Reductions and Causality (III)

jean-jacques.levy@inria.fr

Escuela de Ciencias Informáticas
Universidad de Buenos Aires
July 24, 2013

http://jeanjacqueslevy.net/courses/13eci

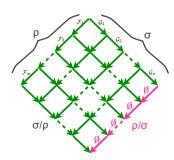
Plan

- recap
- · prefix ordering
- · properties of prefix ordering
- the lattice of reductions
- · standard reductions as canonical reductions

Prefix ordering (1/4)

• Definition:

Let ρ and σ be 2 coinitial reductions. Then ρ is prefix of σ up to permutations, $\rho \sqsubseteq \sigma$, iff $\rho/\sigma = \emptyset^m$

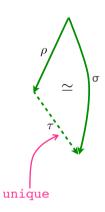


• Notice that $\rho \sqsubseteq \sigma$ means that $\rho \sqcup \sigma \simeq \sigma$

Properties of prefix ordering (1/3)

• Proposition

- (a) $\rho \sqsubseteq \sigma \sqsubseteq \rho$ iff $\rho \simeq \sigma$
- (b) \sqsubseteq is an ordering relation
- (c) $\rho \simeq \rho' \sqsubseteq \sigma' \simeq \sigma$ implies $\rho \sqsubseteq \sigma$
- (d) $\rho \sqsubseteq \sigma \text{ iff } \tau \rho \sqsubseteq \tau \sigma$
- (e) $\rho \sqsubseteq \sigma$ implies $\rho/\tau \sqsubseteq \sigma/\tau$
- (f) $\rho \sqsubseteq \sigma$ iff $\exists \tau, \ \rho \tau \simeq \sigma$
- (g) $\rho \sqsubseteq \sigma \text{ iff } \rho \sqcup \sigma \simeq \sigma$

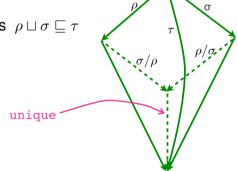


Properties of prefix ordering (2/3)

• Proposition [lattice of reductions]

$$\begin{split} \rho &\sqsubseteq \rho \sqcup \sigma \\ \sigma &\sqsubseteq \rho \sqcup \sigma \\ \rho &\sqsubseteq \tau, \ \sigma \sqsubseteq \tau \ \text{implies} \ \rho \sqcup \sigma \sqsubseteq \tau \end{split}$$

also named a push-out



Properties of prefix ordering (3/3)

• Proposition [lattice of reductions]

$$\begin{split} \rho &\sqsubseteq \rho \sqcup \sigma \\ \sigma &\sqsubseteq \rho \sqcup \sigma \\ \rho &\sqsubseteq \tau, \ \sigma \sqsubseteq \tau \ \text{implies} \ \rho \sqcup \sigma \sqsubseteq \tau \end{split}$$

• Proof First two, already proved.

Let
$$\rho \sqsubseteq \tau$$
, $\sigma \sqsubseteq \tau$. Then $(\rho \sqcup \sigma)/\tau$
 $= (\rho/\tau)((\sigma/\rho)/(\tau/\rho))$
 $= \emptyset^m \sigma/(\rho \sqcup \tau)$
 $= \emptyset^m \sigma/(\tau \sqcup \rho)$
 $= \emptyset^m (\sigma/\tau)/...$
 $= \emptyset^m \emptyset^n/... = \emptyset^m \emptyset^n$

Standard reductions (1/6)

- When R is a single redex, we write freely R/\mathcal{F} for $\{R\}/\mathcal{F}$ or \mathcal{F}/R for $\mathcal{F}/\{R\}$.
- Proposition:

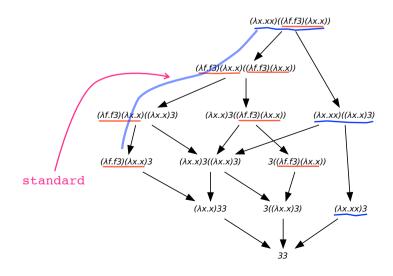
Let R be a redex to the left of \mathcal{F} . Then R/\mathcal{F} is a singleton.

• Definition: The following reduction is standard

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all i and j, i < j, then R_j is not residual along ρ of some R'_i to the left of R_i in M_{i-1} .

Standard reductions (2/6)



Standard reductions (3/6)

• Standardization thm [Curry 50]

Let
$$M \stackrel{\star}{\longrightarrow} N$$
. Then $M \stackrel{\star}{\Longrightarrow} N$.



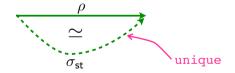
Any reduction can be performed outside-in and left-to-right.

Standard reductions (4/6)

Standardization thm +

Any ρ has a unique σ standard equivalent by permutations.

$$\forall \rho$$
, $\exists ! \sigma_{\mathsf{st}}$, $\rho \simeq \sigma_{\mathsf{st}}$



Standard reductions are canonical representatives in their equivalence class by permutations.

Standard reductions (5/6)

• Lemma (left-to-right creation) [O'Donnell] Let R be redex to the left of redex S in M. Let $M \xrightarrow{S} N$. If T' is redex in N to the left of the residual R' of R, T' is residual of a redex T in M.

$$M = \cdots \underbrace{((\lambda x. \cdots S \cdots)B)}_{R} \cdots \longrightarrow \cdots \underbrace{((\lambda x. \cdots S' \cdots)B)}_{R} \cdots = N$$

$$M = \cdots \underbrace{((\lambda x. A)(\cdots S \cdots))}_{R} \cdots \longrightarrow \cdots \underbrace{((\lambda x. A)(\cdots S' \cdots))}_{R} \cdots = N$$

$$M = \cdots \underbrace{((\lambda x. A)B)}_{R} \cdots S \cdots \longrightarrow \cdots \underbrace{((\lambda x. A)B) \cdots S' \cdots}_{R} = N$$

One cannot create a new redex across another left one.

Standard reductions (6/6)

• Lemma If R to the left of R_1 and ρ is standard reduction starting with contracting R_1 . Then $R/\rho \neq \emptyset$.

Proof: application of previous lemma.

• Proof of unicity of standard reduction in each equivalence class Let ρ and σ be standard and $\rho \simeq \sigma$. They start with same reduction and differ at some point. Say that ρ is more to the left than σ . Then at that point redex R contracted by ρ has (unique) residual by σ . Therefore $\rho \not\simeq \sigma$.

Exercices

- Show all standard reductions in the 2 reduction graphs of beginning of this class.
- Show that all reductions to normal form are equivalent.
- Show that there is a single standard reduction to normal form. What is that reduction ?
- Find an example where there is no greatest lower bound of 2 reductions. (Hint: you should use *K*-terms)
- Show that there is inf-lattice of reductions in λ I-calculus.
- Draw lattice of reductions of $\Delta\Delta$ ($\Delta = \lambda x.xx$).
- What are standard reductions in derivations of context-free languages?