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Chapter I

. INTRODUCTORY

1. THE CONCEPT OF A FUNCTION. Underlying the formal cal-
culi which we shall develop is the concept of a function, as it
appears in various branches of mathemetics, elther under that
nome or under one of the synonymous nsmes, =ovowmd»on or “trans-
formation.” The study of the general properties ‘of functions,
independently of thelr appearance in any particular mather matical
(or other) domain, belongs to formal loglc or lies on the boun-
dary line between logic end mathematics. This study 4s the orig-
inel motivation for the calcull — but they are so formulated
that 1t is possible to abstract from the intended meaning and
regard them merely as formal systems.

A function 1is a rule of oowwmmvodamdow by which when any-
thing is given (as mdmwmuswu enother thing (the value of the
ncvon»ow for that argument) may be obtained. That 13, e func-

ion is an operation which may be applied on one thing (the ar-

msambev to yield another thing (the value of the function). It
is not, however, required that the operatl ion shall necessarily
be epplicable to everything whatsoever; but for each function
there 1s a class, or range, of possible arguments -- the cless -
of things to which the operation is significantly epplicaeble --
and this we mﬁmdw call the renge of armuments, or roenge of the
4ndependent varisble, for that functlon. The class of all values
of the *ruo(»os‘ obtained by taking ell possible arguments, will
be called the range of values, Or range of the devnendent variable.

If f denotes a particular function, we shall use the nota-
tion (fo) for the value of the function f for the ergument
a.  If a does not belong to the range of arguments of f, the
notation (fc) shall be meaningless.

It 1s, of course, not excluded that the range of arguments
or range of values of & function should consist wholly or partly
of functions. The derivative, as this notion appears in the el-

»
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ementary differential calculug, £3 a familisr mathematical exam-
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¢ the range of arguments consists

functions and the range of valuves, of numbers. Formal logic -

provides other examples; thus the existential quantifier, accord-

v account, is a function for which the range of W
ho) tional functions, and the range of '

[

arguments

3
of a function F should be the function

i
!
|
I
the rangs of arguments M
P dhamt o T £ oty e
F iteself. This Possibility hasg frequently besn denied, and in- |
dzed, 1P a function is defined as a correspondence between two !
previcusly given ranges, the reason for the denial 1s clear. i
Eere, howover, we regard the operation or rule ow,oodwmmvoua@30wu !
which constitutes the functlion, as belng firss given, and the

7
of arzuments then determined as conslsting of the things to
vinlch the operation is applicable, This i3 g departure from the

H
£
&3
@

in mathematics, but 1t is a departure which

24

is 1 & from consideration of functions in a spec~ ;
;e : . ;

ial sideration of function in seneral, and it

Far 2 -

fiy Sietency theorems which will be proved below.

{ 1s defined by the rule that (Ix)
then in particular (17 s 71, I
the rule that (#x) 4is i, what-
leular (WF) is 1. 1P I 1s the
existentianl quantifier, then (Ig) is the t th~valte truth. "
The functions 7 and ¥ may 21so be cited as exarplas of

uncolons for which the renge of arguments consists of all things i

2.  FPXTENSION AND INTENSION. The foregoing discussion
leaves 1t undetermined under what circunstances two functions
thall De conzidsred the same,
] 3 ome points of view, the best
way Lo settle this quesgtion is to speclily that two functions b
&nd g are the sompe i they have the same range of arguments and,
P

ior every clement & thas belongs to this range, (fa) 41s the

. §3. FUNCTIONS OF SEVERAL VARIABLES 3

Ing with functions in extension.

It 1s possible, however, to allow two functions o be dif-
ferent on the ground that the rule of correspondence 1s differ-
ent in meaning in the two cases although always yielding the same
result when applied to any particular argument. When this is
done We shall ssy that we are dealing with functlons in inten-
sion. The notion of difference in meaning between two rules of
correspondence 1s a vague one, but, in terms of scme system of
notation, 1t can be made exact in various ways. We shall not at-
tempt to decide what 1s the true notion of difference in meaning
but shall spesk of functions in intension in eny case where a
more severe criterlon of ldentity is adopted than for functions
in extension. There 1s thus not one notion of function in inten-
sion, but many notions, involving various degrees of intensional-
ity.

In the calculus of A-conversion and the calculus of re-
stricted A-X-conversion, as developed below, it is possible, 1f
desired, to interpret the expressions of the calculus ds denoting
functions in extension. However, in the calculus of A-é-conver-
sion, where the notion of identity of functions is intrcduced in-
to the system by the symbol 6, 41t 1s necessary, in order to
preserve the finitary character of the transformation rules, so
to formulate these rules that an interpretation by functions in
extension becomes impossible. The expressions which appear in
the celculus of A-g-conversion are interpretable as denoting
functions in intension of an appropriate kind,

same as  (ga). When this is done we shall say that we are deal-

»

3. TFUNCTIONS OF SEVERAL VARIABLES. So far we have tacitly
restricted the term "function" to functions of one variable (or,
of one argument). It is desirable, however, for each positive
integer n, to have the notion of a function of n variables.
And, in order to aveid the introduction of a separate primitive
idea for each n, 1t 1s desirable to find a means of exple ning
functions of n  variebles as particular cases of funcitions of
one variable. For our present purpose, the most convenient and
nztural method of doing this 1a to adopt an idea of Schénfinkel
[49], according to which & functlon of two varizbles is regarded
as & function of one variable whose values are functions of one
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a function of thres variables as a function of cne va-
riabls whose values are furcticns of two varlables, and so on.
£ F denotes a particular function of two variables,
b} - wnich we shall frequently abbreviate ag
{/ab) ar, fab -~ represents the value of f for the arguments
0. The notation {fao)
&ny argurent  x The function / bas a range of argu-
: 18 meaningful only when « belongs
O thet range; the function Sa again has s Tange of erguments,
whlch iz, in general, different for different elements a, and
the notation xgwnmaomsHamwcw ospwgﬁmﬁc Gmwosmmwonsm

3 JSax.

ments, and the nctation sa

Similarly, if S denotes a function of three variables,

{{Fa)zic) or Jabe denotes the value of F for the arguments
¢

cud,c, o denoting a certain function of tw varlables, and

.
({rayoy or JSab denoting a certain function of one variable -
end 30 on.

{According o another scheme, which 1s the better one for
certain PUrposes; a function of two varisbles is regarded as g
riable) whose arguments are ordered pairs, a
lebles as = function whose arguments are

o,  This other concept of & function of
ver, excluded here. For, es will
tions of ordered rair, ordered tried, ete,,
t t

of’ ebstraction (§4) and the Schénfinkel
of severable variebles; and thus functions

€8 in the other sense are also provided for.)
a function of two varisbles (in the sense of
¢ constancy funciion £y defined by the rule

=EB LNy uncti
We have, for 4n-

whatever x angd ¥  may be,

Stence that K17 13 L KHl iz K, anéd so on. Also XI ig
# A{vhere ¥ 1ig the function defined sbove in §1). Similariy

AL 1s w function whoss value 15 constant and equal to KX,

ion of two varisbles is the fune-
(rx); for reo-
Or wo designete this function by the
1, regarded as a function of one vari~
able, 1s & kind of M@mﬁ&&&%.%ﬂdouuoﬁ“ since the notation (17}

o

e

3]

O

(S

by I 3
Another exarple of

g Pom e . - 5
ug for the arguments \\v X l8

"~ which we shall frequently abbreviate :
&8 fa -- represents a function of one varieble, whose value for
. ]
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whenever significant, denotes the same function as f; the finc
tions I &and 1. ere not, however, the same function, since the

"rangs of arguments consists in one case of all things whatever,

in the other case merely of all functions.

ther examples of functions of two or more variables are the
function 4, already defined, and the functions 71, v, B, C, W,
§, defined respectively by the rules that Txf 1s (fx), Jfxyz
Is rx(rzy), Bfgx 1is rgx), Crxy 1is (fyx), Wrx 1s  (fxx),
Snrx 1s  flnfx).

Of these, B and ¢ may be more familiar to the reader un-
der other names, as the product or resultant of two transforma-
tlons f and ¢, and as the converse of a function of two vari-
ables /£ To say that BI7 ig Z 13 to say that the product
of the identity transformation by the identity transformation is’
the identity transformation, whatever the demain within which
transformations are belng considered; to say that B11 is 1
1s to sey that within any domain consisting entirely of functions
the product of the identity transformation by itself 1s the iden-
tity transformation. B/ 1s ', since 1t is the operation of
composition with the identity transformation, and thus an 1den-
tity operation, but one applicable only to transformations.

The reader way further verlfy that c¢xX is H T 1s 1,
€1 4ds I, ¢r is T -- that 1 and 7 have the same converse
is explained by the fact that, while not the same function, they’
have the same effect in 21l cases where they can signi lcantly
be applied to two arguments. The function BCC, the converse
of the converse, has the effect of an 1dentity when applied to a
function of two variables, but when applied to a function of one
veriable 1t hes the effect of so restricting the range of ATgu~
ments as to transform the function into a function of two veri-
ebles (1f possible); thus. Bl 1s 1,

There are many similar relationsz between these functions,
some of them quite complicated.

L. ABSTRACTION. TFor our present purpcse it is necessary
to cdlstinguish cerefully between & symbol or expression which
denotes a function and an expresaion which contains a varisble
&and denotes ambiguously some value of the function -- a distine-.
tion which 1s more or less obscured in the ususl lasnguage of
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ma e - et i1
mathemn wnetion theory.

7y ow functions of natural
+X) %, 1Ir we say, ..CAm...xvm
is greater than 1 »000," we melze a siatement which depends on x
and a &,c,mww.. hzs no meening unless x is determined as some par-
p 1 L number.  On the other hand, if we soy, ..Cami&m.

(Slehey
numbers, consider the expression C«m

recursive function,” we make o definlte statement
ing In no way depends on o determination of the vari-
S 5 I3 Yy 3 ’
able X {so that in this case x pleys the rdle of gn apparent
-, b
)

u
&éwo;ﬁ.ﬁnﬁoommmmpm
o} P

whose reans

or bound; verisbil
2

thet in th

* bt +x})° serves as sn em-
youous raria 3 ati X

+~gucus, or variable, denotaticn of a natural numter, while in
ez as the denotation of & particular func-
4 N e e T A ¢

tion. We shall hereafter i{stinguish by using ?m.«xvm when we
intend an ambilgucus notatio: v ,

T “2 d ¢ JJ shguous denotatlion of & natural number, but ?.Clxw
x) /7 A3 the denotatien of the corresponding function -- and
ikewise In other cas 88,

,ova

K Fal 31 I -
t+v 28, Ol course, ilrrslevant here that the notation Qm.*.

the secend case 1t serv

ial
x}  is commonly uss ] r
) nly used elso for a certain function of real numbers,
o hala ‘
& cervain function of corplex numbers, etc. In a logically exact
not fo3e) e 1 5 ,.
notaetion the functions, addition of natural nmumbers, addition of

real nunbers adi NP eX
mamoers, addition of complex numbers, would be denoted by

R N )

differsnt *ar tpo +,7 and the three functions,
vare of e, square of a real number, square of a
rplex number 8 similarly distingulshed. THe uncertain-
t0 the exact meaning of the uo.nmwwos (x ,Camﬂ and the

onzeguent ertain 1
nzeg ;,o.if ainty as to the range of arguments of the fune-

on {Ax(x® L(i.«.w

Ty rwae -
nogtnersl, 24 1

taining o variable

¥ that the meaning of

mination of k? then (Ax) denotes a

» for an argument @, 1is denoted by the re-

{a symbol denoting) a for x in #. The

of the function (Axf7)  comsists of all ob~

the expression s hes o meaning when (2 sym~

ituted for . .

contain the variable x (as a free vari-
#ht be used %o @oﬁOnm a functlon whose val-

ual o (the thing denoted by) &, and whose

»
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renge of arguments consists of all things. This usage is contem-
plated below In comnection with the calcull of A-K-conversion,

‘but 1s excluded from the calcull of A-conversion and A-é-con-

version -- for technical reasons which will appear.

Notice that, although x occur es a free variable in A,
nevertheless, in the expression (AxM), x 13 a bound, or ap~
parent, variable, Example: the equation ?mi&m = Acmi\vm ex~
presses a relation between the naturael numbers denoted by x and
y and 1ts truth depends on a determination of x and of 'y (in
fact, 1t 18 true 1f end only if x and y are determined as de-
noting the seme natural number); but the equation (Ax(x m+xvmv -
?Scm,_. va expresses a particular proposition -- namely tht
(Ax(x+x)2) 13 the same function as (Afy2+9)®) == and 1t 1s
true (there 1s no question of & determination of x and y)e -

Notice alsoc that A, or Ax, 1s not the name of any func-
tion or other ebstract object, but is an incomplete svmbol
1.e., the symbol has no meaning alone, but appropriately formed
expressions containing the symbol have a meaning. We call the
symbol Ax an gbstractlion operator, and speak of the function
which 13 cdenoted by (AxM™) as obtained from the expression Af
by abstraction.

The expression (Ax(Ayf)), which we shall often akbreviate
as (Axy.”), denotes & function whose value, for an arguuent de-
noted by x, 1is denoted by (Ays) -- thus a function whose val-
ues are functions, or a function of two variables. The expres-
sion (Ay(Ax%)), sabbreviaeted as (Ayx.fs, denotes the converse,
function to that denoted by (Axyré). Similerly (Ax(Ay(Azr))),
avbreviated as (Axyzf), denotes & function of three varlsbles,

nd so cn.

Functions introduced in previous sections as examples cen
now be expressed, 1f desired, by meens of abstraction operators,
For instance, I 1s (Axx); J 1is (Arxyz.fx(fzyl)); S 1is
(Anfx.flnyx)); H 13 (AxI), or (Ax(Ayy)), or (Axwy); X
1s (Axy.x); 1 1s (Afxfx).

-
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5. PRIMITIVE SYMBOLS, AND FORMULAS. We turn now to the de-
velopment of & formal System, which we shall call the calculus of
Azconversion, end which sn2ll have es a Possible Interpretation
or application the eystem of ideas ebout functions described in

er I.

The primitive 8ymbols of this celculus are three symbcls,

Qu.vu3...“Muc..wam»mu...smam‘..

whichh we shall call

«

1 ‘arisbles. The order in which the variables
appesr in this originally gilven Infinite list shall be called

formida Y -b@ sequence of primitive sywbols. Cer-
4 as well~formed formules, and each

currenca of & variadle in s wall-formed formmula 1is distin-

guisned as free or bound, in accordance with the follewing rules
{(1-%}, which constitute a defindtion of these terms by recursions:
e A vwvariabls x 15 g well-formed formule, and the occour—
Tence of the vaerisble x  4n this formula is fres.
2. I F end 4 are well-Tormed, (Fa) is well-formed,
and an occurrence of a veriable ¢ in F 13 fres or bound in
) eccording as it is free or bound in ¥, and an occurrence
of a variaoble ¥ In 4 i3 free or bound in (Fg) according as
it Lz frea or bownd in 4. ,
woll-formed and contains st least one free oc-

IV o . i 8 -
currence of x, <hen {(Pxrn) is well-formed, and an occurrence

§5. PRIMITIVE SYMSOLS, AND FORVULAS 9

of & varlable iy, other than x, in (AxM 1s free or bound
in (Ax?) according as it is free or bound in M. All ocour-
rences of x in (A &are bound.

4, A forrulsa is well-formed, and an occurrence of a vari-
able in it is free, or is bound, only when this follows from
1-3.

The free varisbles of a formula are the varisbles which -
have at least one free occurrence in the formula. The bound va=
riables of a formula are the varisbles which have at lesst on
bound occurrence in the formle.

Hereafter (as was just done in the statement of the rules
1-%) we shall use bold capital letters to stand for variable or
undetermined formulas, and bold small letters to stand for veri-
able or undetermined variables. Unless otherwlse Muahnmwma in s
particuler case, it is to be understood that formmilas represent-
ed by bold capital letters are well-formed formmlas. Bold let--
ters are thus not part of the calculus which we are developlhg
but are a device for use in dmwwwmn about the calculua:  they be-
long, not to the system 1tself, but to the metensthemstics or
syntax of the system,

Another syntactical notation which we shall use is the no-
tation,

m\w«_
which shall stand for the formuls which results by substitution
of A for x throughout A4 This formuls is wall-formed, ex-
cept in the case that x 13 a dound variable of & and & is
other than a single varisble -- zce §7. (In the special case
that x does not occur in M, it 1s the same formula as £.)
For brevity and perspicuity in dealing with particular well-
formed formulas, we often do not write them in full but employ
various sbbreviations.
One method of abbreviation is by means of & nominal defini-

‘tion, which introduces a particular new symbol to replace or

stand for a particular well-formed formila,  We indicate such a
vominal definition by an arrow, pointing from the now symbol

which 1is being introduced to the well-formed formula which 1t 1s
to replece (the arrow may be read "stands for"). As an example
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we make at once the nominal delinition:
I — {Aaa).
This means that 7 will be used &s an abbreviation fop {(Aax)

will be used as an abbreviation

-~ gngd consequently that (77)
{ as an sbbreviation for (Aala

for ((Aao)(Aae)),
(hoa))),
Another methoed of abbreviation

ete,
is by means of a schematic

seasmatic
definition, which Introduces

c 2 class of new expressions cf & cer-
tain form, specifying a schems according to which each of the
noW erxpressiony stends for a corresponding well-formed formula.
Such a schematic definition is indicated in a similar fashion by
&n arrow, but the expressions on each side of the arrow contain
bold letters. one or geveral -- og-
curs (the definiens) but
10t In the expression preceding the arrow (the definiendum), the
following convention is to be understood:

When a bold smell letter --

in the expression following the arrow

first varisble in alphavetical order not
appearing in the definiens, & stends for the
secend such varicble in alphabetical order, ¢ the third,
and 30 on,. !

once the following schemstilc definitions:

examples, we moke

(Aa Aol () ((He) ).
(halpr(aedyy.

(wre).

Thne first of these

o

5 Fal
definit

ons means that, for instance, [x+y]
will Be used ag sn abbreviation for A>9A>GAAXQVAAQQVOVVva and

£y

fe+edl will

[y

and {7+I] 28 an abbrovip
Az

< 2 S 3
megsion of the parentheses ( } iIn

ton for (AD(Ac((I0}((75)c)))), ete.

a further device of sbbrevietlion, we shall ellow the o-
t (F4) whsn thils mey be done

arbiguity, vhsther (F4) 13 the entire formula being .
i T som2 part of it. In reatoring such cmitted

15 Lo be followad that assoclation

*s the convention

be uzed as en ebbreviation fop (Ab{Ad({ab){(c 6)d)))),

on

[

§5. PRIMITIVE SYMBOLS, AND FOSMULAS 11

1s to the left (cf. Schénfinkel (49}, Curry [17]). TFor example

Jxy 1s an abbreviation of ((rx)y), flxy) 41s en abbreviation
of (f(xy)), fxyz 1is an abbreviation of ((ra)y)z),  flxy)z
is an ebbreviation of ((f{xy))z), F{Axx)y. is an ebbreviation
of  ((f(Axx))y), ete.

In expressions which (in consequence of schematic defini-
tions) contain brackets [ 1, we allow a similar omlssion of
brackets, subject to a similar convention of association to the
left; thus  x+y+z 1s an abbreviation for [[x+y}+z], which ex
pression 1s in turn an abbreviation for a certain well-formed
formila in accordance with the schematic definition alreedy in-
troduced. Moreover we allow, as an abbreviation, omitting a
pair of brackets and at the same time putting a dot or period
in the place of the initiasl bracket [ ; in this case the conven
tion, instead of associstion to the left, 1s that the omitted
bracket extends from the bold period as far to the right as pos
sible, consistently with the formuila's being well-formed -- so
that, for instance, Xx+y+z 1s an abbreviation for {x+ly+z]],
and x+.y+.2+t 1s en abbreviation for [x+{y+[z+¢11), "and (Ax

X+x) 1is an abbreviation for (Ax[x+x]).
We also introduce the following schematic definitions:
Ax.Fa) — (Ax(F4)),
Axy.Fa) — (Ax{Ay(Fa))),
AxyzF4) — Ax(Ay@Az(F4)))),
and so on for any number of variables x, y, =z, h.. (which rust

be all different). And we allow similar omissions of A's, pre-
ceding a bold perlod which represents an omitted bracket in the
way described in the Preceding paragraph -~ using, e.g.,
+y+Z a3 an abbreviation for Ax(AyiAZ] [x+yl+2])) ).

Finally, we allow omission of the outside parentheses in
(Ax*),. or in Ax.F4), or (Axuy F4), or (Azyx=F4), ete.,
when this 1s the entire formula being written -- but not when on
of these expressions appears &s a proper ﬁman of a form:la.

Hereafter, in writing definitions, we shall abbreviate the
definlens in accordance with previously introduced abbreviations
né definitions. Thus the definition of [A4+4] would now be
written:

Axyz, x



‘o o NOAAES s e e e i
5 Al AN CONVERIICY

Uit — Aqordfics).

Definitions and other abbreviations are introduced merely
vers of convenience and are not properly part of the
system at all. When we speak of the free variables of
e formula, the bound variables of e formila, the length (num-
ber of symbols) of a formmule, the occurrences of one formula
88 & part of another, etc., the reference is always to the
unebbreviated form of the formulas in question. .

t
formal

The introduction and use of definitlions and other abbrevia-
riction that there shsill
never te sny ambiguity 2s So what forsula a given m.o,owmqumwmum
»rm gtands for. In practice certain further restrictions arg
» that all free variasbles of the defintens
represented explicitly in the definlendum. Exach formulation
or our present purpose,
1 definitions and abbreviations ars extreneous to the
formal system, as Just explained, and in principle dispenseble.

tions is, of course, subject to the rest

o

X n
of these restirictions is unnrecessery f
wv Yel

6, CONVERSION., We introduce now the three following oper—
ations, or transformstion rules, on well-formed formulas:

~ - N X
A% o /Jﬁu @ To replace any part A of & foermila by S~ , pro-
o
vided that x  is not a free varisble of i and g
does not oecur in A

Le Qrﬂ ﬂJ y Y, N
Ay ot h &JME& m.vw\,,m“ provided

T
fwag,m\,ﬁs :

m/a?. i) b -» fu@

r k%?b v

art  (AxPN)A)  of a formule by
nat the bound variables of M are

®

@ Te replace any p
)

(2

.

fe@.«%’wﬁak dlstinct both from x  and from the free variables

.«ynz

of iR

Yo replace any part m.\“w\.ﬁ of & formula by ((Axrnymy,
previded that ((Axrna) is well-formsd and the bound
variablez of A ars distinct both from x and from
the free variables of &,

I the statement of these rules -- and hereafter gener-
ally -- it is to be understood that the word part (of a formu-
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la)} means consecutive well-formed part not i medlately follow-
Ing un occurrence of the symbol A,

When the same formula oceours geveral times as such a part
of another formula, each occurrence is to be counted as a dif-
ferent part, Thus, for instance, Rule T may be used to trens-
form ab(Aaa)(Aca) into ab{Abb)(Aaa)., Rule III may be used
to transform Aqa into Aa.{(Aca)a. But Rule TIT may not be us
to transform (Aaa) into (A{Aag)a)a) =~ the lattepr formuls
is, in fact, not even well-formed.

Rules I-III have the important property that they are ef-
fective or "definite," l.e., there is a means of always deter-
mining of any two formulas 4 and 8 whether 4 can bte trang
formed into & by an application of one of the rules (end, if
so, of which cne).

If 4 can be transformed into # by an application of on
of the Rules I-IITI, we shall say that 4 1is Inmediately conver
ible into & (abbreviation, " 4ime 8"). If there is a finite
mm.@zmnom of formulas, in which 4 1s the first formulae and &
the last, and in which each formula except the last is lmmediate
convertible into the next one, we shall say that 4 is convert-
ible into & Am,cddmimn»o? "A conv 8"); and the process of ob-
telning & from 4 by a particular finite sequence of applica-
tions of Rules I-IIT will be called a conversion of 4 into g
(no reference is intended to conversion in the sense of forming
the converse -- for the corresponding noun we use, not "converse
but "convert"), It is not excluded that the number of applica-
tions of Rules I-JII in g conversion of 4 into & should be
zero, B being then tho same forrmla as 4,

The relation which holds between 4 and 5 when 4 conv g
will be celled Hsnmwoo;\mwnugﬁnf and we shall use the expres-
sion "4 and £ are interconvertible" as synonymous with "4 conv
8. The relation of HSamwood<mwdeuwHﬁ% is transitive, symmet-
ric, and reflexive -- symmetric because Rules IT and IIT ere in-
verzes of each other and Rule I is its own inverse.

If there 1s a conversion of 4 into 8 which contains no
epplication of Rule II or Rule III, we ghall say that 4 is
convertible-I into & (4 conv-I 8). Similerly we define "4
conv-I-IT 8" end "4 conv-T-IIT g

A conversion which contains no application of Rule II and

«



xactly one

=

be called a reduct
we shall say tha
If there 13 a conversion

actly one &

Her

< e

to 8 (4 red ).
"4 conv-I-II g"
the former implies the presence of at least one ap-
tion of Rule IT in the conversion of

thus differs

a will be called a
which 1s affected.

will be said to be in normal form if
all call 8 a
normel form end 4 conv &.
form if there 1s a formula 4

application of Rule II to a forr

j

~
ormed form

g
[6]

-y
ju

W ot

0

13 a norme

be sald to be in
5 In normal form, and no varieble is both a
risble of 1it, and the first bound variable

the left-to~right order of the symbols which
ne formula) 1s the gome as the firat

principal nor-

i
t
+
'
i
i

variable in alpha-
end ths vari-
the symbol A are,
hich they cecur in the formila, in
r, without repetitions, snd without omissions
of variczblies which ars frec variables of the formule.
Ab.ba are in principal
raa({Aa.ba)

which 13 not a free variable of

and Ama(Acbcy,
nd Abeact,

el P
irel normal form of

form and 4 conv g,

A Tormila in normal form
& corrssponding formula in prineipsl
ferrula which has 2 normal form has
in the next section that
if it exisis, ig unique.
wilch has no normal form (end thers-

1 normal form) is

ible-X into

zhell stow
& formala,

tation of the formal

R S i o et
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calculus, only those well-formed formulas which have a normal
form shall be meaningful, snd, among these, Interconvertible for-
- mulas shall have the same meening. The condition of being well-
formed 1s thus a necessary condition for meaningfulness but not
& sufficient condition.
It 1s fmportant that the condition of being well-formed 1s

effective in the sense explained at the beginning of this sec-
icn, whereas the condition of being well-formed and having a
normal form'is not effective.

T. FUNDAMENTAL THEOREMS ON WELL~FORMED FORMULAS AND ON THE
NORVMAL FORM. The following theorems are taken from Kleene [34]
(with non-essentiel chenges to adapt them to the Present modified
notation). Their proof 1s left to the reader; or an outline of -
the proof may be found in Kleene, loc. cit.

7 1.  Ina well-formed formula K ‘there exlsts a unique paip-
Ing of the occurrences of the symbol (, each with a
corresponding occurrence of the symbol Y, in such a
way that two portions of K, ezch lying between an oc-
currence of ( eand the corresponding occurrence of )
Inclusively, efther are non-overlapping or else are con-
tained one entirely within the other, Moreover, 1f such
a paliring exists in the portien of X 1ying between the
nth and the (n+r)th symbol of L4 Inclusively, 1% 1g a
part of the peiring in K, . ’

7II. A necessary and sufficient condition that the portion A
of & well-formed formula & which lies between a given
eceurrence of ( in X and a given oceurrence of )
in & Inclusively be well-formed 1s that the glven oc-
currence of ( and the glven occurrence of ) corre-
spond.

7 III. Every well-formed formuls has one of the thres forms,
X, where x 1s a variable, op F4), where F eng °
A are well-formed, op AxhN, where f? 13 well-formed
end x 4s a free variable of M

7 IV, If (F4) and elther F or 4 43 well-formed, then both
F end 4 are well-rormed.
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7 V. 1P PxA) iz well-formed, x Dbeing a varladble, then :

by substituting @ for a partliculer occurrence of F
A is well-formed snd x 1s a free varlable of 5.

. in &, not immediately following an occurrence of A

s 3 . 13 well-formed.
7T VI, A well-formed formula can be of the form (F4), where

o F {or A) i3 well-formed, in only one way. o 7 XVI. If 4 1s well-formed and 4 conv £ then & 1s wel
7 VII. A well-formed formmule cen be of the form (Ax), where . formed.
% 1s a varisble, in only one way. w H , 7 XVII. If 4 1s well-formed end A4 conv & then 4 and g
7 VIII. Hm ? and @ are well-formed parts of a well- woﬁnoa. have the same free varlables.
ormmala &, then elither 2 1s a part of &, or n,.w is s 7 XVIII.If K, P, @ are well-formed, and P conv Q &and |

a part of £, or £ end £ are non-overlapping. _ : is obtained by substituting @ for a particular ocecu

7 IX. Two distinct occurrences of the same well-formed H,ou_,éym rence of P In R, Dot immediately following an oce
# as a part of a well-formed formula K must be non- rence of A, then K conv L. )
overlepping. I ! We shall call a well-formed part £ of & well-formed fo:

7 X, Ir P F, end A eare well-formed and P 1s a part of . mla K & free occurrence of £ in K 4if every free occurm
(F4), then & 1s (F4) or P is apartof F or p of a variable in £ 1s elso & free occurrence of thet varisb'
1s a part of 4. R in K; in the contrary case (if some free occurrence of a ve

7 XI. If P and & are well-formed and x 1s a variable and vr x nw& eble In P 1s at the same time a bound occurrence of that ve:
£ 13 a part of ﬁyxg‘ then £ 4s @xpfy [or P is

J eble in X} we shall cell the part £ of K & bound occurre:

] or £ is a part of /4. {(The clauss in brackets is

n

t of P in K. If P 41s an occurrence of a variable in K, 1

w
superfiuous because of the meaning we give Lo the word “ immedlately following an occurrence of A, this definition i:
part of a formula -- see §6). i in agreement with our previous definition of free and bound ot
' currences of variables
7 XII. An occurrence of a variable x 1n a well-formed formula . y T ;J JH. . . x
. o reover we shall exten e rotation Introduced 3
& is bound or free according a5 it is or 1s not an oc- i 6 b .owJ o m.u, 1 e T 1 u.M\«}M. : duced 1
. ; . allow o stand for the r su
currence in a well-formed part of & of the form (AxAf). i > m% B me ™ . esult o stituting
3 .\ (Hence, in particuler, no occurrence of a varigble in a . : M ow. P M m.ocmbocn .y SUMHM f, M. r mam E&.Hwnwwawog
. : ! ormmilas. is is poss 2 without ambiguit
..,r,,, \ well-fommed formula i1s both bound and free.) ' P gulty, by 7 IX.
7 XIII. If & is well-formed and the varisble x is not a free '

7 XIX. A well-formed part P of a well-formed formula K i
varlable of A an ﬂwb variable y . does not occur In bound or free occurrence of P in X eaccording as it
is or 1s not an occurrence in a well-formed part of &

, . : : of the form (@AxM) where x 1s a free varisble of F£
. 7 XIV. If A and & are well~-formed and the varladls x oc- ;

Y then m?.i s well-formed and hes the same free va=-

: TX, If XK, P, Q@ are well-formed, the formule obtained t
¥ an & bound ver M ar L . ,
curs In / end the bound veriables of /A are distinct ” . substituting @ for a particular free occurrence of
both from x and mnoa the free verlables of &, then o in K 1s well-formed. ‘
S77) nd  {(AxPHN) are well-formed and have the same ; .
a@oo varisbl ‘ 7TXI. If X, P, @Q are well-formed and there is no bound o
fres varisbles. .

currence of P 1in K, then mﬁ.& is well-formed,
7 XV. I K P & ere well-fomued and 2ll free varizbles of '

. & are als o fres variables of hwu “he formula obteined .N SHQ Isot X 60 &8 H.Hcmm <ch<Hm..Uu'0 of ﬁwﬂ@ S‘QHHOPOH-HQQ HJOHEHQ
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Al and let &  be the formale obtained by substituting
& for the free occurrences of x in M. If the re-

..xmawﬁw& occurrences of # 1in £ eare free, (QAxMK)

7 conv A .

In what follows we shall frequently mske taclt assumpti
of these theorems.

In stating these theorems, it has been necessary to hold in
aberance the oosgﬁfc»ou that formulas represented by bold capi-~
tal letteras are well-formed. Hereafter this convention will be
and formilas so represented are to. be teken alweys as

We turn now to a group of theorems on conversion taken from
Church and Rosser [16]. In order to state these, 1t 1s neces-~
sary first to define the noticn of the residuals of a set of

T

varts {{Ax;r6)i7s) of a o
<

£ - £5 Thrad o~ 2
tilong of Rules I and X

ule A after e sequence of epplica-
4 (85).
% g, then T>v{ wvm is not the

A
. P T
We nssume that, if

7

seme port of A4 as .\,gu\,@nﬁvh@v -~ though »w may be the same

formula. The @mwdm Q,yxg.ﬁv.@.t of 4 need not be all the
oM o .

parts of A4 which have the form ({AyF)@). The residvals of

ter a particular sequence of applications

2 telin parts, of the form
e formula intc which 4 1s converted by this
e of applicetions of Rules I and II. They are defined

Il the sequence of applications of Rules I and II in ques-

ticn 1s vacuous, each part CTA e, %L is its own residual,

If the sequence consists ow & uyﬂw»o application of Rule I,
each pert (A .‘,.wn..wwnﬁv s changed Into a part 2>§?%z$ of
the resulting formuiia, and this part ((A Yy .mvﬁv i3 thse resid-
ual of  ({Ax.fE)M: 0.

If tha mcm erce consists of & single epplication ¢f Rule II,
let  {{AxAGHY bo the port of 4 which is (bnwmo.nog (§6), and
let  AY be the wwmﬁwwwwr moﬁﬂwwm into which 4 1s converted.
Lot {({Ax_jL M.} e

cular one of the :>Mu@m§t» and

zu Qy&i Jo;..,b (ASPAA)  and {(x m: . ) ¢o not overlsp. Under

?@

Awu

Ayg &vz 2>w%«vi ) in mw\ﬁ which are the part Q\/x%« A

(4

ﬁ\?om A to 4, M, goes into a definite part M! of 4, which
b3

Aw

j
M

)Y

7

zva? case(3: ((Axmm) 1s & part of A
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the reduction of 4 to 4, :>x%~v5uv goes Into a definite
part of 4, which is the same formula as 2>xv\@§vv. This
part of 4 1s the residual of ASMn\nmvvavv.

2.&2» ommo@ A9x\$3 is a part of My Under the reduction

P
INVarisss from Rb by contractiort of (QAxmM)f), and Ava\iﬁvkv

e 4 1 1 Ty '
goes into the part ,Sxﬁﬁbwkvv of A'. Thls part ASxﬁQn Vauov
of A' 1s the residual of Aczxm?vvkvv.

b+ Under the reduction

of 4 to A, Qﬁ goes into a definite part \«m of A4', which

oy arises from mw by contraction of (AxA)A), and Q,xu\fmui

‘goes Into the part (QAx Rvs_v of A'. This part 9xv3u53
of 4 1s the residual of ASxR&bS ).

cmmm@" (AxpA) is ASXW\&@S Yo In this case 2>x.%muv
abv has no resicdusl in 4'.

ommm@ ASXH\&nVQ ) 1s a part of AL Let Af' be the re-
sult of replacing all =x's of #f except those occurring in

@Msn&zs :>xvamu§. ) by A. Under these changes the part ﬁc,xnxv:« )

of 4 goes Into & definite part of /' which we shall dencte
also by (QAx Rnra }, since it is S,.m same formula.  If now we
N.ovwmom 2>xw\§§; in 3: by. S 2>Hn>®¥ Y, A Dbecomes
* m»\ﬁ and we denote by mm Sxmsv VQ )1 the particuler occurrence
of mb.A A>xu2bv\< I in ?_ that domzwwmm from replacing
oyxn%mug. ) in M by arm formula 8% :>xw\«.mu¥< Y+ Then the
residual in 4 of waﬁwv\« ) in A4 is defined to be the
pert \.«Q&x Rvs« )1 in the perticular occurrence of \.& in
A4 that vesulted from replecing ((AxMAF) in 4 by cu\i.

r
ommm@ waﬁwsﬁv 1s a part of A, Let g/mpﬂ.vawv
respectively stand for the particular occurrences of the forcula

vv in each
ow those particular occurrences of the formula a in Jﬁ that
resulted from replacing the x's of ¢ by & Then the resid-
uals in 4 of :?mamtavv in 4 are the perts (QAy,2)a,)
in the particular occurrence of the formuls m%ﬁ in 4' thst
resulted from replacing (AxM's) 1in 4 by mz.i



&

B ———

a sequ ence of two or more succes-
IT to 4, say 4 imc 4 imc &
of the psrts 2>xu3v

.ﬁtru. q in the

J
siduals In A
3 ihed, end we ¢efine the resid-
[aB8 ,
I o] £ be the resid-,

1o In 4" of the parts 2> <5 u \dv of 4 to b
mww of the residuzls in 4, and 50 On.
sequence of appllcations of Rules I and II to
Mmich A4 1s convertsd into &, the resicé-
((Axsfd.)R:) of A4 are a set {pos-

3
o W C . B
of parts oH‘, # which each have the

7 ¥X{I1I. After a

OV, fter & sequence of applications of Rules I and II to
4. 1o residusl of the part ((Axrsyy) of 4 cen co-
4, resi
with e residual of the part ({Ax'M'YREY) of A
(AxFOK) coincides with ({(AX'A YRY).
equence of reductions on A, 387 4, Imr
is a secuence of contractions on the
n+l’ .
orf A if the red ion from nH to \»pi
..é,_.ow«@m s contracticon oh. & residual of the
if no residuals of the :>J.R.vau oc-
wo say that the seguence of contractions on the
{{A Zm, Y terminotes emd that Arin is the resultb.
AN e WL TS
f{ u:,o canes wo wish o spsek of a seguence of contractions
L B0 1327 { WLS ¥

on the morts  ({Ax.f4)H.) of 4 vwhere the set ACCA?;: ey
noLhie PLATY CNAR D s
hale t t (EERALN
be vacuous., To hendle this we egree that, 1f the set” A>x ) 3
1n vecuousz, the sequence of contr oﬂon shall be & vacuous mm|
PR S .\Y . ~ (r\rwr(r A A
QUENCH 8\‘. raductions,

a ayts of 4, then a numbsr m

e .y ars paxts of

7 XV iy :

»
eny seguence of contractions on

-
YY) will terminete after at most m owﬁw

_ 1T A and 4" are two results of ter=
quences of contractions on the AA\/xu»\wvauv.

minating =

- ’q
then A& conv-I A

. or 4 TIb
Ttg 1s proved by induction on the length of A. is
11 1 £ nzists
smiviallr trus AF the length of 4 18 1 {L.0., 1f 4 consi

[

i
i
|
:

e S RS
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of a single symbol), the number m being then 0. As hypothe-
sis of Inductlon, assume that the proposition is true of every
formula 4 of length less than n. On this hypothesis we have
to prove that the proposition 1s true of an arbitrary given for-

mula 4 of length n. This we proceed to do, by means of a
proof invelving three cases.

Case 1: A4 has the form AxA. All the parts ((Ax.A)H.)
J

3773
of 4 must be parts of A Since & is of length less then

n, we apply the hypothesis of induction to M.

Cazse 2: A has the form FX, where FX 1is not one of
the 2)&3%&? All the parts :>xu\<;uv of 4 must be
parts elther of F or of X. 3ince £ and X are each of -
length less than T, we apply the hypothesis of induction.

Case 3: 4 is 2>xw>w5wv‘ where 2>x«\ﬁ5@v is one
of the :>x.u.3v\m;. By the hypothesis of induction, there is
e number & such that any sequence of contractions on those

:>u.\<.v3v which are parts of 2@ terminates after at most a
oosﬂgnn»obP and there 1s a nmuwber b such that any aequence
of contracticns on those (({A x./ 5 )

5 which ere parts of Q@
. L
terminates after at most b oodﬁ.mocuosau moreover, i1f we

mamgs»avwﬁmwgﬁbm 3@ msavm«.wogmdmnabbﬁgmmmncmqg
of contractions on those- :>> M, v,ﬁ\ which are parts of Rﬁ:
the result is s formula &, saos 1s unique to within applica-
tions of Rule I, and which contains a certain number ¢, 21,
of free occurrences of the variable xv.

Now one way of performing a terminating sequence of con-

tractions on the parts :?J?. Z«gv of A 138 es follows. First
perform a

terminaling sequence of contractions on those 2>Jﬁv
auv which are parts of Q,o so converting 4 into 9?53.0?
Then there iz one and only one residual of ({A> .«U\%E ), nane-
1y the eatire formula 2>x3\«ﬁv. Perform a contraction of thia,

s0 obtaining )

4
st o)
\cmu

whoere &' differs from £Af at most by applications of Rule I. -

Tren In this formula there are ¢ oOcourrences of Qw result
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an IX. TAVBDA-CONVERSIOR
h of these occur— . ventlon will be understood which we use when we speak of the se-~
" - 2 £ %,  Toke each of tl hanioass

from the substitution of A, for ¢ . Lﬂ »,.H,,z equence of . quence of reductions of a given forrmula which results from ep-

. “ orf a terminating s T . .
rences of swu in order end vwﬂwoa a WS WWR Nazw occurring in . Plylng n to a particular occurrence of kv in that formula.)
contractions on the residuals of the {{Ax 377 . , By this means the sequence of contractions, u, 1is re-
it. £ contractions on . placed by a sequence of contractions, ', which consists of a

; st equence of contractlon ‘ N
Let us call such a terminsting mc,ﬂ» ! Inating sequence . sequence of contractions, %> on the ((Ax E,.,v\«qv which are

N . > 24 4 e spocial terminatir eqa = . . J
the parte  ((AxP)fs) of 4 . vfﬂﬁﬂ;, of 4. Clearly such : parts of f,, followed by & contraction (" of the residual !
of controctions on the parts f»&%.,.:d\, . tains &t most . of :>xm\,mv5ﬁ7 followed by further contractions on the then ‘

) L S RETeT T contractions contain : :
g gpeclel terminating sequence of contn : remaining residuals of the 2>x*\&.§uv.

: J
4

ast+ch contractions.

. Y : Consider now the part ¢ of W', consisting of ' and
posene, W ¢:¢ : the contractions that follow it, up to and including the first
: A>Mdmmuwaﬁv3 mm. haomwmv contraction of a residual c© sz part of \td. Denoting the for-
have just one residual :a»ou Mwu mwwww MMMMMMbMLMMMMw»mHWJM X mila on which € acts by 2)&3&@7 we see that ¢ can be
up to ths peint that o oowwwﬁ,of“ws@ow\mmmw Jm..ﬁpo soquonas of considered as the act of fipst replacing the free y's of gt
therenfier will have no w@m»@cwy,. more , H omemes by verons s QQQ T replact
contractions is continued, a contraction of the H,mw; !
I occuxr within at mest a+b+1 contractions.
@]

[&]
¥y
™
e
7
5
(]
o0
e
e
—~

b by various sequences
of reductions (which uyww. be vacuous),

and then (pcssibly after M.
some epplications of Rule I) contracting a resicusl ({azR)S)
\ of one of the (A x:0.)0:) which are parts of A_, say ((Ax
tractions, &, on the ((Ax a_\,;au.v . s 497 n L q
FGOLLONS, 4 .- by & moﬂnsmoa mmvk@v. From this point of vliew, we see that none of the free
y I vl 2 e e Labd -
which are differsnt from A,\/V,ﬁ\_mqf@of folliowed by #'s of R are parts of any ffy» &nd hence ¢ can be re-
rlaced by a contracti

i
mmfmmwwwmwwmu‘,gmwtoouu

e g ot 1o

VR lowe se~
ual of Z\/qu\‘,ﬂv@dv. followed by a

on (possibly after scme applications of

SR

:

i

{

, 8, on the then H.mﬁwﬁ.nbm womHammwm of ! Rule I) of that residual in & of :»x@}mv\q ) of which (QAzR)

the ! early, ¢ cen be wmvwmoow by e mmnrwsoow W 35) 1s a resldual, followed by & contraction mwommwdw% mw,wmd. o
0f con 2 the  (Axsih)As) which m.wmtwm?w%x i some eppllications of Rule I) of the residual of Z\zxn\anv ')
e, T quence of contractions, 1w, on th o1 J v followed by a sequence of contractions on residuals of parts of :
vaé ) 3 of M - in the sense dzmn. wy I . w " :
wm%m b some end formula as ¢ m.ba the mE..”m wmc * If W is altered by replacing € 1n this wey, the result
of rog r each of the (@A ku\ﬁmvk Ve ﬁowwoowow“ H,.m,v momwm : is & sequence of contractlons, ", having the seme form as K,
& oy 1 M does not chengs the ,“oamr mr.nw o » . but having the Property that after the contraction of the restd- :
contractions of residuals of parts of \fm or of re&s rcmymdo»m ~ val of :>xwmmv§ﬁv one less contraction of residuals of parts m
perts of A, Next, n followed by am can be dwwwmwwﬂwm. M “ of Emu oceurs. o
contraction (' of the residual (AyPir,) of A.quwu b o By repetitions of this process, u 1is Tinally repleced by =
followsd by a set of opplications of @ on each 6f tnose oc- “

i & sequerice of contractions v, which consists of a sequence cf
currences of .Qo in the resuliting formula

§ contractions, «, on the AA\/NQRVQ ) whilch are parts of Af_,
I N

. , followed by & contraction 3 of ntmugmungw of 2>N%Nn§bv.
wm\vmi : followed by a fequence of contractions vy on residunls of the ;o
| f ) _ (Fove 5t dif- _ 2)3}%@% which are parts of .av. Moreover, v contains at .
wiich arose by substituting A, for y in P, ( . ; least a3 many contractions sa u o £or 1n tha nmranase ~e ~n
FTers from & ol most by appiicatisona of Rule I, BSince w msy f
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taing 2t most = contractlions, end v containg at most e¢b
contrections. Thus v, and consequently w, contains et most
1

fis) of 4 will terminate after at most
o
s+l+¢hb  contrections

Kew guppese that v 1s a terminating sequence of oosdwmoa

the ports™ ((Ax,ps)

tiens, Then v efther is @ Spzciel terminating sequence of m

{see sbove) or can be made 50 by some evident m
chenges in the order in which the contractions in v are per-
induction, applied to \,% and! A,

i

- : v
the result of 2 special terminating sequence of nobﬁumogoﬁmwnm
waiques to within posaible applicsiions of Rule I. Therefore!

ﬁggmcwdom?&. ﬁwgﬁbnwwmmw@cmwﬁmow contractions, yu, i 1s
N H
unique to within possible applications of Rule I.

7T VI, If 4 imrg LY a contraction of the pert  ((AxAMN) of
A4, and 4 1 4, and 4, inmr mmu mm imp .auu cvey
end, for all X, .mx is the result of a terminatin
gequence of contractions on the residuals in nx of

k), then:

1k, %w conv-I-1T mxi”
(3) Even 1f the sequence 4, 455 o.. can be
continued to infinity, there is a number Upy depend-
ing on the formmula 4,  the part (QAxA)R) of 4, and
the number m, sueh that, starting with 8., at most
's  occur for which it 1s not true

To prove {2}, lst ( ¥, ) Dbe the residuals in nx of
((Ax/3 /) and let the reduction of ,.ﬁ. into Ay involve o
(2 residual of) the part ({AzR)S) of mx. Then
§ the Tesult of a termineting seguence of contractions

(AzR)8)  end the parts (A 2)2,) of 4o If ((AzR)S)
be! duals of ({AzA)S) occur in

Faad
"
Q
oo~
42
o
2
t
5
[
-
—
>
iy
[=
}_:?J
i
),-L
~
a
o
(o]
H
o]
w
}u\-
§
o

)

» however, ({AzR)5) is

£
L
s & oget of residuals of ((Az@S)

§
{
£
i
!
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-expansion precedes reductions,

- does occur in mx end a terminating sequence of contractions.

on these residuals in B, gives & .1 bBY T X,

Thus ww red mxi unless the reductlon of nx into nxﬁ
involves a contraction of a residual of ({AxPOA); but if we
start with any particuler 4. this can be the case only a fi-

te number of successive times by 7 XXV. Hence {3) 1s proved,

U, being defined as follows H ,

Perform m successive reductions on 4 in all possible
ways. Thils gives a finite set of formulas (aince, for this pur-
Pose, we need not distinguish formilas differing only by appli- P
cations of Rule I), In each formula find the largest number of ;
reductions that can occur in a terminating mw%mnom of contrac-
tions on the residuals of (AXFIA). Then let uy be the larg-
est of these. -

7 XXVII. If 4 conv 8, there 1s a conversion of 4 1into g
in which no expansion Precedes any reduction.

In the given conversion of 4 into 8 let the last ex-
pansion which precedes any reduction be an expansion of 8 In- ;
to 4,. This expsnsion is followed by a sequence of one or more .
reductions, say } 1mr Lm~ hmHBH, \wv seey \»bi imr hsh and
\»n conv-I-IIT 8 The inverse of the expsnsion of mq into ‘ﬁ
is & reduction of 4, Into &; let ({(AxAA#) be the pert of
4 which 1s contracted in this reduction, end let mx (k= 2,
75 «vay n) be the result ol a terminating sequence of contrac- :
tions on the residusls in 4y of (QAxFNA). Ey 7 XXVI, A .
conv-I-I1 5y, &, conv-I-II g, veey mﬂ.; conv-I-IT By, A
conv-J-IIT Ay A, conv-I-III & This brovides en slternative
conversion of &, 1into » in which no expension precedes any
reduction. The glven conversion of 4 Into F wmey be altered
by erploying this alternative conversion of m.. into & 4nstead
of the one originally involved, with the result thet the nucber
of expansions which 2re out of place (precede reductions) in the
conversion of 4 Into & g decreased by one. Repetitions of
thls process lead to & conversion of 4 into & 4n which no

T XXVIII, If 8 43 a normal form of 4, then 4 conv~-I-II &,
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f the substitution of & for . Toke each of these occur-
frem the substitution > , . !

rences of & in order and perform & terminating sequence of

T eo i b $

oo g t the N7V occurring in
contractions on the residuals of the ({A ku .uv uv

24 o

A

: { ractions on
Iet us call such a terminating sequence of contractl
LEYRY of A4 e gspecin) terminating segquence

r 2>x.>mv.ﬁv of A. Clearly such

v

q
= i

oo 1™ =4 X Hnomf

minating sequence of contractlons contains at ¢

ow any sequence of contrections, u, on the

of 4. The part ({Ax Rovamv of 4 will
{vhich w11l always be the entire formulis)

that a contraction of 1ts residusl occurs, and

have no residual; moreover, i{ the sequence of

continued, a contraction of the residual of

¢ cccur within at most a+b+1 contractions.

o'y

33 of generality, that u con-~

: £l NIAT. P

%, on the :.y&?.imuu

; Ffollowed by & contrac-

dual of ({Ax A ), Tfollowed by a se-

= o "p cule of
n 1 then remaining residuals o

]

£
L
1 en b cplaced by & sequence
the ({Ax.r4)f, ). Clearly, ¢ cen be replaced by q
J u M

£l AP which ar ros of
ol noﬁﬁ\.@mauowa» &y, ON th {4 x,.u.?mtqu., which are pa :
b ) ‘ 4 r
Tollowed by & sequence of contracticns, n, on the (( xu

Ji
_uvs«,bwowmwmwmuwmow ﬂu :-wipmm@gmgmn Qo m.o...
v ves the same end formula as ¢ and the same set
sgovowww.miw, .«;.?m.vnxv. wwowmag?wwvwmogm
- t. .

o
uJ ~ )
* Y - +- byeiel
% by &, followed by 'n does not chenge the totsl number of
£ re

:

residusls of parts of PW or of residusls of
parts of ..nmu. Next, n followed by ao can be replacsd WE‘ a
contraction B' of the residual’ Aﬁiﬁ.@vv of A,9xv\iﬁ§ﬁv
followed by & set of applicationz of w on esch of tnose oc-
in the resuiting formmla

0
Saa

2l

e

1 sm.l
which arose by substituting A, for y iIn p'. (Here p' di

fore \,J.MJ.. a1 2 ot mos + fe)a \N...uw MV 1 m Co Aﬂu oNsg OH mﬁﬁ @ T Mw nee ] me. w
w 2ALA00 O WaA Lormils Yy ~ 2
CAVRS oL (e} QI Fii W.NHN [odose iy

: e
s transior

e Yy e g e S b oAy 4

“val of ((Ax
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vention will be understood which we uae when we speek of the se-
quence of Hdacodwcbm of .a given formula which peaults from ep-
Plylng n to a particular occurrence of .@ﬁ in that formula.)

By this means the sequence of contractions, u, 1s pe-
placed by a sequence of contractions, w', which consists of a
sequence of contractions, %,» on the ((Ax \.mv\quv which are
parts of ., followed by 2 contraction 3 of the residual
of 2>Xb\,mv§n7 followed by further contractions on the then
remaining residuals of the 2>J.>m§uv. .

Consider now the part ¢ of ', consisting of @' and
the contractions that follow it, up to and Including the first
contraction of & residual cf g part of \.Ao. Denoting the for-
mula on which ¢ acts by :»,c%gﬁv. we see that ¢ can be
consldered as the act of first replacing the free y's of p

by various forrmulas QU s got frem av by various sequences

of reductions (which may be vacuous), and then (possibly after
some epplications of Rule 1) contracting & residusl (Ihzm)$)
of one of the Ac,x%ﬁ.vmuv which are parts of R‘m. say 2>x@
ﬁvk@u. From this point of view, we ses thet nono of the free
z's of R are parts of any My, &and hence ¢ can bhe re-
placed by a contraction (possibly after some applications of
Rule I) of that residual In & of 2>x&«m§s@v of which ((Azp)

5) is 8 residusl, followed by & contraction {possibly after

some epplications of Rule I) of the residusl of :>xk£nv>muv...
2

followed by a sequence of contractions on residuals of parts of

.&v .

If ' i3 altered by replacing ¢ 1in this way, the result
is a sequence of contractions, uv, having the seme form as

M,
but having the property that after the

contraction of the resid-
@\.,muvmﬁv one less contraction of reslduals of parts
of Rb oceurs. .

By repetitions of this process, @ is finally replaced by

& sequence of contractions vV, Wwhich consists of a Sequence of
contractions, «, on the :>f>€\:v whlch are parts of A y
followed by & contraction [ of the residual of 2>xu\.«vv\«vv~
followed by a sequence of contractions <y on residusls of the
2>x.umw§uv which are parts of & . Moreover, v contains at

P
least as many contractions as u -- for in the process of cob-

talning v from u there 1s no step which can decresse the
U.ﬁﬁd@un QMA OOwﬂ@NapﬂﬁHOsau T ammisaman AP oamdan st

e

e ey
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This 13 e corollary of 7 J3VII, since no reductions ere
possivle of a formula in normsl form.

7 XXIX. If 4 hos 2 norwal form, 1tz normal form is unigque
Lo within applications of Rule I.

. !

For 1f B and
13 a normal form of

£ are both normal forms of 4, then &
8. Hence £ conv-I-II &. Hence & oopquu
&, since no reductions aro possible of the normal form & |
Note that 7 XUIX ensures a kind of consistency of the om.,u...
culus of A~conversion, in that certaln formulas for which dif-
Terent interpretations are intended are shown not to be inter-

i
i
hes & normal form, 1% has & uniqus principal

7 XK. Ir A
normal form.

7T X0, I & 4s & normal form of 4 then there is a num-
ber m such that any seguence of reductions starting

8 (to within applications of
0zt m reductions,

In order to prove 7 LI, we £irst prove the following lem-
mae by induction on n:

If 5 i3 e normal form of 4 and there 1s a sequence
of n reductions leading from 4 %o &, then there 1s
a muber a.k:: such that eny sequencs of reductions start-
Ing from 4 will lead to a normsl form of 4 In at most
reducticns.

If n=09,

we tske Va0 to be o.
2
Azswue, as hypothesis of induction, that the lemms is true

when no= k. Suppogs 4 imr €, ¢ imr € m._ Amp ﬁm~ ﬁw dmr
m,mw eesr €y lmr B Also, where 4, Is the same as 4, SUp=
pose 4, imr Ans A, dmr hwv. ‘ees o By 7 XXVI there is a sequence
{

o the o 3 B & K SAaTte
2, mbm seme &s ) 9, conv-I-II bm“ Gm conv-I-II 0., ...,
1 j's for which 4. exists;
J
involves a contraction of

o at mozt u_  consscutive
Aad

§7. FUNDAVENTAL TIECTERMS 27

O;'s occur for which 1t is not true that o red o,
Since the sequence ¢ imr ﬁ. n._ imr ﬁm. ees leads to &
in k reductions, there is, by hypothesis of induction, a num-
ber cm.. ¥ such that any sequence of reductions starting from
¢ leads to a normal form (and thus terminstes) after at most
<ﬁ.w reductions. Hence there are at most <n.Ln reductions in
the sequence g, conv-I-II bma bm conv-I-II O0,, ..., and this
sequence must terminate after at most H.?ﬁxv steps, f(x)
being defined as follows:

f{0) = u,,
£{x+1) = £(x)+M+1,

where M is the greatest of the numbers Uyy Uyy eee, cﬁxr..d.
(Of course f(x) depends on the formula 4 and the part
{((AxF)R) of A, as well =as on X, because W, depends on 4
and  ((AxPNA). ’

Since the sequence of h.q.m contintes as long as there are
A.'s on which reductions can be performed, it follows that after
at most w?ﬁ.wv reductions an \J. 1s reached on which no re-
ducticns ere possible. But this is equlvalent to saying that
this &. is in normal form. Thus any reductiorsof A to.a
formla €, such that there 1s a sequence of k reductions
leading from € to & normal form of A, dotermines an upper
bound, 2:.%? which holds for all sequences of reductions
starting from 4. Since the number of pessible reductions of
4 to such formulas € 1is finite (reductions, or wogﬁwmu c,
which differ only by applications of Rule I need not bte distin-
gulshed as different), we takxe v A+ to be the least of the
numbers m?&xv.

Thils completes the proof of the lemma. Hence 7 XXI fol-
lows by 7 XXVIII.
7 XXII. If 4 has a normal form, overy [well-formed] part of
. A has a normal form.

This follows from 7 XXXI, since any sequence of reductions
on a part of 4 implies & sequence of reductions on A and
therefore must terminate.

S

rosn.
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e TAMBDA~D

EFINABILITY

8, LAMSDA-DEFINABILITY CF FUNCTIONS OF POSITIVE INTEGERS.

We defins,

1 - Acd.ad,

2 — Acba(ab),

3 - Aco.calalcd)},

cach numeral (in

introduced as en md.owwq»m..uwob for a

ﬂ.ﬁ.r :.D. a
1s uzed over it
other notations; thus

11— Acb.ala{alala

but 11, without the bar, is
(Aab,

A-conversio

rmalas abbreviated

noting the corresponding

he ecalculus. of
ci the for

L)Z!
i
]
ca

PR S S e N i
ot whe some tims o rotain
n e . b

the caloulus (

dance with the

the number 2 is

to the ©

which hove & normal form)

Live Integers sro ldentified w

neticn

wwmd»oidm.hm
&Vdm woéqc.rmowde
numer mw consiste of more than one
» in order to m«oua. confusion with

(alalz{alaiae)))))IN),

an abbrsviation for

ﬂv \>Q(.Q(~ .

g dofinitions en interpretation of
on is contemplated under which each
s & numeral 18
itive integer.

interpreted as de-
Since 1t is intended
heo intérprotation of the formulas of
a3 dencoting certain funec-
Chapter I, this means that
with certain functions.

with the function which,
7 as mw@aﬁf vields the product

ideas of

by Ltz2ell (product In the sense of the product, or resule-

3
oo

ANTDA-

EETNARTLIT 29

§8. 1/

tant, of two transformations); simlilarly the number 14 is identi-
fied with the function which, when applied to the function [
es argument, ylelds the fourteenth power of f (power In the -
sense of power of & transformation). is 1is allowable on the
ground that abstract number theory reguires of the pesitive in-
tegers only that they form a progressiocn and, subject to this-
condition, the integers may be identified with any entitles
whatever; as e matter of fact, loglcal constructions of the pos-
itive integers by identifying them with entities thought to be
logically more fundarental sre possible in many different ways
{(the present method should be compared with that familisr Iin the
works of Frege m.ua Russell, according to which the non-negestive
integers are ldentified with classes of similar finite classes).
gb.hcbodwod F of positive integers -- 1l.e., a function of
one variable for which the range of arguments and the range of
values each consist of positive integers -- 1s sald to be A- de-
Tinable 1f there is a formula F such nym,ﬁ,\%gﬁ whenever m and

n are positive gwmmmwm. and Ffm= ny end M and [ are the
Formilas which represent aonodmv the Integers m and n re-
spectively, then #FAf conv H, mba 2} whenever the n»os ».

has no value for the positive gam%md m as argument, . \x .
represents m, then F/¢ has no normal form. Similerly the
function & of two integer veriables 1s sald to be A-definsble
if there 1s a formula F such that (1) if (, m, n are posi-
tive integers, and Flm= n, and £, M, # represent the inte-
gers [, m, n respectively, then FiAfconv ¥ and (2) If the
function F has no value for the positive integers 1{, m as ar-
guzents, and &, A represent [, m respectively, then FLA/ has
no normal form. And so on, for functions of any number of vari-
ables.

We shall say also, under the circumstances described, that
the formula £ A-defines the function F (we use the word “A-
defines rather than "denotes™ or "represents” only because the
function which # denotes, in general has other elements than
positive integers in its range ~- or ranges -~ of arguments). ‘

The successor function of positive integers (i.e., the func-
tion x+1) 1s A-defined by the formula §, where

§ ~ Acbc.blabo).

¥
*
f
i
¢

R
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g
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Tt Is lelt tc the rsader to verlily this, and also tc verlify that
sodition, end multiplication, and expconentistion of positive in-
tegers are A-defined by the formmulaz Amaman, ad Amn.mxn,
and  Amnon reapectively {(see definitions In §5).
These A0definiticns of addition, ﬁ,&,.nwﬁwwopﬁo? end ex-
p=l

.on that nwm proé-

er
ation depends c¢n tha obsarv
in the sense of the product of

ca
Live integers

trenaformations 1s the same as their product in the arithmetic
sense, and the definition of exponentiation then follows because,
when the posltive integer n is taken of any function f 8as ar-

sults the nth power of f In tho sense of the
product of ﬁ.mﬂwm.ouﬁmn»oﬁm. .
i

for any formules £, M &

{whether ,;mvysmmmﬁﬁh@ pesitive integers or not): |

{g+rfler conv L4+ Y,

[Lxpfinfy conv Lx[Prefl,

[L+rxf conv [L=A1+[Pexf],
MR sony iy 7

e e r
i ¥ conv m%&}«.‘\ﬁv

§H conv 1+

9. ORDERED PAIR3 AND TRI
noOW »,unwomgm formules which ney be ,ﬁ: ought of as representing
o

[/, Wi — Acwarti,
’ (&, #, K] — Aq.clfif,
—r Ac.a{Abc, v
Ty Ac.ax(Abcblc).

2, — Ax.c{Abod.cldib),

n — AcaPAbed.bldic),
3~ Ac.a{Abed.bicid).

i

§9. CRDERED PAIRS AND TRTADS, THE PREDECESSCR FUNCTICON 33

If &, M R are formilas representing positive integers,
then 2 (4, K] conv M, MMT.& N] conv A, 3,1{L, A, N] conv
L, um:: M, ~N] conv M, and uu:: rf, Rl conv A.

Verification of this depends on the observetion that, if
P 1s a formula representing a positive integer, &I conv 7 {the
mth power of the identity is the identity).

By the predecessor functlon of positive integers we mean

" the function whose value for the argument 1 is 1 and whose value
- for any other positive integer argument x i1s x-1,

This func-

tion is A-defined by

»

P — Aa. 35(alAblS(3,0), 310, 3,01)00, 1, 11).
For if K, L, P represent positive integers,
(Abls(3,0), 3,0, 3,b))[K, L, M) conv [SK, K, L],

and hence 1f 4 represents a positive integer,

n?o?ﬂfc? 3,0, umS:f 1, 1] conv (54, & 8],

where £ represents the predecessor of the positive integer rep-
regented by 4. (The method of A-definition of the predecessor
function due to Xleene [35] 1s here modifled by employment of a
diff'erent formal representation of ordered trilads.)

A kind of subtraction of pnasitive integers, which we aLm:

- tinguish by placing & dot above the sign of subtraction, and

which differs from the usuel kind in that x=y =1 4if x { vy,

may now be shown to be A-definable:
PR} —> NP,
The functions the lesser of the two positive integers x

and vy and the greater of the two positive integers x
and y are A-definable respectively by

min — Aab ., S = ., Sb =~

wax — Aab . [a+d] = min ab

rma g

e

o e s v
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The parity of a positive integer, i.e., the function whose

value 1s 1 for an odd positive integer and 2 for an even posi-
vive integer, is A-defined by

por — Ac.a(Ab.3>b)2,

Using crdered pairs in a way similar to that in which ow:
A-definition of the prede-
A-definitlon of the function the

== or, in other words,
by 2, in the sense of division

dera¢ trlads were used to cobtain a

P 4 o o [} ~ -
285T inteser not less thar C of x

B
o7
&
|3
o]
n
Pt
)
o]

the quotient upon dividing x+i
with & remainder:
A — Aar(2(alAblP{2, b+ 2,0], 3= 2,611, 2])).

=

is unreleted to the -- entirely differ—
ent -- function & which was introduced for 1llustration in §1.

$ — Ab.blAcAdldPelie.e1 I)g. fgS)e,
CFS(ARRIISY(AL] kakij (AL, L1))el),

U — Acalli, 1],
Z —r Ac2,{Ua),
L= AglalAbeb>c),
Pl
tively, LI[A, ~1 conv [Sp 11
U1, Ue, ... are convertible respectively Into
11 S G 3 H 1
12, 11, 03, 11, {3, 21, (4, 13, [, 21, (%, 31, (5, 11, +u. ;

hence 21, Z2, ... s&re convertitle respectively into

Nw \_\ Nw .wv mh mw» .m» mh WM V.v a«h N.ﬁ Wu Vh u& et »

17 m=n= 1% and conv [A, SH] if -

|
|
i
i
i

- v g s

S

A g T
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end Z'1, 2'2, ... are convertible respectively into
._s wb .“u Wu Nu ‘.s #h Uh Ms,.—.‘ Uh p—u Ub Nh Au s o M
Thus the infinite sequence of ordered pairs, ]
[z, Z211], (22, 2'2), (23, Z2'3], eee,
H
conteins all ordered pairs of positive integers, with no repeti- M
tions. The function whose value for the arguments x, y 1s the !
number of the ordered pair [x, y] 1In this enumeration is A-de- ;
fined by i

nr — Aab . S(¥[la+b] * Pla+dl]l) = b.
w

10. PROPOSITIONAL FUNCTIONS; THE KLEENE y~FUNCTION. By
a propositional function we shall mean a function (of one or
more veriebles) whose values are truth values — i1.,e., truth
WSQ falsehood. A property is a propositional function of one
variable; a relation is a propesitional function of two vari-
ables. The characterlstic function asscclated with a proposi-
tional function is the function whose value is 2 when (i.e.,
for an argument or arguments for which) the value of the pro-
positional function is truth, whose value 13 1 when the value
of the propositional function 1is falsehood, and which has no ,
valuo othorwise. ‘

Y propositional function of positive integers will be said

to te A-deflinable 1if the associated characteristic function is
2 A-definable function. (It can readily be shown that the choice
of the particuler integers 2 and 1 in the definition of charec~
teristic function 1s here non-essential; the class of A~delin-
agble propositional functions of positive integers remains unsl-
tered 1f any other pair of distinct positive integers 1s substi-
tuted.)

In particular, the relations > and =
integers are A-definable, as 1s shown by giving A-def
of the assoclated characteristic functions:

between positive
tions

-

s

5
£
e
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min 2 [Sat&].
exXc ¢t + eXe ba.

ety of prop-
which are m\@smmmrdwm
s3 ogcbofos“ isjunction,

and stmnwoa of wo,cmﬁ.odm and *ﬂo@r x1itles can be provided for
oy using min, max, and Aa.3tq respectively.

Yo prove also the two fellowing theorems from Kleene [35],
and a third closely related theorem:

elirable propositional function of

n+l pos { srguments, then the function
F is  A-cdefinable (1) whose value for the positive

i1s the least pos-
holds (i.e.,
thers I3 such o
and that, for every posi-
then this vy, Rx 1Xpe++X 2z has

n
truth or falsshood, and (2) which has 1o value

& Xq. 2 Xmu reey XU
itive Integer y  such that mxgx@ ceeX U
. rr

has the value truth), provided that

integer vy

tive Integer =z less

e

In. the that R

Ltive integer arguments,
that  Fixxp...x,

cese has & value for every set of n+i pos-
F may be described simply by saying

is the least positive Integer y such that

Rt Xpew Xy nolds,
Izt :
G — Ann(Anr{Ans {I{Axgt.gt{tx)Ix)))
. T/\w\:‘:‘C;xafﬁﬁhxvV\.m.xv@&.
Then
G1 red AxGE G(t{Sx) 1 Sx)ge,
G2 red Axgt.gi{tx)’x.
Hence If & represonts a rosfitive integer and ¥A conv either
oor 2, we have (using 7 XXVIIT to show that T# red 1 or 2),

GT{sm)(smeT,

G2/GT red M.

Hence 1if we let
p—> Atx.G(x)xGt,

we have pIN red ¥ 1if TR conv 2, and pTH conv pT(SK) 1f
TH conv 1, and (by 7 XXXI, 7 XXXII) $¥# has no normal form
if TH bas no normal form,

If N represents the positive integer n and 7T A-defines
the characteristic function essoclated with the property 7 of
positive Integers, i1t follows that »TAH 1s convertible into the
formule which represents the least positive Integer vy, not,
less than n, for which Ty holds, provided that there is such
& least positive integer y &and that, for every positive inte-
ger =z less than this y and not less than n, 7Tz has a val-
ue, truth or falsehood; and that in any other case »7F has no
normal form (in the case that Ty has the value felsehood for
all positive Integers y not less than n, we have

»7H red G(TH)NGT red G(Y{sa)){(SH)GT red G(r{s(sm)i(sismor

red ...
to infinity, and hence no normel form by 7 XXI).
Let R be a formula which A-defines the characteristic
function associated with the propositional function R referred

to in 10 I. Then r 1is A-defined by :
Ax x»...xs.imxdxm...xs: .
10 II. If T 1s a A-definsdble property of positive inte-

gers, the function F 1s A-definsble (1) whose val~
ue for the positive integer argument x 1is the xth
positive integer y (in the order of magnitude of
the positive integers) such that Ty holds, provided
that there 1s such a positive integer vy and that,
for every positive integer =z less than y, Tz has
& value, truth or falsehood, and (2) which has no
value otherwise.
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let ¥ be a formula which A~-defines the characterls-
tion assoclated with 7T, and 1

. P — AlxPx{AnS{vtn)1).

A-defines F.

If R and R, are A-definable propositional func-
i L4

tlons esch of n+1 positive integer arguments, then

the propositional function R 1s A-defineble

whoze value for the positive integer arguments X,
ehood 1f there is a positive in-
KyXgao X Y hoids and R 1%1 %,

+vex,Z and mo}xM.. .xsm both have the value false-
P

hood ,aom every positive integer =z less than vy,

teger vy

a
ekt

whose value for the posit ?ﬂm Hugmod arguments x,,
Xpe wwes X, i3 truth If there iz a positive Integer y

such thal R x,x,...xy w,bwcm and  Ryx;XgeeoX Y

bas the value felsehood and R.x,x,...x 2z and

Ryx,x th have the value falsehood for every
03

ve Integer =z less than vy, and

M«..k < 0O
Sty
.\r

which has no value otherwise.

alt ~» Axyn.parafia.c{aAboily) HAc.cladef. fde) Jx(Hn).

w - Axinpar(p(alt xy)i).

F oend ¢ are functions of positive integers, each be-
unction of one argument and Including the integer 1 1n its
el

srgazents, and 1 £ and € A-define F and ¢ 1o~

2

tegor 2x-1 g Fx  and whose value for the even in-

efine the charscterlstic functions as-
T

respectively, then
azzcclated with R iz A-delinsd by
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7
tively, then elt £  A-defines the Sunction whose value for

the characterlstic

>xdxm.4. .xs.ﬁ:ﬁ X, X5 .xs:mmjxm. . .xbv

-- this completes the proof of 10 III.

‘Forrulas having the essential properties of p and @
were first obtained by Kleene. These formulas A-define (in a
sense which will be readily understood without explicit defl
tion) certain functions of functions of positive integers, as al-
ready indicated. ]

a further application of the formula p, we give A-
definitions of subtraction of positive integers in the ordinary
sense (so that x-y has no velue if x £ y) and exact division
{so that x-y has no value unless x 1s a multiple of y):

-

[r-H1 — plAa ., eq M [N+l )T
r=p] — wlra . eq & (Axad )1,

11. DEFINITION BY RECURSION. A function F of n posi-
tive integer arguments is sald to be defined by composition in
terms of the functions ¢ eand .ﬁw Hyy aoey m.a of positive in-

27
tegers (of the indicated numbers of arguments) by the equation,

m.xdx».w.xw = G(H xdxm...xuzm\mx_xm...xnv...Aka._xN...xsv.

(The case 13 not excluded that m or n or both are 1.)

A function F of n+1 positive integer arguments 1s said
to be defined by primitive recursion in terms of the functions
¢, and Gy of positive integers {of the indiceted nunbers of
arguments) 3, the pair of eguations:

»nl,xdxwunnwAHm-ﬂ Qd Xa XN-oXHH

Fxydgea o (ysl) = Coxyx50ne n W UF Xy X0 0o X y)

(The case 1s not excluded that n = 0, the function 4 being
replaced in that cese by a given positive integer a.)

The class of primitive recursive functions of pesitive in-
tegers 1s defined by the three following rules, & function being
primitive recursive if and only if it 1s determined as such by
these rmules:

P
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6 The functlon ¢ such that Cx = i for every posi-

St .
tilve Integer x, the succegsor.function of positive integers,

and the functions Qw (vhere n is any positive integer ang
?#,?ﬁnwz‘%x' .

L Is any pesitive integer not greater than n) such that

ey - .

prx“ Xpee X, %, are primitive recursivs, .

If the function F of n arguments 1s defined by

composition in terms of the functions ¢ and Ay Ays eae, m.d
end if K., A eee, A ere primitive recursive, then r 4g

in

3 If the function F of n+1  arguments 1s defined by
primitive recursion in terms of the functions ¢, end ¢, and
1 are primitive recursive, then F ig primitive
recursive; or in the case that no= 90, Iif 7 18 defined fons
primitive recursion in terms of the integer o and the function
nm and if oim 1s primitive recursive, then F 1s primitive re=-

T Lo show that every primitive recursive function

9 Integers is A-definsdle, we must show that 2ll the
functions mentlioned in (1) are A-definable; that 1f F 1s de~
Tined by corrosition in terms of ¢ and A, H, ..., A, and
G, \m‘ Hyy weey, H. ars A-definable, then 7 1s A-Gefineble;

of positive

and that 1 F i35 defined by primitive recursion in terms of
& end G,{or, in the case n =0, Interms of g end o.mv
=~

and AF € and ¢, are A-definsbie (or, in the caass n =0,
i o 1s A-definedle), then # is A-definsdle.

- ti £ these three things makes any difficulty.
S s cefined by primitive recursion in terms of
¢, and ¢5, e&nd that ¢ : ¢, are A~defined respectively
by &, and ,o,m. Tren in order to obtain g formle £ which
A-defines 7 we employ ordered triads:

(6]
fo]
sl
(&
O

B
o

@

F— Axyxg.. Ry Iz @Q{i.m.mwuwf
{
{

XX el x (3.2 Es =101 P S .
ﬂm«mam ,ﬁA 103, ), .um.v:m_.ﬁxgam X, 11)

?..1 Tpr eees X4, & belng any ne2 distinct variables). In
he case n = 0, this reduces to:

§11. DEFINITION BY RECURSION 23

F— Ay 3 (y(n2ls(3,2), (2032, 3,200, 4, 1)),
where 4 represents the positive iInteger a.

{(The A-definition of the predeceszor function glven in §9
may be regarded as a special cese of the foregoing in which «
is tand ¢, 1s U, The extension of the method used for the
predecessor function to the general case of definition by primi-
tive recursion 1s due to Paul Bermays, in a letter of’ May 27th,
1935 -~ where, however, the matter 1s stated within the context
of the calculus of A-K-conversion and ordered relrs are conse~
quently used instead of ordered triads. As rerarked by Berneys,
this method cof dealing with definition by primitive recursion,
has the advantage that it shows also, for each n » the A-ge-
finabllity of the function p of functions of positive Integers
whose value for the arguments ¢, and ¢, 1s the function ~r
defined by primitive recursion in terms of o... and o.m -~ 1.e.,
essentlally, the function p of Hilbert [31].)

Thus we have:

M&,: I. Every primitive recursive function of positive Integers

Doy B

— . BT
s e,

1s A-definsble,

T

[ SO

e

R

The c¢lass of primitive recursive functions 1s knewn to in-
clude substantially all the ordinarlly used numerieal functions
== ef., o.g., Skolen (501, G8del [27], Péter [41] (4t 13 readily
seen to be a non-esgentisl dlfference that some of these authors
deal with primitive recursive functions of ron-negative integers
rather than of rositive Integers), rimitive recursive, in par-
ticular, are functions corresponding to the quotilent and resain-
der in division, the greatest common divisor, the xth prims nup-
ber, and meny related functions; A-definitions of these func~
tions can consequently be obitained by the method just glven.

The two schemata, of definiticn by compesition and by prim-
itive recursion, have this property In common, that -- on the
hypothesis that a2l particular values are knovm of the functions
in terms of which & 1s defined -- the glven equations make ros=~
sible the calculation of any required particular value of F by

§
i
!
;
£
13
;
i
i

i
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a series of steps each consisting of a mrdmcwcrrﬁoﬁu either of
a Amwgwoy Tor &) particular nuiver for \m»w occurrences of ) a
<mpnmdwmh or of one thing for enother known to be equal to 1t
By allowing additlonal, or more general, schemata heving this

Property, various more

obvtainable (c¢f. Hilbert
2

that they hove a value

cn of positi

notions of recursiveness ar

1, Ackermann [1], Péter [y, L2, L3,
1tive recursiveness 1s modified

and (3), eny definition by a set of

s the »dUOﬂHoSw obtasined are called

reguired of all functicns defined

of the relevant mumbder omﬁ

partial recursive 1f this 1s

i

ﬁmwmv“ the reader is referrsd no”
i
391, Hilbert end Bsmma

recursive functlon of positive Integers
s proved in consequence of 10 I and 11 I
Fleene {561, that every general recursive

’
ger argursnts Xps Xps eees X can

n
w FleylRx,x,.00xy)), where F 1s a

ction of positive Integers, R 1s a prop-

ve intepers whose associated char-
prinitive recursive, and "ey" 1s to be
3y y such thatl (Cf., Kleens

{371}, The converse proposition, that every A-definsble func-

&
tion of m itive Integors, having & valus for every set of the
relevant nurber of positive integer arguments, is general recur—
sive, is proved by the method of Church [9] or Kleene [37] (the
T omed fact that

b2
regulred psrticular velus of a2 fun

by 7 HNNP“ the process of ro-
sthod of calculating explic-
iction whose  A-defd

s given, snd proceeds by setting up a set of recursion
AJ

cacribe this @wOo)mn of omkocrmupovv
recur-

p.
<
]
B
cr
&
5
>3
e

L

§11. DEFINITION BY RECURSION b1
7

is >;mmMHbmdwo.

Every >xnmw»bmdwm function of positive integers
1s partisl.recursive.

The notion of a method of effective calculetion of the val-
ues of a function, or the notion of a functlon for which such a
method of calculation exlsts, 1s of not uncommon occurrence in
comnection with mathematical questions, but it is ordinarily left
on the Intuitive level, without attempt at mwiwoun definition. :
The known thecrems concerning A-definability, or recursiven ess,
strongly suggest that the notion of an effectively calculsble W
function of positive integers be given an exact definition by :
ldentifying it with that of a A-definable function, or equiva- !
lently of a partial recursive function. As in all cases where & ;
formal definition is cffered of what wes previously an intultive
or empirical idea, no complete proof is possible; but the writer
has 1little doubt of the finslity of the identification. {Con~-
cerning the origin of this proposal, see Church [9], footnotes ;
3, 18.) m

An equivalent definition of effective caleculablility 1is to o
identify it with calculabllity within & formalized system of W
logic whose postuletes and rules have appropriate properties of f
rocursiveness -- c¢f, osz&oy {91, §7, Hilvert and Bernays [33], :
Supplement II . .

\nother mn¢»<wwobn definition, having a more imrediate in- i
tuitive appeal is that of Toring [55], who calls a function com~ :
putable 1if (roughly spesking) 1t is possible to meke & finit
calculating machine capable of corputing any required value of
the functicn. The machine is supplied with a tape on which com~
putatlons are printed (the analogue of the paper used by & human
calculator), and no upper limit i3 placed on the length of tape
or on the time required for computation of a particular value of
the function, except that it be finite in esch case. Further re-
strictions imposed on the character of the machine ere more or
less clearly either non-essential or necessarily conteined in the
requirement of finiteness. The equlvalence of computsbility to v
A-definabllity and general recursiveness {attention being cenfined |
to functions of one argument for which the rangs of arguments. con- -
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gists of 211 positive integers) is proved in Turing [57].

Mentlon should elso be made of the notion of & finite com- , . Chapter IV
wuiwﬂwaoﬁ.g,o%aa introduced by Fost [4€]. This again 1s equiva- p "
lent to the ofhor concepts of effective calculebility. M COMBINATIONS, GODEL NUMBERS

W.HGE,W of funcuions which ere not effectively calculable . " :
can now be glven In various ways. In particular, 1t is proved w
in Church [9] that if the sst of well-formed formulas of the cal- 12. COMBINATIONS. If s 1s any set of well-formed formu-
culus of A-conversion be emumereted in a straightforward way las, the class of s-combinations 1s defined by the two follow-

{eny ope of the particular enumerations which Hﬁummpmcoru‘ suggest ing rules, a formule being an s-combinstion if and only if 1% ‘
may be erployed), and if F is the functlon such that . . 1s determined as such by these rules:
r 1 according es the xth formula in this enumeration . .
s not a normal form, then 7 1is not A-definsble. This (1) Any formula of the set s, and any variable stand- “
teken az the exsct mezning of the somewhat vague statemont . ing alone, 1s an s-comblnation. Co :
the end of §6, that 28 condition of, having a normsl H.og (2) If 4 and B are s-combinations, 48 4is an s- '
is not effective. C combination.

In the expliclt preofe of many of the theorems which have !
been steted without proof in this section, use 1s made of the : In the cases in which we shall be interested the forrmlas
netion of the Gddel number of a formmule or formel exprossion. of s will contain no free varisbles and will none of them be ,
In the published pepers referred to, this notion 1s intrcduced of the form 43. In such & case it is possible to distinguish .
by & mathed closely similar to that employed by Wdel [e7]. In the torms of an s-combination, each occurrence of & free vapri- .,
the case of well-formed formulas of the calculus of A-conversion, able or of one of the formilas of s Ybeing a term.
however, it would be equally possible to use the somewhat Qiffep- R ‘ If s 1s the null set, the s-combinations will be called
ent method of our next chapter. . - combinations of varigdbles.

. . . If s consists of the two formulas 7, J, where
) ” ;
' I = Aqg, * : , ;

J = Aabcd.abladc),

the s-corbinations will be called simply combinations.

We shall prove that every well-formed formuls 1s convertible
. o . : into a combination., This theorem is taken from Rosser [47], the
present proof of it from Church [8]; the ldeas involved go back
to Schénfinkel {49] and Curry [18, 21].
. Let:

T — JII,

Then T ‘conv Aakba, and hence T48 conv 84,

. S 43
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If A 1is eny combination contelning x &as & free varisbie,

%P, which does not con~

If 8 contains x a3 a free verlable and 4 does
not, A_48 4is JTALBI(TTA). i
f A contalng x eas a free variable and 8 does

not, A_48 le TEALA]. .
(¥) If both 4 and & contein x as & froe variable,
A_4B1 is .\.44?0,.?.41,\4)&3 A.\.q)xﬁ.\v M.

12 I.. If A 1s a combination containing x as a free vari-

able, >\,.é conv Axsf,

We prove this by induction with regpect to the mmber of

terms of A,
If & hes one term, then & is x and A M 1s I,
is convertibleo into  Axe,
I A 1s 4% end § contains x as o froe variable and
4 does not, then A_s| is JTALLI(JI4), which (seo definitions
of I, J, =) 1s convertible fnto Adu4(A6ld), which, by hy-

; of induction, is convertible into Ad.A({AxE)) which
is convertible into Ax.44
M dz AF ond 4 conmtains x as - free variable and
. not, then A,/ 1s Jx ‘A4, which 1s convertidle into
AclA Al ¥, which, by bypothesis of induction is convertible in-
o MQ. (Ax4)oi3, which finally i3 convertible into Ax.48.

H.w\ Mo Ls A8 eand toth 4 sasnd £ contaln x as & free

I ¥ &41%2.\,3@;.,“& (JTa 417)))), which
NLO - Adh A, \MMQ;MEQV. which, by hypothssis of
“Inductilon, 1s convertidle info  Ad. {(Axa&)d{(AxB)ad), which finally
ls comvertille into Ax.40.
ihe foregoing tacitly assuwes that 4  end 8 do not con~
telin o &s & fres veriable. The modification necessary for

IR
which

Ty of

~4

i
o3
-
@
'J-

¥ €288 15, however, obvious.
Tnhis cowpletes the proof of 12 I. Wo define the combina-~
“lon belonglng to & well-Tormed formula, by recursion as follows:

$13. PRIMITIVE SETS OF FORMULAS L5

(1) The combination belonging to x 1s x (where x
is any varieble), <

(2) The combinstion belonging to F4 1s F A, where
F' and A4' are the combinations velonging to F
and 4 respectively.

(3) The combination belonging to AxAf 1s A M|, where
M'  1is the combination belonging to #f.

12 II. Every Smwuuwogma formle 1s convertible into the com-
bination belonging to 1t.
Using 12 I, this ig proved by irduction with respect to the

length of the formula. The Proof is straightforward and details
are left to the reader. -

12 III. The combination belonging to X and the combination

belonging to ¥ are identical if and only if x
conv-I V.

13. PRIMITIVE SETS OF FORMULAS. A set g of well-formed
formilas 1s called a primitive set, 1f the formilas of s con-
tain no free variables and are none of them of the form 43,
end every well-formed formule 1s convertible Into an  s-combi-
netion. (when necesgary to distinguish this idea froem the enalo-
gous idea in the calculus of A-A-conversion, the calculus of
>:a..oos<oﬂm»o? ete, -~ zee Chapter V -« we may speek of primi-
tive sets of A-formulas, primitive gets of A-X-formulas, prim-

itive sets or A-¢-Tormules, etc,)

it was proved in §12 that the formulas 7, o are a primi-
tive set. Another primitive set of formilas, suggested by the

work of Curry, consists of the four formulas 5, ¢ W, I, whepre:

B — Aabcalbe),
€ = Aabc.ach,

W — Aab,abs,

In order to Prove thls it 1s sufficient to express J as g
{8, ¢, w &a.oosw»swﬁo? as follews:
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Joconv BB EWABEE)IC).

Sti1l ancther primitive set of formulas consists of the four
forrmlas 5, T, By I, where:

- i

T — Aab.bc.

U — Aa.ca. -

In order to prove this it is sufficient to express ¢ and w

es {2, T, D, [}-combinations, a3 follows:

C conv B{T(BATY)(BEBT).

weonv B(5(I(Ep(B{rri(sBaa)T))) N aan) M B(ra(rn)rn))a).

of fornulas is said to be independent 1f it

ive set upon omission of eny one of the for— -
It seems plauvsible that each of the three primitive sets

whilch have been named 1s independent. -- In the case of tha mmd

o

{r, J1, the independencz of J follows {(using 7 XVII) from the
fect that any combination all of whose terms are I 1s convert-

end the independence of I follows {using 7
} from the fact that 1f 4 imr & end & contains & (well-
forzmed) part convertible-I into [ then 4 must contein a (well=-
} part convertivle-I .into 1.
T4, AN APFLICATION OF THE THEORY OF COMBINATIOKS. We prove
ng theorems, due to Xleene [3k, 35, 37]:

ot

now the following

and A contaln no free varisbles, a formula

Li conv 4, and ({2 conv Ay

1% I, If ﬁ A
L can be found such that

For, by 12 II, 4, end 4, are convertible into combina-
end 4. respectively. We toke 4] to be the com-
uniess that combination falls to con-
faln an occurrence of J, in which case we take } to be
JIILn  and nw is similerly determined relatively to Ay let
AT and bm be the result of replacing ell occurrences.of J by
m:nm, respactively, and let %A and

4
the vorieble ; n 4! and .
i

AR s B8 g e St e g o bt w0

§14. AN APPLICATION OF THE THEORY OF COMBINATIONS L7

wm be >.\.ﬁ. and Aj m respectively. Then &,J conv Ay, and
mmu. conv Lm. and ﬁw conv I, and mm~ conv . Consequently
& formula L having the required property is:

>3.:A>x.xA>c.tNm.mvv;w.NNCﬁ.\.
14 II. Ir A, nm. euivy hb contain no free variables, a
formula L can be found such that L1 conv } ’

L2 conv hm: veey LN conv hb?« being the formula
which represents n).

For the case that n ' 41s 1 or 2, this follows from 14 I,
For larger values of n, we prove 1t by induction. .

let hm be a formula such that nmd conv 4,, and Hmn. L,
be a formula such that n_d conv hm. fm conv \au. ooy rk‘ conv
.Ab (where M represents n-1 ). 1so let ¢ be a formila such
that €1 conv L, end g2 conv L,. Then & formula ¢ having
the H.mpﬁwma. property is:

AlC[3={1(P1).

1% IIY. 1Ir 4., 4, ..., 4., J. mm. ooy ﬂs contalin no

free varigbles, a forrmla € can be found which
represents an enumeration of the least set of formu-
las which contains 4, Asys veo, 4, and 1s closed
under each of the operations of forming £ XV from the
fornmulas X,¥ & = V52, «vu3n ), 1n the sense that
every formula of this set is convertible into one of
the formulas in the infinite sequence

£, £2, ...,

and every formla in this infinite sequence is con-
vertible into one of the formulas of the set,

We prove this first for the case m = 1, using a device

‘due to Kleene for obtaining formulas satisfying arbitrary con-
~Vversion conditions of the general kind 1llustrated in (1 ) below.

‘Using 14 IX, let U be a formila such that

0
4
3
S




{2 conv >x"\.ﬁAi%?:umxwvmmxlﬁcii,ﬂ\.«_pw.xuzN“x..:iS»
U3 conv myxw\,.w.xm.i
UL conv )X?qu_‘.m“ .

Urt conv Axy.yx A

and Z and
£ be the formula,

wiere f represents n and &' represents n+2,
are the formules Iintroduced in §9. Let

ALUSIATY = (i =mN 10,

Then we have:
£1 conv 4_,
Fey

£2 conv ABL »

ey

(

EM conv 4,

R conv FAE(ZIK=*A1)NEZIR-])),

K teing any formula which represents an integer greater than
n. From this 1t follows that & is s formula of the kind re-
uired,

Consider now the cass m > 1. Lot & represent m and

let F Ybe a formula such that #£1 conv %,.i F2 conv m.“% veey FRY

conv £, By the proceding proof for the case m m 1, & formmula
7y

£' cen be found which represents sn enuseration of the least

sot of. formulas which contains [1, 41, le, 4.1, coe, (M, 41,
01, 4,1, (2, Al eee, I6y A3, weey (1, 4.1, le, Anls eee, 14,
4,1 and 13 closed under the operation of forming V{(Axylx, XFyl)
from the formulas &, ¥. Then & formula £ of the kind required
is:

. ?fbm?w.:.v. .

=2

that the enumerstion so obiained contains
ropetitions. (Notice +thet 2 {8, ¢l conv € 1f 5 13 any for-
articular 1f § is any formula

T+ 2 £ srtear g = St
4% L3 Zxmaterial

¢
B
8]
(g
£
[e)
o
o

s

'{f
cF
o
oy
Q
o
by
-
En
=

m
w
|
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representing a positive integer; the case considered in §9 that
& and € both represent positive integers is thus only & spe=-
clal case.) :

IV, I 4,4, ..., Ags Fis Fypowny Foy Foooy Frpns +ees

ﬁs +p contain no free variables , & fornmula £ can be
found which represents an enumeration of the least set
of formulas which contains 4, Ass weey A, and is
closed under each of the operations of forming ﬁak.\
from the formulas X, ¥ (& = 1, 2, vesy, m) and of
forming Frup® from the formula X (3 = 1, 2, ceey D)
== in the sense that every formula of this set 1s con~
vertidble into one of the formulas in the infinite se-
quence

-

E1, E2, ...,

and every formula in this infinite sequence is convert-
ible into one of the formulas of the set,

(The case 1s not excluded that m = 0 or that p = 0,
that m and r are not both 0.)

By the method used in the proof of 14 I, find formulas B,
mm...... ms.. a.i a.mu P a.§+~. such that m.ﬂ,\ conv h?., mm.\ conv
km» sevs ByJ conv 4, G,J conv F, ¢J conv F,, ..., Cpppd CONV
%::,N: and mi. conv 7, mwa conv I, ..., m.ﬁ& conv [, ¢, I conv I,
¢, conv I, .,., Cp.pl conv I. By 1k ITI, a formula £' can be
found which represents an enumeration of the least set of formu~
las which contalns mi mms veey ms and 1s closed under each of
the operations of forming >x.a.9x§xi<xv from the formulas X, Y
(¢=1, 2, .o, m) exd of forming Ax. Sﬁa;\mxﬁkxv from the for-
milas X, ¥ (3 =1, 2, ..., r). Then a formula £ of ths kind
required is:

provided

Al EYE T,

15. A COMBINATORY EQUIVALENT OF CONVERSION, It 1s desir—
eble to have & set of operations (upon combinations) which have
the property that they always change a combination into a com~
bination and which constitute an equivalent of conversion in the’
sorse that a combination X can be chenged into & combinsiion
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¥ by a sequence of (¢ or more of )} these operations 1f and only
Such a set of operations is the following (0I --
WIII) -- when F, 4, 8, ¢, D eare arbltreary combinations,
fdned as indlcated below, and the sign |} 1is

©o mesn nwma the combinetion which precedes |- 1s changed
5y the operation into the combinstion which follows:

£ X conwv VY.

2
e

)s
WA

>

wh Y, o &Ys

c: u
L\

P

O
-

o
S 08
<§)4r‘i

OIV.
7
V.
CVII.
OvVIII.
QIX.
[eraus

R e ol

AL .

Q

0XIII.

CRIV.
[S)AUN

CAVI.

QXVIT.

OXVIIT.

0XTR.
0

di(al
AN

XXTT
X

OXXIII.
OXXIV.,

e
3 AN 8

CRXVI.
QXN IT.
OXXVIIL.
OXXIX.
S
O¥XFXT.

OXXXIT.

A A
A = 1A,

Fsa) = Flas),
Flaz) = F(IAE).
%w?wﬁuv*l545w$aﬂz.
F(420400)) = F(JAECD).
Fr ok m“?ﬂadﬁ BEYEEOEeR)In)).
F BB RMBY)BHBEER)M)) - FJL
BEEDIR.
30)¥3) = fp.
(BBEI)IY.
Iy - Fye N
(RIY.
[ Fr.
BRI F(REERIR).
3 E ((BR(RRBIR).
By B FBmYIBee)).
(BRR)) HFEERBReRIv.
Mw) = FRBu)(RER).
(A3 = FRGRAw).
- F(BBEII.

.

_“,
¥ ) F
= FRBRBER QB HBRR)IB).
(BRI (BYIBEMNIRY - FIRRW.
= Fpnn.
Yo FEvY).
VRV - FEROYEYIV.

. §16. GODEL NUMBERS =

OXXXIII. F(Pyw) b £B{RMRWVBY)).

OXKIV. F(R(BRWYI(BY) b F(Ryw).

OV, F(Ruwy) b Fu.

OXXVI. Fu b+ F(Bwy). : : 8
OXXXVII. F{Bww) F F{Bw(Buw)). .
OXCVIII. F(fw(Buw)) + F(Rww).

N = JTHUTTIT).
B — y(JIV(I).
w = V(Y (BY{V(BIT)T))T).

(Note that =, ¥, 3, w &are convertible respsctively into 7, C,
B, W.)

These thirty-eight operations have characteristics of sim-
plicity not possessed by the operations I, II, III of §6, name-
ly: (1) they are one-velued, i.e., given the combination op-
orated on and the particular one of the thirty-elght operations
which 1s agpplied, the corbination resulting 1s uniquely dster-
mined; (2) they do not involve the idea of substitution at an
arbitrary place, but only that of substltution at a specified
plaece. This has the effect of rendering some of the develop-
ments in §16 mach simpler than they otherwlse might be.

The proof of the equivalence of 0I-0XXXVIII to conversion
is too long to be included here. It may be found in Rosser's

issertation [47] (cf. Section H therein), Many of the import-
ant ideas and methods involved derive from Curry {17, 18, 20,
21]; In fact, Curry has results which may be thought of as con-
stituting an spproximate equivelent to the one In question here
but which are nevertheless sufficiently different so that we are
unable to use them directly.

-

16. omumv NUMBERS. The Gd¢del number of a combination is
defined by induction as follows:

(1) The G8del number of 7 1s 1,

(2) The G&8del number of J 1is 3.

(3) The G8del number of the nth variasble in alphabetical order
{seo §5) 18 2n+5,

(L) If m and n are the G8del numbers of 4 and § Trespec~
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tively, the Godel number of 4& iz (m+n){m+n-1)-2n+2. By the method of §14, £ind & forsmla B such that

The G3del number belonging to a formula is defined to be

B1 conv Ax.x12,
the Gldel nurter of the coxbination belenging to the formula.
(Fotice thot the G3del nurber belonging to a combination is thus
£

in general not the same as the Gddel nusver of the comblnation.)
hed

B2 conv I,

B3 conv Ax.x12J,
orify that the (¥del numbers nd & formila U such that

e
whinetlons 4 end & sre the same 1if end only 1f 4 !
N T v U1 conv B,

ks s i i

end § are the same; and that thoe GSdel numbers belonging to
tiio formules 4 end J are the same i1f and only if 4 conv-I g | w : U2 conv Axuy(par x,)x,yly(par x,)x,y), |

]
(cf. 12 JII), ({Notice that the G342l nurber of £8, according :
"

(these formulas B and U can be explicitly written down by re-
ferring to the proofs of i4 I and 14 II).
Let

to {k), is twice the number of the ordered pair [m, n}] 1in the
d palirs described at the end of §9.)
f G8del numbers arises from the fact that

4} PRY Eal -
The usefulness o

R u . form — AnU{par n)nl. o
our Jormallsm contains no notetlona for formulas -- i.e., for ;
sequences of symbols. (It Zs not possible to use Formulas as Then . w

. i
nototiens for themeelves, becauss interconvertible formulas must form 1 conv 7, ; ;

¢niote the zame thing although they are not the same formula, end
because formilas centalning froe varizsbles cannot denote any

form 3 conv J, and o !

form A conv form A, (form .amv

[fixed] thing.} The (ddel number belonging to a formula serves
i 8

substitute for a notation for the formu= if A represents an even positive integer. From this it follows

1z and often enables us to accomplish things which might have that form has the property ascribed to 1t above; for if & rep- N

been thought £o be impossible without a formal notation for fore resents the G¢del number of & combination 4' belonging to a i

rriles, formuls 4, contalning no free variables , then form A& conv 4!, . {
and 4' conv 4. :

ﬁimcmoowm@@.&uﬁﬂdwﬂmHmwmo»wwamdm@ ,ow.wdmmw,wmwmsomo%
a formula, fomm, such that, if reprecents the G8del number be-

P
o Iet:
lenging to 4, and 4 contains no frae varlables, then, form &

Conv L. In order to obtain thls formmulas, first notice that rark : G - An, @mm.n,.ﬁmu.:d +wmmm9m3_iuhman.uw:umrgwﬁ.&nﬁmzmaﬂ.ﬂ m
ony if epresents the G3del num whion have . e R ¥
cony 2 if R represents the Gddel number of a combinetion hav + ﬂmnﬂvmwivmu.}.*o@wg‘m}d+$:§€mwnmzmp§3ﬁZ..m: !
more than one term, and par N conv t if W represents the — '

4 ] 2l i

el nunber of e combination having only one term; also that if + [3xIparn+eqzz3757 M pernyteqia N1 ¥PaTy, .

- e conMingt 1 2 i 4 B e i

o ; t & comdinztlion 42, then Z(XA) +Q62557575 :mmﬁ@ﬁ&@mm%@n.:mmm“.fopm; am:mww: ,,

. - L} "
representing the G8del rumber of

P00 Pl 0 OGZEBTEN 5oy 1 400350002 BR ] ] m

, z t into the formula representing the . .
Gidel number ¢f £ (ses §9). We introduce the abbreviations: = 5.
. A, — Z(EH). D

:o 2V, + Foling that the GSdel mumbers of JI, <, Jt, JrT are regpective- M

1y 12, 156, 24832, 623375746, the reader nay verify that:
Subaeripis used in this way msy be iterated, so that, for instance,

. off conv 1 or & if Y ror;
flopy = (2 HZ{HM))))). , » 2, 3, O A represents a positive integer;
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\a

c 2 AU & represents the GUdel nuxber of & combina-
tion of the form JvEUIA), with 8 different from A
off conv 3 1f A recpresents the Gddel mumber of & combina-
tion of the forw JvG4 but not of the form J<8(JI4);
conv b 1f & vrepresents the Gddel numher of & combina-
vien of the form Jro(JI(Vvv{JTEIT47))));

Qhoog,“Hwadm@gmmsgw&wn&@mwngdou.owwnogdg:
ot of ome of thess threse forms.

Agsin using §14, we £ind & formula u  such that
wloconv Axuy.ySx,

L2 conv Axy.ylg ISP R PA

Ly conv »&m.ﬁaxuvx»m»
uh comv Axyad

P Cony X _bﬂ«Aqumm#mvxmmmﬂwQVAchxmmmmdmvxmmmmgch=
ud conv Ak 3*x,
and vwa let

0 — Aru{g ninu,

Then o A-defines a funciion of positive Integers whose value
2 for en ergumsnt which iz the GJdel mmber of e combination

iz oy
of the form A4, and i for enm arpument which 1s the G8del num-
ter of & combinstion not of this form -- or; &5 wo shall say

o
briefly, o A~defines the property of o combination of being of
7,

ing new in prisciple, the following formulas may bs obtalned:

1} A formula, occ; such that, 1f A& roprosents a posi-
tive dnbeger n, wo have that oce 7 A-Gefincs the property of
the nth variable in alphsbotical

-, ~ - P P y e s dm
order, za n Iroo varisble {(l.c., 82 & tornm).

o
i
A

|9

]
o combing

}.-"v
[o]
i3
o]
5
[#]
(@]
3
or
o]
2
§.
&

2) A formila ¢, such that, & ropresenting a positive
nteger n, AL & ropresents the G&del nmuxber of a coxbination
0o of the form \,,,NET then oFF conv ¢, exd if ¢ represents

wmber of e combination >x2? then efg 23 convert-
ihle fnto the forsula represe: ting the Godol nurber of the com~

birailon obtainod from a7 by substituting for sl free ocour-
rencss of x in A the nth varieble in oalptebotical ordar.

o

%
b 2 s v T N e A S s - M
) aformela @, guch that, 1f ¢ represents tho (8dsl

Iy slxilar comsbructions, invelving lengthy deotetl but noth--
5 5

i
:
i
k
¢
{
!
¢
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number of a combination not of the form >x§.. then C¢& cenv ¢,
and 1f € represents the Gd8del number of a combination >x\£‘
then €€ 1s convertible into the formula representing the Gddel
number of the combination obtained from #f by substituting for
all free occurrences of x in Af the first varisble in alpha=-
betical order which does not occur in A as a free variable.

L) A formula r which  A-defines the property of a com-
bination, that therse is a formula to which it belongs.
. 5) A formula A which A-defines the property of a com-
bination of belonging to a formula of the form, AxAH.

6) A formula, prim, which A-defines the property of a
combination of contalning no free variebles.

7} A formula, norm, which A-defines the property of a
combination of belonging to a formula which 1s in normal form.

8) A formula 0, which corresponds to the operation 0I
of §15, in the sense that, if ¢ repiresents the G8del number of
a combination of such & form that 0I is not gpplicable to 1t,
then odﬁ conv ¢, eand 1f € represents the C8del number of a
comblnation & to which OI is applicable, then ogn is convert-
ible into the formula representing the G8del number of the com~
binstion obtained from s by applying OI.

9) Formulas 0m. Ou~ “aey ommw which correspond respective-
1y to the operations 0II, 0III, ..., OXXXVIII of §15, in the same
sense,

By t4 III, a formula, c¢b, can be found which Hmvwmm.ondm
an enumeration of the least set of formulas which contains 1 and
3 and is closed under the operation of forming (Aab . 2 =
nr ab)i’¥ from the formulas . X, V¥ But if A, Y represent the
G8del numbers of combinstions A, 8 respectively, then (Aacb . 2
* nr ab)X¥ is convertible into the formle which represents the
C8del number of 4%. Hence the formula, c¢cb, enumerates the
Gddel numbers of combinations containing no free variables, Iin
the sense that every formula representing such a G&del number is
convertible into one of the formulas in the infinite sequence

¢b 1, ¢db 2, ...,

and every formla in this infinite sequence 1s convertible into

formmila ronnacantdnm oAk o~ FEIAT it e

e ey

T

T i 4 S




I3

1 T S T T e e
) =Y. CCMRTVATICNS, CGODFL INTARERS

If now we let
neb — An L, cb (FAx . norm {ch x))n),

then ncb enumerates, in the same gsense, the G8del numbers of
convinations which telong to formulas in normal form and contain
no free varieb¥es {ef. 10 IT1).

¥ 1% IV, a formula O can be found which represents an
enuneration of the leest sat of formilas which contains I &nd
3ed undsr each of the thirty-eight operations of forming

from the formula X (B = 15 2, ev.; 38). Let

Cave —» Acb.Qba.

Then if ¢ represents the G6del number of a combination ¢, a&m
fermula, onvt €, erumerates (again in the same sense as in S»m,w
%o preceding paragraphs) the G8del numbers of combinations ob- w
toinsble from p by conversion ~-- cf. §15. m

let
nf —» An . cnvt n(y (Ax . norm (cnvt nx))1).

A-defines the operation normal form of a formula, in
ense that (1) if ¢ represents the Gddel number of & com-
2tion A4, then nf ¢ iz convertidle into the formula repre-
; slonglng to the normal form of rf;  and
the G3del number belonging to & for-
mila M, thon nf ¢ isa cenvertlble into the formula represent-
ing the G8del number bel nging to the normel form of A4 If ¢

Tepres the GSdel muber of g combination (or belonging to a

[&]
H

formala)
form (cf. 10 I).
t ¢t and s be the formilas representing the G8del num-

ing 1 and § respeciively. Then the formules

53]
=
o1
o
Ie]
;
>
—
e

&8 no normsl form, then nf ¢ has no normal

ZVHA(Ax . 2 x nrsx)i}), ZUH{2(Ax . 2 x nr sx)i)),

(Ax . 2 x np $x)i)); vuu,

by
-~
=
W

are convertible respectively into formulas representing G3del
nuzbers belenging to

T, S, S(S1), ... .

8 formula v which A-defines the property of a cormbina-
tion of belonging to a formula in normal form which umwwmmebﬁmm

T T o 1 I . e A e e v sy vt e 7y W S e oo

R TP
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vositive integer, may be obtained by defining:
v = An . n(eq n)(Am . eq n(nf(Z'(#(m(Ax . 2 *» np sx))))).

(It 4s necessary, in order to see this, to refer to 10 III, and
to observe that the G8del number belonging to a formula in nor
mal form representing & positive integer is always greater then
that positive integer.) ‘

i
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Chapter V

THE CALCULI OF A-K-CONVERSION AND A-6-CONVERSION

17. THE CALCULUS OF A-X-CONVERSION.
cenversion is obtalned 1f a

The calculus of A-X-
single change is made in the con-
of ion which appesars in §§
the definition of well-formed formula (§5) de-
least one free occurrence of
The rules of converaion, I, II, IIX, in
except that well-formed is understood In

of the calculus A-convers

“and conteins at

O

< from the rule 3.
n unchanged,

difference betwsen the calcull of A-conver-
the possibility of defining In the

uxiuao 1 of the
A-K-conversion is
R— Ac{Aba),

and the Integer zero, by analogy with definitions of the positive
in §8,

0 — Ac{Abb).

Manw of

Si0n.

the theorems of §7 hold a&lso in the calculus of A~
But obvious minor modificetions must be made In
117 and 7 <.» and the following theorems fail: 7 XVII, clause
Y of 7 X2 XXXI, end 7 X0HII. Instead of 7 XXXI, the
1 theoren cen be Uao.«m? which is sufficient for
purposes, in particular for the definition of p (see

and 7

wodirrm of dﬁo form

PAxPOR Hye o oK, (P = 1, 2, ssele

P

e

g s S e
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Then if 4 has s normal form, there is & number m
such that at most m reductions of order one can oc-
cur in & sequence of reductions on A4.

A notion of A-XK-definability of functions of non-negative
integers may be Introduced, anslogous to that of A-definabllity
of functions of positive integers, and the developments of Chap-
ter III may then be completely paralleled in the calculus of A~
K-conversion. The same definitions may be employed for the suc-
cesgor function and for addlition and rmltiplication as in Chap-
ter III. Many of the developments are simpliified by the pres-
ence of the zero: in particular, ordered palrs may be employed
instead of ordered triads in the definition of the predecessor .
function, and the definition of p may be simplified as in Tur-
ing [581].

It can be proved (see Kleene [37], Turing [(57]) that s
function F of one non-negative integer argument 1s A-XK-defin-
able end only 1f Ax . F(x-1)+1 is A-definable -- and sim-
1larly for functions of more than cne argument.

The calculus of A-K-conversion has obvious advantages over
the calculus of A-conversion, including the pessibility of de-
fining the constancy function and of introducing the integer
zero in & simpler and more natural way. lHowever, for meny pur-
poses =~ in particular for the development of a system of sym~
bolic logic such as that sketched in §21 below -- these advan-
tages are more than offset by the fallure of 7 XXXII. Indeed
1f we regard these and only those formulas as meaningful which
have a normal form, 1t becomes clearly unreasonable that #Fa
should have & normal form and & have no normal form (as may
happen in the calculus of A-R-conversion); or even if we impose
8 more stringent condition of meeningfulness, Rule ITI of the
calculus of = A-X-conversicn can be objected to on the ground thst
1f M 1s a meaningful formula containing no free variables, the
substitution of (AXAMAN Lor A ought not to be possible unless
A 1s meeningful. This way of putting the matter involves the
meanings of the formules, sud thus an appeal to intuition, but
corresponding difficulties do appear in the formal developments
in certain directions.

40
e
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7 A-H-CCIVERSION AND A=-46-CCONVERSION

§18. THE CALCULUS OF RESTRICTED A-X-CONVERSION. In order
the difficulty just described, Berriays (4] has proposed
3 the caleculus of A-K-conversion which consists
IIT the proviso that & shsall be in
form {(notice that the condition of telng In normal wowa‘
is effective, although that of having a normal form 1s not). We
calculus so obtained the caleulus of restricted
A-A-conversion. In it, as follows by the methods of §7, & for-

oo

oy e

»

. o T
In adding te fulés IT and

nome

in the calculus of A-K-conversion hed a normal form
and hed no parts without normal form will conbinue to have the
in pesrticular, no possibility of conversion
orm is lost which existed in the calculus of A-
Ca the other hand, all of the theorems 7 X3VIIT -
remain valld in the calculus of restricted A-K-conver-~
and ere much more simply proved then in the calculus of
A-conversion. (It should be edded that the content of the the-
orcoms 7 XXVIII - 7XOCXIT for the calculus of restricted A-X-con-
Ttein sense much less than the content ¢ these
Leulusg of >'oo&<mwwwou. and in fact cannot be
to establish the satisfactoriness of the
calculus of restricted A-H-conversion from an intuitive viewpoint

conversion.
T OXIT

LA
EREISY

cese of formmiles all of whose paris have normal forms. )
% of the calculus of restricted A-K-conversion
t of the calculus of A-conversion (as in
wpters IT-IV), with such modifications as ars indicated in §17
cal of A-K-conversion. Many of the theorems must
have added hypotheses asgerting that certain of the formulas in-
volved have normal forms.

@mw.ew>mmﬂszmOwsz>bm.odswodmag mpomﬁm.Hdmu smqo@xx
the concept of A-definability to ordinal numbers of the
second number class and functions of such ordinal numbers.

: from this on the cno hand en extension of the no-
ticn of effective calcula 111ty to the second number class (ef.
hureh {133, Kleene [39], Turing [591), end on the other hand a
method of ing some theory of ordinal mumbers into the
muwnoaowmwﬁbwwwowomuoommmdwwwoﬂ.

[

R

I

i
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Instead of reproducing here this development within the-
calculus of A-conversion, we sketch briefly an analogous devel-
opment within the calculus of restricted A-X-conversion.

According to the idea underlying the definitions of §8, the
positive Integers (or the non-negative integers) are certain
functions of functions, nomely the finite powers of a function
in the sense of iteration. This idea might be extended to the
ordinal nurbers of the second number class by allowing them to
correspond in the same way to the trensfinite powers of & func-
tion, provided that we first fixed upon a limiting process rel-
ative to which the transfinite powers should be ‘taken. Thus
the ordinal w could be taken as the function whose value for
a function s as argument is the function g such that gx 1s-
the limit of the sequence, x, fx, f(fx), ... . Then w+i
would be Ax.f(wfx), and so on.

Or, instead of fixing upon a 1imiting process, we may in-
troduce the limiting process as an additional argument a (for
instance teking the ordinal w to be the function whose value
for a and f as arguments is the function g such that gx
is the limit of the sequence X, \x. F(fx),
the limiting process q).
tlons in the caleulus of restricted A-X-conversion, the mﬁdmow»u
o0 being used to distinguish these notations from similer nota-

-tlons used in other connections:

«es 5, relative to

0, = AalAblAce)),
de —+ Aabecbe,
2, = Aabab(be), and so on.

,wo — Adiabe, b(dabce),

,ho ~+ Arabe.a({Ad.rdabe),
Wy —* Aabc.alAd.dabe).

We prescribe that oo shall represent the ordinal 0; if &
represents the ordinal n, the principal normal form of hwh
shall represent the ordinal n+1; 4f R represents the mono-
tons pboammmpnm.»Jhuapam sequence of ordinals, Mor Nys Ny oeeey

In the sense that moc. mﬂo. mmou »++ are convertidle into fopr-
mulss representing Ny Ny, N, respectivelv. than +ha

LR )

This leads to the following defini- |

(34
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principol nermal form of L & shell represent the upper limit

: & ordinals. he transfinite ordinals
wnlch are wm%dmmwddm, vy formulas then turn out to constitute
o certain segment of ths second mumber class, which mey be de-
‘ved os consisting of those ordinals which can be effectively
% to frem telow (in e sense which we do not make expliclt

The forrmila representing a glven ordinal of the second num-
ver class is not unique: for exzmple, the ordinal w is repre-
sented not only ©Y  uw, but also by the principal normal form of
LS., eand by meny other formules. Hence the formules represent-
ing ordinals are not to be taken as dencting ordinals but rather
1o denot f,,w certain things which are in many-one correspondence

3

1on F of ordinel numbers is sald to ve A-X-defined
vy & formula £ if (1) whenever Fm=n and M represents m,
Y

the fo Fi¢  4s convertblvle into a formula representing n,
and (2} vhensver an ordinal m is not in the range of F and
& represents m, the formile FA¢ has no normsl form.

ﬂwmwOﬁnaomwsnocbnﬂu oﬂOwom wwwowmmmwomwmmaosauca.
ber class. By suiteble modificetions (cf. Church [13]), this ~
rosupposition mey be aawspw@u» with the result that the cal-
culus of smA¢dHa ed >-m-ooﬁ<mwmwob iz used to obtain a defini-
tion of & {non-classical) constructive second nunber class, in
vinlch eccn classical ordinal is represented, if at all, by an
infinity of elemente

d

20. THE obﬁaCH_dm OF A-6-CONVERSION. * The calculus of A-6-

oou.,\o?mbm 15 obtained by making the following changes in the

conabruction on the colculus of A-conversion which appears in
255, m“ adding to the 1lilst of primliive gymbols a symbol &,
which is meither an Umproper symbol nor a varlable, but is classed
with the varisbles as o nroper symbol; adding to the rile 1 in
the delinition of wgll-formed formula that the symbol & 1s a
well-formed formula; and adding to the rules. of conversion in

$6 four additional rules, as follows:

TV. To replace any part &N of a formula by 1, provided
srmk mr emA B ame in o d-narmil form and contain no

ey e e s s

R
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froe variables and & is not convertible-I into. A.

V. To roplace eny part 1 of a formula by & provided
that A and & &re in ¢-norwal form and contain no
froe variables and A 1s not convertible-I into A.

VI. To replace sny part ¢ of a formula by 2, provided
that £¢ 418 in &-normal form and ccntains no froe va-
risbles.

VII. To replace any part 2 of a formula by ¢MF, provided

that A 45 in G&-normal form and contains no free va=

riables. .

Here a formula is maid to be in 6S-normal form 1f it con~
tains no part of the form (AxP)Q@ and contains no part of the

form 6RS with & and § containing no free variables. It 1s

necassary to observe that both the condition of being in d&-nor-
mal form snd the condition that A 1is not convertible-I into
& are effective.

A conveorsion (or & A-¢$- ooﬁ<o§»odv 1s a finite sequence of
gpplicetions of Rules I-VII. A A-&-conversion 1s called a re-
duction (or & A-dé-reduction) if 1t contsins no application of
Rules IIX, V, VII and exactly one application of one of ths Rules
II, I¥vy VI. 4 1s said to be immediately reducible to & 4if
there 18 a reduction of 4 Into & sand 4 1s sald to be re-
ducidle to & Af there is a conversion of 4 into & which
consists of one or wore successive’reductions.

All the theorems of §7 hold slso in the celoulus of A-¢é-

conversion, 1f some appropriate wodifications are mads {ses Church

and Rosser [16]). The residuals of (Ax \,an after an sppii-
cation of Rule I or II are defined in the sams way as bofors, and
after an applicatlon of IV or VI they are defined sa what C(ﬂb
Pbl becomes (thls is slways something of the form QCJ.% Vm:
The residusls of %.mo after an application of I, II, IV, os

I are defined oniy »b the case that Eﬂ and ....v are in ¢4~
norzal form snd contain no free varisbles. In that case the re-

sidunls of &M AN are whatever part or parts of ths .entire re-

PP
sulting formule o&vhﬁ becomes, oxcept that after an epplication
of IV oxr VI in which a@waﬁ i1tself is contracted {i.e., replaced

by 1 or 2), SM A, bhas no residual. Thus residusls of am«vaﬁ
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the form &MA, where A end A are in 6-nor-

contain no free variebles. A& sequence of contrac-

t of parts 3?.3.*”:3@. and a%ﬁww of Ay where
vod T
erg in  d-normal form and contsin no free variables,

snelogy with the definition in §7. Similarly e
In 7 XXV, the set of
o which & sequence of contractlons 1s teken is al-
Lude not cnly parts of the form A>x.wﬁ&._‘§u“ but 8l=-
of the form aﬁw@» In which Ry and m» are In ¢~
normel form and contain no fres variables. The modified TV
may thon bo proved by an obvicus extension of the proof given
In $7, end thercupon 7 ZXVI - 7 XUUT follew as before. In T
NI - 7 FIT "eonv-I-IIY must ke replaced throughout by “conv-
I-TI-3V-VI" erd in 7 XVI the case must also be considered that
& dmr £ Tty a contraction of the part &/4F of 4. TFor T XX,
there must De suppliiled a definition of principel &-normsl form
of a formile, anslogous %o the definition in §6 of the princi-

gquencs of such contractions,

0
-

-

4
-

! b g ey T gy
cal (A-)pormal form.

By

In comnechlon with the calculus of

3 d Yy P
use both of the torms

A-é-conversion we shall
A-cenversion and  A-d-conversion, the for-
ner meaning a Tinite sequence of applications of Rules I-I111,

the Javtor a finite sequence of applications of Rules I-VII. The
verm conversion will be used to mesn a A-g-conversion, as al-

T S -
reaay explained,

Simllarly wo shall use both of the terms
and  d-movunl form of a formula.

A-norwal form o

A-normal form of
A formuis will be
£ another 41f 1t i1s In A-normal form

and cen be obiained from the other by A-conversion. A formule
will ©e called & $-normel form -of another 1f 1% is in $-normal
Torm end can be obteined from the other by A-é-conversion., By
, X o the calculus of A-conversion, the A-pormal
(in the calculus of A-d¢-conversion), if it
wigue to within epplicetions of Rule I. By the ena-
logue of 7 X¥IX for the caloulua of A-dg~-converslon, the ¢-nor—
wal form of e formule, If it exists, is unigue to within appii-
cations of Rule I,

In evder to see that the caloulus of A-d-conversion requires
nolonal interpretation {ef. §2), 4t 1z sufficient to ob~
gorve thwt, for example, slthoush 1.and Aab.dablad correspond

N

1
i
i
i
§
f
|
;
|
§
|
;
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to the same function In extension, they are nevertheless not in-
terchangeable, since 11 conv 2 dbubt &1 (Aab.dablad) conv 1.
A constancy function x may be defined:

x — Aab,6bdla,

Then x4F conv 4, if § has a é-normal form end contains no
froe variables, and in that case only (the conversion properties
of x &are thus wesker then those of the formule X in either
of the calcull of A-X-conversion).

The entire theory of A-definability of functions of posi-
tive integers carries over into the calculus of A-é-conversion,
since the cslculus of A-conversion 1s contained in that of A-
¢é-conversion &s & part. It only requires proof that the notion
of A-6-definability of functions of positive Integers 'is not
more general than that of A-definability, and this can be sup~ *
plied by known methods (e.g., those of Kleene [37]).

The theory of combinations carries over into the calculus
of A-é-conversion, provided that we redefine a combination to
mean an  {I, J, é}-ccobination. In defining the combination be-
longing to.a formuls, it is necessary to add the provision thst
the combination belonging to 6 4s 6.

Ir 4, 1s a well-formed formula of the calculus of A-¢-
conversion and containsz no fres veriables , & formuia 8, can
be found such that 8,/ conv A, and 87 conv I, For let xﬁ
be the combination belonging to 4,, unless that combination
fails to contain an occurrence of either J or ¢ In which
case let A be JIrn let 4y De obtained from ‘ﬁ. be re~
placing J and ¢ throughout by ; and §Ij (Ax.x(Ay.ylIl))
(Az.zI)8 rospectively. Then &, hay be taken as Ajar.

-

Hence 14 I, and the remaining theorems of §14, may be proved” "

for the calculus of A-&-conversion in the same way as for the
calculus of A-conversion.

In order to cbtain a combinatory equivalent of A-d-conver-
sion, analogous to the combinatory equivalent of A-conversion
given in §1s5, it 43 necessary to add to 0I-0OXX(VIII the follow-
Ing four additional operations -- whore F, 4, B, ¢ sare combi-
nations, and 4 end 8 belong to formulas in é~-normal form,
centain no free variebles, and are not the same, and € Dbelongs
to the formula which represents the G8del number of ¥-H

i
]
:
;

1
£
H
5
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N

L * be obtained, having the properties described in §16 {ncxrm A-de-
' fines the property of a combination of belonging to a formula
which i3 in - A~normal form). The formulas ¢b, nech, 0, cnvt, nf
{the A-normal form of), and may then also be obtained as be-~

Al
e, e Y Py
©LnCe VL -~ CXIDVIIT ore

[o]

quivalent to A-conversion, this can be

Formules OUw.. 05 may be obtained, related to the operations
done 25.f0llows: TwlR) s A-convertible into iﬂlﬁﬁamv‘

OXXIX - OXLII In the seme way that 0, - ouw are related to 0 ~ w
OXXXVIII. We give details in the case of 0,0 and Oype Iet u..g i

» by GLIT, Vv Iec(s44), end this in turn 1s
A-convertitle into G{64.4),

The on 4, 8 ¢ -- al- ! fore. The formula, Cb, represents an enumeration of the least
though complex ; aract tive (§6). ! ; set of formulas which contains V» 3, and 5 and 1s closed undep
In order to see thet these four operations are equivslent, * : the operation of forming ;Qc « 2 x N ab)X¥ from the formulas ;
in the Prasence of 0I - QG III, to ths rules of conversion IV | X, v
© VII, 1% iz nacbasary to observe that @/ and «B are A-con~ \ w, ) Besides norm 1t 1s also possible to obtain a formla, dnovm, |
vertibtle int and 2 respectively, __ : which A-defines the broperty of a combination of belonging to a
To show that OXLII provides a2 equlvalent to Rule VII, we ! formula 1n  ¢-normal form. Details of this are left to the read-
meet show that 1% onables us to change ¢(wB) 4nto ¢{644). ~__ er. ‘
|
i
j

, be a formula such that Fo! conv I and F,02 CONV Ax . 2 x o

Slrilarly, to show that 0XL provides an equivalent of Rule - nr x[2«nr{z-np ux:medm?. then let N w

¥, we must show that it enobles us te change §{3r) into &(c45), ! : M

This can be done 2g fellows: (37 is  A-convertivle into : . SR

s i‘: « P2 c o ,,v i : ‘ orott\/x.qrogmu.x.*ﬁww Xy, + par X;q + prim X112 ]
TWYEIEHAIN (wR);  and this cen be choenged by the msthod of the : ‘ ‘

VWeI)EHRI)(682); end this 18 A- + dnorm x,, + prim X1g + dnorm x,,
TI)E)RI))){688) (wh); and this can

( —
e X, - eq x..x, = T5]x
he preceding paragraph into yliv(=r) 4 % 9 X124, 31x,

ey sy

BINIEes(644); ana this 1z A-convertidle into
imﬂw,w wmwM,\Ai DEN N &,T 51) 3 this be N belng the forrmla reépresenting the G6del mumber of RBI Let
ASEASE LR CN 3] A \TL)E) 8 Lol ); an 13 e=
- , , . . F be & formila such that Jyot conv 7 and 7 o conv Ax ., 2
S YRV BB W) 1) (v (1 £6))) ) ) we) 1 k2 i b2

¥ bs T 3 - th let
®2is 18 A-convertibls into i;«?&ii.«?ﬁ@ahmv: "Arxl2enr (2 «one >{fomm *1g) 1(form %2015 then 1e

and this vmaoﬁmm.‘ by CXLI, ii.«miﬁiddﬁabmv:
8nG this 12 A-céavertiple into Y(Y(v )6 (643) (658);
RBeones, by CXLI, iiqdﬁia.ﬁ%v?@m and this, f1-
Ro-i7, I A-domvertinle into &(s43
Coly minop @edificationz arc neceszary in §16 in order to
CArTY over itz resulig to the caleulus of >;Qsooﬁeéwmuoa. Ia

og -+ AX , %rmgmu. X + pap x4+ Zcxdmvx“m + eq nkm - 6)x,

where ¢ is the formula representing the G#del nurber of wf,
eand ® 1s such a formula that ni conv AX.x1 and n2 conv
Ax.min (prim (form x))({dnorm (Torm x)).

Then & formula, do, may be obtained, analogous to O but

b — s rg i

the der u,.uuwﬂos of ths o@&mu;ﬁ.ﬁd@w of & combination the clavse . involving 811 of o, - 0,, instead of only 0, - 0... ILet
Fust bo 2dled: {28} Tho Gidel mumber °of & 1s 5. In the con- LT - b2 1 38 i
ciruction of tre Tormulae, form, it 1s only necessary to Ixpose ! denvt — Aad . do ba.
°% T the further condition that 05 cony Ax.x126, 8o insuring : I |
that form 5 conv 6, The construction of o remains wmchanged, - Them, If € represents the Gogel number of & coubination A, ~ «
The formulan oce, o, €, ¢, A, prim, rorm, and O, - ow g T8y then the formula, denvt ¢, enumerates the G&del numbers of combing- @
. : . tlons obtainable from M by A-6-conversion (whereas cavt ¢
. r
-

Al



the CGOdel numbsrs of combinations obtalnable
3y
/

082ible, by using the formila, dnerm, to obtain
ich  A-defines the operation $-normal form of
“ormule, duacb, which enuzerates the G8del num-

bers of combinationa which belong to formulas in $-normal form’ !
2nd contain ﬁ.p,.,,“;@m variaebles. The definitions paraliel those |

e
¢f nf and nch.

Finally, 4n the caleulus of >.a,oo§.ou.mwo§ a H,owﬂﬁw? aof
may be obialnsd which provides a kind of Inverse of the w¢w0ﬁuov@
form: 2f p¢ 43 a formule which conteins no free variables and
228 & d-normel form, then met. Ay 13 convertivle into the for-
Wils ropregenting the Gidel nurber belonging to the é~normal
form of /., The definition 13 as follows:

i
{
i
!
i
§
i
1
|
|
!
|
!
i
}

mat — Ax . dnch (p(An . ${(form (dned n)ixit),

21, A SYSTEM OF SYVEOLIC LOGIC., If we identify the truth

» truth and felachood, with the rositive integers 2 anad 1

respoctively, we mey base a system of symbolic logic on the cal-
£ A-¢-conversion. This system has one primitive formuls

er axicm, namely the formmls 2, and seven rules of inference,

of A-§-converzion; the brovedle for-

milas, or theses, of the system are ths formulas which can be

L]
&
8]
(o]
od
4
4
-
by
o)
A
o
s
@
o
!
<t
i
4

derived from the Torrula 2 by Sequences of applications of the
rles of infersence. {A3 & matter of fact, the miles of Inference
I, IV, VI ars superfluous, in the sense that their omission

2
would not decrsase the class of provable formules, as follows
frem 7 JOWIT, or rather £r o the &nslogue of this theoren fop
the caleulus of A~&-conversion., )

Thz 1densificaticon of ths truth values, truth and falsshood,
with the positive integers 2 snd 1 1s, of courss, artificial,
tut apperently it gives rise to no ectual formal 4ir leulty., If

3 nable, the artificiality mey be avolded by
& minor modification in the system, which consists in Introduc-
ting b2, instesd of 2, as the primitive
¢s of the system will then be praceded by
the sign -, which mey be interproted asz asgerting that that
follows 1s equal t

=4
>3
o3
&
2
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In this system of symbolic logic the fundamental operations
of the propositional calculus -~ negation, conjuncticn, disjunc-
tion -~ may be introduced by the following definitions:

[~4] — i\,,nb:ama:;a.n:oi:.
[488) — 4 =, [~4] + [~g.
vl — ~ ., [~4] & [~g].

It follows from these definitions thet 4v8 camnot be a
thesis unlesa elther 4 or g 1s a2 thesis -- ang this situa-
tion apparently cannot be altered vy any suitable change in the.
definitions. Since this broperty is known to fail for classical’
8ystems of logie, €.g8., that or Whitehead and Russell's Princip-
1la Mathematics, 1t is clear thst the present System therefore
differs from the classical systems in g direction which may be
regarded as finitistic 1n character,

Functions of rositive HnnomQWm are of course represented in
the system by the formulas A-defining these functions, and rrop-
erties of angd relations between positive integers are represent-
ed by the formulas A-defining the corresponding characteristy
functions. The bropositionsl function to be 2 positive integep

represented by .
An. existential quantifier I may be Introduced;

U =— Af, form (ZY(H{dcnvt x(v{An , sr
(form (Z(#(denvt xn))))NN)y),

I~ Ar, Ff).
Hore represents g generel selection operator. Given g for-
mulas F; 4 there 1s any formila 4 such that g4 eonv 2, then
tF 13 one of the formules 4 having thig Property; and in the
contrery case f has no normal form. oobmmncauﬁu. Z repre-
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GUENCILLer without & nogatlon: gF conv 2
and in the con-

nould be Compared with Hllbertig opera~
2], or, Porhsps better, the n-operator
o Hilbers ang Bernays [33]1. The t should be used with thg
coution thaot the equivalence of Dbropositions] functions repre-
Bented in the 3ystem by g and ¢ neeq not imply the equality
off & and e,

The Hﬂmow@ﬂmwhmmow of { ag g seleoction operater end of
LI as an existentinl quentifier depends on an Hamuwpwpomwpon of
formal Provabvility in the systen wlth truth, But thig 1g Justi-
Tied by g Completenass Droperty which the systenm DPossesses: g
formia which Is not Proveble, unless 1t ig convertible into g
Princiral normsl forn other than » and hence 1g mwubuo<mdwm.
mist have ng Doxwal form, sng hence be meaningless,

For conyenlencs in the further development of the System,
or for thes sake of Comparison with more usual notations, we may
wtroduce the mdwuoqmmuwosmu

5

[1xP1] e LAxnyy,

] - T Axry),

The problem of Hﬁnwoacnnsm wniversal Quantifiers into the
X, m@c»<mwosnww« of anwoazowbm existentigl quantifieprs
hnving g negetion, 1g beyond the ECOPO of the brosent treatise,
It wawoﬁm.ww the nethods of CGldel {277 that any unilversal quan-
tifier introduceg o definition will have g certaiy character of
MwooaﬁwmmomOumh thig 1g 1 effect the samo Hﬁooﬁvwoﬁwummm Proper-
{7 whlch, 1q &ccordance with the results of G3del, almost any
consistent ang mma»wwmowowpuw adequate Syatem of formal logic
s BRCEPL that 3¢ here eppoarg transferred Lrom the realim
of Provebilisty to the roalm of zoening of the quantifisrg,
; Liteney of the systen of symbolie logice Jjust out-
lined 1s g cerollery of T XXX, or rather of the &nalogue of this
the caleulus of >:a:oos<@amwow. This oobmmmwmﬁo%
ctly constructive or wwswnwn% nsture,
t SF¥stenm of %ha kneown Paredozes of set
T L¢ of the Sixpler caszes, meraly on the fact
that tho formuyg whilch woulg othorwlise leeq to the paradex fails

3

i~ 2 G
w:aoww aopends, in 30
-

T i e

g 821, A SYSTIM op sw

to have a normal form, Thus, in the case of Russellrg Paradox,
we find that A>x.2ﬁxxvv«>x.zﬂxxvv has ng normal form; ang in
the case of Qﬁmuwub®~m Paradex oovomuspsm bmwmaowomuomu words,
Or, as' we shail put 1t, ¢oncerning wmnmwowomuomw Godel Numbers,
We find thet (Ax.~(form xx) M met (Axo~(form xx))) has no nor-
zal form, 1y more complicated Cases, where the ©Xpression of
the paradox requires g Wniversgl Quantifiep, the failure may de-
Pend on the above Indicateq Mﬁoosﬁpwumsmmu DProperty or the quan-
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