p, b C [[M]],? implies that for some p; : Var = K(D), p1 C p
and b C [M]L . For all p' with p; C o/ C p, [[N]]g C [N]2, and hence b Z [[N]]/?' Again, since
D is algebraic,

D,p=M;}| = 3p;i:Var - K(D).p; C p& D, p; = M;l.

Now let po = | l;c;pi LU p1. This is well-defined since D is a lattice. Moreover, py C p, and
po : Var = K(D). Since py 3 p; (i € I), D, po = M;l}; while since py C p, D, po = Njft (7 € J).
Since p1 Epg C p, b C [[M]],?0 and b Z [[N]][?O, and so D,po ¥ M C N. Thus D,py ¥ P = F, as
required.

The remaining cases are proved similarly.
(v) = (i) (A sensible).

Consider the formula

H=zQKQ)UAz(KQ)Q = 2001,

It is easy to see that A = H iff P is not definable in A. Since P is definable in D, the result
follows. il

We now turn to the question of when the bisimulation preorder on an Its can be characterised
by means of a contextual equivalence, as in [Bar84, Plo77, Mil77].

Definition 6.5 Let A be an lts, X,Y C A. Then X separates Y if:

VM,Nec A°(YV).AEMCN —
3P,..., P, e A%X). A= MP,... Pl & A= NP, ... P

In particular, if X separates A we say that it is a separating set. For example, A is always a
separating set.

Proposition 6.6 Let A be an approzimable lts, and suppose X separates Y. Then
VM,N € A°%(Y).AEMCN <
VC[] € A°(X). A= CIM]I = A= C[N){.

PROOF. Suppose A ¥ M C N. Then since X separates Y, for some Pi,..., P, € A%(X),
AlE MP,...Pl and A E NP,...Pf. Let C[-] = [-|P1--- P;. For the converse, suppose
AE M C N and A = C[M]{|. Since A is approximable and A = C[M] = (A\z.C[z])M, for
some ¢ A\z.C[z] =4 (¢ — A)L and M =4 ¢. Since A = M C N, by the Characterisation
Theorem N =4 ¢, and so A = C[N]J). |

As a first application of this Proposition, we have:
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Proposition 6.7 Let A be a sensible, approzimable lts in which C and P are definable. Then
{C,P} is a separating set.

PROOF. By the Full Abstraction Theorem, for each ¢ € L there is My € A°({C,P}) such that
MylEaty = LE <.

Now
° AEMLCN

= J¢p.M E4d& N FE ¢, since A is approximable

= Jo1,..., - MEA(P1 = (s > A)L--)L
&ENFEA(pr— (g = A)1L--)L

— MMy, ... Myl & NMy, ... My, 4. |

The hypothesis of approximability has played a major part in our work. We now give a
useful sufficient condition.

Definition 6.8 Let A be an lts, X C A. Then A is X-sensible if
VM e A°(X). A= M| = D[ M.

Here [M]P is the denotation in D obtained by mapping each a € X to t4(a). Note that if
we extend our endogenous program logic to terms in A%(X), with axioms

a,T'+¢ (¢ € L(a)),

then the Soundness and Completeness Theorems for D still hold, by a straightforward extension
of the arguments used above.

Proposition 6.9 Let A be an X -sensible lts. Then A is X -approzimable, i.e.
VM,Ni,...,N, € A°(X). A= MNy... Nl = 3b1,..., .
MEa(pr— (e 2> AN)L)L&NiFagi, 1<i<k

PROOF.
e AEMN;...Ni|

= DEMN...N
= ¢, - M Ep (1 = - (e = A)L--2)L

& N; =p ¢4, 1 <i <k, since D is approximable
= 3o, e ME(fr = (b = A)L-)L

& N; - ¢;, 1 <1i <k, by extended Completeness

= 3o, e M EaA (1= (P = A) L)L
& N; Ea ¢i, 1 <1 <k, by extended Soundness. |
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In particular, if X generates A and A is X-sensible, then 4 is approximable. We now turn
to a number of applications of these ideas to syntactically presented lts, i.e. “programming
languages”.

Firstly, we consider the lts £ = (A°, eval) defined in section 3 (and studied previously in
section 2). Since £ is I-sensible by 3.11, and it is generated by &, it is approximable by 6.9.
Since @ is a separating set for A, we can apply 6.6 to obtain Theorem 2.5.

Next, we consider extensions of £.

Definition 6.10 (i) /c is the extension of £ defined by
e = (A({C}),4)

where | is the extension of the relation defined in 2.2 with the following rules:

My
cC . Gt
(ii) £p is the extension (A({C}),_|.) of £ with the rules
My N

PUP o PMUPM
«PIP o PMY *PunNyT  * PMNUI

It is easy to see that the relation _|_ as defined in both ¢c and £p is a partial function.
Moreover, with these definitions the C and P combinators have the properties required by 6.3;
while C is definable in ¢p, by

CM =PMM.

Since £c is generated by {C}, and ¢p by {P}, these are separating sets. Thus to apply
Theorem 6.6, we need only check that £¢ is C-sensible, and £p P-sensible.
To do this for /¢, we proceed as follows. Define

c={(A=(p—>¢)1)L|¢p€ L} €FiltL.
Then it is easy to see that ¢ C t4(C), and by monotonicity and the Soundness Theorem,
[M[c/CI1P € [M]”

for M € A°({C}). Thus
(x) D Mc/C4 = Dk M.

Now we prove
(%) VM, N € A°({C}).
MYN = [M[e/C]]” = [N[e/ClI” & D k= Nle/C]Y,

which by (x) yields £c = M| = D | MJ), as required. (%) is proved by a straightforward
induction on the length of the proof that M| N.
The argument for £p is similar, using

p={A=2(t=> @=L AE>A= @ —¥)1)):d o €L}

Altogether, we have shown
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Theorem 6.11 (Contextual Equivalence) (i) VM, N € A°({C}):
lcEMLCN < VYC[]€A’({C}).4c = CIM]y = fc = C[N].

(i) VM, N € AS({P}):
lpl=MEN < VYO[]€ A°({P}).4p = C[M]| = ¢p |= C[N]|.

As a further application of these ideas, we have
Proposition 6.12 (Soundness of D) If A is X -sensible, and X separates X in A, then:
3D, X) € 3¥(A4, X).

PROOF.

DEMCN

VC[] € A°(X).D = C[M] C C[N]

DECMN = DECINY

AECM} = AECIN|

AEMECN.

Lreee

The argument for formulae of other forms is similar. |
As an immediate corollary of this Proposition,

Proposition 6.13 The denotational semantics of each of our languages is sound with respect
to the operational semantics:

We now turn to the question of full abstraction for these languages. Since, as we have seen,
¢p is P-sensible, and hence sensible and approximable, and C and P are definable, we can apply
the Full Abstraction Theorem to obtain

Proposition 6.14 D is fully abstract for £p.

We now use the sequential nature of £ and £¢c to obtain negative full abstraction results for
these languages. This will require a few preliminary notions.

Definition 6.15 The one-step reduction relation > over terms in A is the least satisfying the
following axioms and rules:

M > M

© (e.M)N >MN/z] o~
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This is then extended to A({C}) with the additional rules

M > M
° C(A.’EM)>I e CC>I m
We then define
° > = the reflexive, transitive closure of >

o Mt = FH{M,}.M =My &n. M, > My,
e M¥ = M¢gdom>
e MIN = M>N&N #.

It is clear that > is a partial function. Note that these relations are being defined over all
terms, not just closed ones. For closed terms, these new notions are related to the evaluation
predicate _{}_ as follows:

Proposition 6.16 For M,N € A° (A°({C}):
(i) MUN < M|N
(i) My => Mt

We omit the straightforward proof. The following proposition is basic; it says that “reduction
commutes with substitution”.

Proposition 6.17 M > N = M[P/z] > N[P/z] .
PrOOF. Clearly, it is sufficient to show:
M >N = M[P/z] > N[P/z].
This is proved by induction on M, and cases on why M > N. We give one case for illustration:
M = (\y.My)My > N = M[Ma/y).

We assume z # y; the other sub-case is simpler.

M[P/z] = (Ay.My[P/x])M[P/x]
> Mi\[P/z][Ma[P/z]/y]
= M;[My/y|[P/z] by [Bar84, 2.1.16]
= NI[P/a). i

Now we come to the basic sequentiality property of £ from which various non-definability
results can be deduced.
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Proposition 6.18 For M € A, exactly one of the following holds:

() M7t
(1) M > \z.N
(’LZZ) M > :CNl .. .Nk (k > 0).

PROOF. Since > is a partial function, the computation sequence beginning with M is uniquely
determined. Either it is infinite, yielding (i); or it terminates in a term N with N }, which
must be in one of the forms (i) or (741).

As a consequence of this proposition, we obtain

Theorem 6.19 C is not definable in £. Moreover, D is not fully abstract for £.
PROOF. We shall show that £ satisfies
(*) z=1 or [z <= z(KQ)||

Indeed, consider any term M € A°. Either M4}, in which case MQ and M (KQ)f, or M{}. In
the latter case, by ({}n) we have Ml = M = Az.Mz. Thus without loss of generality we may take
M to be of the form Az.M', with FV(M) C {z}. Now applying the three previous propositions
to M', we see that in case (i) of 6.18, (Az.M")Q2 and (Az.M")(KQ)1; in case (i7), (A\z.M")2
and (Az.M")(KQ)|; finally in case (7i1), if K = 0, Az.M' = I; while if k£ > 0, (Az.M")Q{ and
(Az.M")(KQ)1r. Since C # I, CQff and C(KQ)J, this shows that C is not definable. Moreover,
(%) implies
(*) 2 & z(KQ)| = z=1

which is not satisfied by D, since C is definable in D, and taking z = C refutes (%*); hence D is

not fully abstract for /. |

Note that since C is not definable in £, we could not apply the Full Abstraction Theorem. By
contrast, to show that D is not fully abstract for £¢, it suffices to show that P is not definable.
For this purpose, we prove a result analogous to 6.18.

Proposition 6.20 For M € A({C}), ezactly one of the following conditions holds:

() Mt
(i1) M > dz.N
(1) M >C
(iv) M>C(C...(C(xNy...Ng)...)...)P1... Py, (n,k,m >0)

——
n

PROOF. Similar to 6.18. il

39



Theorem 6.21 P is not definable in £¢c; hence D is not fully abstract for fc.

PROOF. We show that /¢ satisfies
z(KQ)Q & 2Q2KQ)| = 2004,

and hence, as in the proof of the Full Abstraction Theorem, P is not definable in /c. As in
the proof of 6.19, without loss of generality we consider closed terms of the form Ay;.Ay2.M.
Assume (Ay1.A\yo.M)(KQ)QY and (Ay1.Ay2-M)Q(K)|. Applying 6.20, we see that case (7)
is impossible; cases (74) and (i74) imply that (Ay;.Ayo.M)QQY; while in case (iv), if z = y1,
then (Ay1.Ay2.-M)Q(KQ), contra hypothesis; and if x = yo2, (Ay1.Ay2.M)(KQ)Q1), also contra
hypothesis. Thus case (iv) is impossible, and the proof is complete.

For our final non-definability result, we shall consider a different style of extension of 4, to
incorporate ground data. We shall consider the simplest possible such extension, where a single
atom is added. This corresponds to the domain equation

D*:1+[_D*_)D*]

(where + is separated sum), which is indeed an extension of our original domain, in the sense
that D is a retract of D,. D, is still a Scott domain (indeed, a coherent algebraic cpo), but it
is no longer a lattice; we have introduced inconsistency via the sum.

This extension is reflected on the syntactic level by two constants, x and C. We define

e* = (AO({*a C})a —U—)
with _|- extending the definition for ¢ as follows:

MUz N MIUC Mx
cMyT  ° Myt ° CMUF

o x|x o C|C

where T = Az.\y.xz, F = Az.\y.y. We see that the C combinator introduced here is a natural
generalisation (not strictly an extension) of the C defined previously in the pure case. Of course,
C corresponds to case selection, which in the unary case — lifting being unary separated sum
— is just convergence testing.

A theory can be developed for £, which runs parallel to what we have done for the pure
lazy A-calculus. Some of the technical details are more complicated because of the presence of
inconsistency, but the ideas and results are essentially the same. Our reasons for mentioning
this extension are twofold:

1. To show how the ideas we have developed can be put in a broader context. In particular,
with the extension to £, the reader should be able to see, at least in outline, how our
work can be applied to systems such as Martin-Lof’s Type Theory under its Domain
Interpretation [DNPS83], and (the analogues of) our results in this section can be used to
settle most of the questions and conjectures raised in [DNPS83].
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2. To prove an interesting result which clarifies a point about which there seems to be some
confusion in the literature; namely, what is parallel or?

The locus classicus for parallel or in the setting of typed A-calculus is [Plo77]. But what of
untyped A-calculus? In [Bar84, p. 375], we find the following definition:

if M or N is solvable,
FMN =

unsolvable otherwise

which (modulo the difference between the standard and lazy theories) corresponds to our parallel
convergence combinator P. The point we wish to make is this: in the pure A-calculus, where
(in domain terms) there are no inconsistent data values (since everything is a function), i.e.
we have a lattice, parallel convergence does indeed play the role of parallel or, as the Full
Abstraction Theorem shows. However, when we introduce ground data, and hence inconsistency,
a distinction reappears between parallel convergence and parallel or, and it is definitely wrong
to conflate them. To substantiate this claim, we shall prove the following result: even if parallel
convergence is added to £, parallel or is still not definable. This result is also of interest from the
point of view of the fine structure of definability; it shows that parallelism is not all or nothing
even in the simple, deterministic setting of Z,.

Definition 6.22 /,p is the extension of ¢, with a constant P and the rules

My Ny

PIP o PMUPM o ——2" Y
* PUP o PM * pvNyT ° PMNUT

Definition 6.23 Let #' be an extension of £,. We say that parallel or is definable in £' if for
some term M

(1) M(KQ)Q, MQ(KS) converge to abstractions
(13) M xx|*.

Theorem 6.24 Parallel or is not definable in ,p.

PROOF. We proceed along similar lines to our previous non-definability results. Firstly, we
extend our definition of > as follows:

e constructor(M) = M is an abstraction, P, C or x

e constructor(M) & M #%x = CM >T

e Cx>F
M > M
* M >
e constructor(M) or constructor(N) = PMN > 1
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M>M N>N'
PMN > PM'N'
With these extensions, > is still a partial function, and 6.16, 6.17 still hold. For each
M € A({%,C,P}), one of the following two disjoint conditions must hold:

o MY
o M>N&N #.

We now define 7 to be the set of all terms M in A({x,C,P, L}), where L is a new constant,
such that:

o FV(M) C{y1,y2}
e M contains no >-redex.

Note that 7 is closed under sub-terms.

Lemma A
Forall M € T
M[KQ/y1, Q/yolla & M[Q/y1, KQ/ya]lb & Mx/y1,*/ya]lc
= a=b=c=x%orx¢{a,b,c}.

PRrROOF. By induction on M. Since terms in 7 contain no >-redexes, M must have one of the
following forms:

) zN1i...Ng (z € {y1,92},k > 0)
) *Ni...Np (k>0)
) Az.N
(iv) C (v) P (vi) PN
) CNNi...Ny (k>0)
) PMiMoNi... Ny (k> 0)
(iz) LNp...Nj (k>0)

Most of these cases can be disposed of directly; we deal with the two which use the induction
hypothesis.

(viz). Firstly, we can apply the induction hypothesis to N to conclude that Nci/y1,c2/y2]
converges to the same result (i.e. either an abstraction or %) for all three argument combinations
c1,c2; we can then apply the induction hypothesis to either Ny N3 ... Ny or NoNj3 ... Ni.

(viiz). Under the hypothesis of the Lemma, we must have

(PMi Ma)[e1/y1, c2/y2]4T

for all threle argument combinations ci,co; hence we can apply the induction hypothesis to
Ni...Ng.
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Lemma B

Let M € A ({x,C,P}), with FV(M) C {y1,y2}. Then for some M' € T, for all P,Q €
A ({x,C, P}):
MIP/y1,Q/yallx <= M'[P[y1,Q/ya]lx.

PROOF. Given M, we obtain M’ as follows; working in an inside-out fashion, we replace each
sub-term N by:

N' if N|N'
1 ifnt.

Now suppose that we are given a putative term in A%({x,C,P}) defining parallel or. As in
the proof of 6.21, we may take this term to have the form Ay;.Ays.M. Applying Lemma B, we
can obtain M’ € T from M; but then applying Lemma A, we see that Ay;.\ys.M' cannot define
parallel or. Applying Lemma B again, we conclude that Ay;.A\ys.M cannot define parallel or
either.
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7 Variations

Throughout this Chapter, we have focussed on the lazy A-calculus. We round off our treatment
by briefly considering the varieties of function space.

1. The Scott function space

[D — E], the standard function space of all continuous functions from D to E. In terms of our
domain logic £, we can obtain this construction by adding the axiom

(1) t<(t— 1)

Note that with (1), £ collapses to a single equivalence class (corresponding to the trivial one-
point solution of D = [D — D]). For this reason, Coppo et al. have to introduce atoms in their
work on Extended Applicative Type Structures [CDHL84].

2. The strict function space

[D — E], all strict continuous functions. This satisfies (1), and also
(2) G=1¢) <[ (p#1)

3. The lazy function space

[D — E],, which satisfies neither (1) nor (2). This has of course been our object of study in
this Chapter.

4. The Landin-Plotkin function space

[D —, E],, the lifted strict function space. This satisfies (2) but not (1). The reason for our
nomenclature is that this construction in the category of domains and strict continuous functions
corresponds to Plotkin’s [D — E] construction in his (equivalent) category of predomains and
partial functions [Plo85]. Moreover, this may be regarded as the formalisation of Landin’s
applicative-order A-calculus, with abstraction used to protect expressions from evaluation, as
illustrated extensively in [Lan64, Lan65, Bur75).

The intriguing point about these four constructions is that (1) and (2) are mathematically
natural, yielding cartesian closure and monoidal closure in e.g. CPO and CPO respectively
(the latter being analogous to partial functions over sets); while (3) and (4) are computationally
natural, as argued extensively for (3) in this Chapter, and as demonstrated convincingly for (4)
by Plotkin in his work on predomains [Plo85]. Much current work is aimed at providing good
categorical descriptions of generalisations of (4) [Ros86, RR87, Mog86, Mog87, Mog]; a similar
programme is being carried out for (3) by Chih-Hao Ong.

44



8 Further Directions

Our development of the lazy A-calculus represents no more than a beginning. An extensive
study is being undertaken by Chih-Hao Ong; anyone interested in pursuing the subject further
is strongly recommended to read his forthcoming thesis (Imperial College, University of London;
expected 1988). His results include: a syntactic characterisation of the local structure of lazy PSE
models; a construction of a fully abstract model for £¢; and a category-theoretic characterisation
of the lazy A-calculus.
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