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Plan

* complete reductions

 sublattice of complete reductions

* more on canonical representatives
e costs of reductions + sharing

* speculative computations

* semantics with Bohm trees



ed A-calculus
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Complete reductions (1/5)
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Complete reductions (2/5)

e Definition [complete reductions]

(p, F) is an historical set of redexes when F is a set of
redexes in final term of p.

(p, F) is f-complete when it is maximum set such that
R,S € F implies {p,R) ~ (p, S)

An f-complete reduction contracts an f-complete set at each step.

* Proposition [ lattice of f-complete reductions]
Complete reductions form a sub-lattice of the lattice of reductions.

Proof simple use of following lemma which implies f-complete
parallel moves.



Complete reductions (3/5)

e Notations

M =a> N when M —F> N and F is the set of redexes with
name o in M.

MaxRedNames(M) when all redexes in M have maximal names.

 Lemma [complete reductions preserve max redex names ]

M => N and MaxRedNames(M) implies MaxRedNames( /)



Complete reductions (4/5)

e Definition [d-complete reductions]

(p, F) is d-complete when it is maximum set such that

<,00, R0> <p .F> for some <p0, R0>

An d-complete reduction contracts a d-complete set at each step.

* Proposition [below canonical representative]
Let (po, Ro) be canonical representative in its family.

Let po & p. Then (po, Ro) ~ {p, R) iff (po, Ro) < (p, K).

Proof difficult.

* Proposition [ f-complete = d-complete]
d-complete reductions coincide with f-complete reductions.



Complete reductions (5/5)

* Proposition [ length of reduction = number of families]

In complete reductions, number of steps equals the number of
contracted redex families.

Proof application of MaxRedNames lemma.

 Corollary [optimal reductions]
In complete reductions, never redex of same family is contracted twice.

* Implementation [optimal reductions]
Can we implement efficiently complete reductions ?



Implementation (1/5)

 Implementation [optimal reductions]
algorithm [John Lamping, 90 -- Gonthier-Abadi-JJ, 91]

e Sharing of basic values is easy:

(Axox + x)((Ax.x)3) —> C ) . C )

(Ax.x)3 3

e Problem is sharing of functions:

(Ax.x3 + x8)((Mx.I(x)) —> 3 + o4 — 77
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Implementation (2/5)

(Ax.x3 + x4)((Ax.I(x)) —> 3 o4 — o + o4

U

AX.
N/

/() ()




Implementation (3/5)
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Implementation (5/5)

e pbeautiful Lamping’s algorithm is unpractical

e highly exponential in the handling of fans node (not elementary
recursive) [Asperti, Mairson 2000]

* nice algorithms unsharing paths to bound variables [ Wadsworth
92, Shivers-Wand 2010]

e Haskell, Coqg, Caml ??
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Permutations in call by value

e Definition [call by value]

A value remains a value if computed or substituted by a value

V = x | Ax.M
The call-by-value reduction strategy is defined by:

(Ax.M)V —>» M{x .= V}

cbv

M —> M’ N—> N’

cbv cbv

MN —> M'N MN —>» MN’

cbv cbv

* Fact [permutations in call by value]

Equivalence by permutations only permute disjoint redexes.



Speculative reductions

* Definition [speculative call, Boudol-Petri 2010]

V = x | &x.M
The speculative reduction strategy is defined by:

(AX.M)V — M{x =V}

spec

(AX-M)N — (AV? M{x = V})N

spec

(AVI M)V — M

spec

M — M’ N — N’ M — M’

Spec Spec Spec

MN — M'N MN — MN'"  AVIM — AV?M’

spec spec spec
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Semantics

Definition A semantics of the A-calculus is any equivalence such that:
(1) M —=> N implies M = N
(2) M = N implies C[M]| = C[N]

* Thus p-interconvertibility =3 is a semantics.

e Any other interesting semantics ?



Bohm's theorem

Theorem [Bohm, 68]

Let M and N be 2 distinct normal forms. Then for any x and vy,
there exists a context C[] such that:

CIM]=> x and C[N]—=>y

Corollary Any (consistent) semantics of the A-calculus cannot identify
2 distinct normal forms.

Notice Distinct normal forms means not n-interconvertible.

Exercice Bohm's thm for | = Ax.x and K = Ax.\y.x.



Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms

Proof: Take M = xaQ2, N = yQb where Q = (Ax.xx)(Ax.xx)
Let C[] = (AxAy.[])K(KI)
Then C[M] = a and C[N]—=> b

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] [ = Q is consistent !



Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff

for all C[], if C[M] = nf, then C[N] = nf for any N.

Fact: Q is totally undefined.
xaf2 and yf€2b are not totally undefined.

Exercice:
Find other terms totally undefined. Try with A3 = Ax.xxx,

K = Ax.Ay.x and Y = Af.(Ax.f(xx))(Ax.f(xx)).



Terms without normal forms

Definition [Wadsworth, 721 M isin head normal form (hnf) iff
M:)\X]_.)\XQ....)\Xm.XM]_MQ...Mn (m,nZ 0)

M not in hnf iff head variable

M = Ax1. A% ... A (AX.P)QM My ... M,  (m, n > 0)

R— head redex

Proposition: M totally undefined iff M has no hnf.



Bohm trees (1/3)

Definition [ 72] The Bohm tree BT(M) of M is defined(?) as follows:
(1) If M has no hnf, BT(M) =1

(2) If M —=> AX1. A .. AX XM M5 ... M,,, then

BT(M) = )\Xl )\XQ )\Xm

/\\

BT(M,) BT(M,) --- BT(M,)

Exercices Compute BT(/), BT(K), BT(Q2), BT(Y), ...

BT(LLLLLLLLLLLLLLLLLLLLLLLLLL) where
L = Aabcdefghijklmnopgstuvwxyzr. (r(thisisafixedpointcomb
inator))



Bohm trees (2/3)

Theorem [74] Let M =gt N iff BT(M) = BT(N). Then =gt is

a (consistent) semantics of the A-calculus.

Proof: (1) M = N implies BT(M) = BT(N).
by Church-Rosser.

(2) BT(M) = BT(N) implies BT(C[M]) = BT(C[N]).

by completeness of inside-out reductions.



Bohm trees (3/3)

Facts [ 74] All Scott’s semantics are quotients of equality of
Bohm trees: D, Pw, T, filter models, Jim Morris' extensional equiv.



