Reductions and Causality (II)

jean-jacques.levy@inria.fr

Escuela de Ciencias Informáticas

Universidad de Buenos Aires

July 23, 2013

http://jeanjacqueslevy.net/courses/13eci

Exercice

Exercice

Parallel reduction steps

Parallel reductions (1/3)

permutation of reductions has to cope with copies of redexes

- in fact, a parallel reduction $la(la) \not\longrightarrow aa$
- in λ-calculus, need to define parallel reductions for nested sets

Parallel reductions (2/3)

the axiomatic way (à la Martin-Löf)

example:

$$(\lambda x.lx)(ly) \not \# (\lambda x.x)y$$

 $(\lambda x.(\lambda y.yy)x)(la) \not \# la(la)$
 $(\lambda x.(\lambda y.yy)x)(la) \not \# (\lambda y.yy)a$

• it's an *inside-out* parallel reduction-strategy

Parallel reductions (3/3)

• Parallel moves lemma [Curry 50]

If $M \not\longrightarrow N$ and $M \not\longrightarrow P$, then $N \not\longrightarrow Q$ and $P \not\longrightarrow Q$ for some Q.

Enough to prove Church Rosser thm since → ⊂ //→

[Tait--Martin Löf 60?]

Reduction of set of redexes (1/4)

Goal: parallel reduction of a given set of redexes

$$M, N ::= x \mid \lambda x.M \mid MN \mid (\lambda x.M)^a N$$

 $a, b, c, \dots ::= \text{redex labels}$

$$(\lambda x.M)N \longrightarrow M\{x := N\}$$
$$(\lambda x.M)^{a}N \longrightarrow M\{x := N\}$$

Substitution as before with add-on:

$$((\lambda y.P)^{a}Q)\{x := N\} = (\lambda y.P\{x := N\})^{a}Q\{x := N\}$$

Reduction of set of redexes (2/4)

• let \mathcal{F} be a set of redex labels in M

$$[Var Axiom] x \xrightarrow{\mathcal{F}} x$$

[App Rule]
$$\xrightarrow{\mathcal{F}} M' \qquad N \xrightarrow{\mathcal{F}} N'$$

$$MN \xrightarrow{\mathcal{F}} M'N'$$

[//Beta Rule]
$$\xrightarrow{M} \xrightarrow{\mathcal{F}} M' \xrightarrow{N} \xrightarrow{\mathcal{F}} N' \quad a \in \mathcal{F}$$

 $(\lambda x. M)^a N \xrightarrow{\mathcal{F}} M' \{x := N'\}$

[Const Axiom]
$$c \xrightarrow{\mathcal{F}} c$$

[Abs Rule]
$$\frac{M \xrightarrow{\mathcal{F}} M'}{\lambda x. M \xrightarrow{\mathcal{F}} \lambda x. M'}$$

[Redex']
$$\xrightarrow{\mathcal{F}} M' \xrightarrow{\mathcal{N}} N' \xrightarrow{a \notin \mathcal{F}} (\lambda x. M')^a N \xrightarrow{\mathcal{F}} (\lambda x. M')^a N'$$

• let \mathcal{F} , \mathcal{G} be set of redexes in M and let $M \xrightarrow{\mathcal{F}} N$, then the set \mathcal{G}/\mathcal{F} of residuals of \mathcal{G} by \mathcal{F} is the set of \mathcal{G} redexes in N.

Reduction of set of redexes (3/4)

Parallel moves lemma+ [Curry 50]

If
$$M \xrightarrow{\mathcal{F}} N$$
 and $M \xrightarrow{\mathcal{G}} P$, then $N \xrightarrow{\mathcal{G}/\mathcal{F}} Q$ and $P \xrightarrow{\mathcal{F}/\mathcal{G}} Q$ for some Q .

Reduction of set of redexes (4/4)

• Parallel moves lemma++ [Curry 50] The Cube Lemma

ullet Then $(\mathcal{H}/\mathcal{F})/(\mathcal{G}/\mathcal{F})=(\mathcal{H}/\mathcal{G})/(\mathcal{F}/\mathcal{G})$

Recap

- WMM as an example of events causally-related
- independent and causally-related computation steps
- lemma of parallel moves
- Church-Rosser theorem
- cube lemma

Residuals of redexes

Redexes

- a redex is any reductible expression: $(\lambda x.M)N$
- a reduction step contracts a given redex $R = (\lambda x.A)B$ and is written: $M \xrightarrow{R} N$
- a reduction step contracts a singleton set of redexes $M \stackrel{\{R\}}{\longrightarrow} N$
- a more precise notation would be with occurences of subterms.

 We avoid it here (but it is sometimes mandatory to avoid ambiguity)
- we replaced occurences by giving names (labels) to redexes.

Residuals of redexes (1/4)

- residuals of redexes were defined by considering labels
- they are redexes with same names when giving distinct names to initial redexes.
- a closer look w.r.t. their relative positions give following cases:

let $R = (\lambda x.A)B$, let $M \xrightarrow{R} N$ and $S = (\lambda y.C)D$ be an other redex in M. Then:

Residuals of redexes (2/4)

Case 1:

$$M = \cdots R \cdots S \cdots R' \cdots R' \cdots S \cdots = N$$

or

$$M = \cdots S \cdots R \cdots R \cdots S \cdots S \cdots R' \cdots R'$$

Case 2:

$$M = \cdots R \cdots R \cdots R' \cdots R' \cdots R' \cdots R'$$
 (R and S coincide)

Case 3:

$$M = \cdots (\lambda y. \cdots R \cdots) D \cdots \xrightarrow{R} \cdots (\lambda y. \cdots R' \cdots) D \cdots = N$$

Case 4:

$$M = \cdots (\lambda y.C)(\cdots R\cdots)\cdots \xrightarrow{R} \cdots (\lambda y.C)(\cdots R'\cdots)\cdots = N$$

Residuals of redexes (3/4)

Case 3:

$$M = \cdots (\lambda x. \cdots S \cdots) B \cdots \xrightarrow{R} \cdots S \{x := B\} \cdots = N$$

Case 4:

$$M = \cdots (\lambda x. \cdots x \cdots x \cdots)(\cdots S \cdots) \cdots$$

$$R \cdots (\cdots S \cdots) \cdots (\cdots S \cdots) \cdots = N$$

Residuals of redexes (4/4)

Examples: $\Delta = \lambda x.xx$, $I = \lambda x.x$

$$\Delta(Ix) \longrightarrow Ix(Ix)$$

$$Ix(\Delta(Ix)) \longrightarrow Ix(Ix(Ix))$$

$$I(\Delta(Ix)) \longrightarrow I(Ix(Ix))$$

$$\Delta(Ix) \longrightarrow Ix(Ix)$$

$$Ix(\Delta(Ix)) \longrightarrow Ix(Ix(Ix))$$

$$\Delta\Delta \longrightarrow \Delta\Delta$$

Residuals of reductions

Parallel reductions

- Redex occurences and labels
 - **Let** ||U|| = M where labels in U are erased (forgetful functor)
 - Then $M \xrightarrow{\mathcal{F}} N$ iff $U \xrightarrow{\mathcal{F}} N$ for some labeled U and M = ||U||

Consider reductions where each step is parallel

$$\rho: M = M_0 \xrightarrow{\mathcal{F}_1} M_1 \xrightarrow{\mathcal{F}_2} M_2 \cdots \xrightarrow{\mathcal{F}_n} M_n = N$$

We also write

$$\rho = 0$$
 when $n = 0$

$$\rho = \mathcal{F}_1 \, \mathcal{F}_2 \cdots \mathcal{F}_n$$
 when M clear from context

Residual of reduction (1/4)

Residual of reduction (2/4)

Definition [JJL 76]

$$ho/0 =
ho$$

$$ho/(\sigma \tau) = (
ho/\sigma)/\tau$$

$$(
ho \sigma)/\tau = (
ho/\tau) (\sigma/(\tau/
ho))$$

 \mathcal{F}/\mathcal{G} already defined

Notation

$$\rho \sqcup \sigma = \rho \left(\sigma / \rho \right)$$

• Proposition [Parallel Moves +]: $\rho \sqcup \sigma$ and $\sigma \sqcup \rho$ are cofinal

Residual of reduction (3/4)

Residual of reduction (4/4)

• Proposition [Cube Lemma ++]:

$$\tau/(\rho \sqcup \sigma) = \tau/(\sigma \sqcup \rho)$$

Equivalence by permutations

Equivalence by permutations (1/4)

Definition:

Let ρ and σ be 2 coinitial reductions. Then ρ is equivalent to σ by permutations, $\rho \simeq \sigma$, iff:

$$\rho/\sigma = \emptyset^m$$
 and $\sigma/\rho = \emptyset^n$

ullet Notice that $ho \simeq \sigma$ means that ho and σ are cofinal

Equivalence by permutations (2/4)

Equivalence by permutations (3/4)

$$(\lambda x.x)^{a}((\lambda x.x)^{b}y)$$

$$(\lambda x.x)^{b}y \qquad (\lambda x.x)^{a}y$$

$$\rho: M = I(Iy) \xrightarrow{R_{a}} Iy = N$$

$$\sigma: M = I(Iy) \xrightarrow{R_{b}} Iy = N$$

$$\rho \not\simeq \sigma$$

• Notice that $\rho \not\simeq \sigma$ while ρ and σ are coinitial and cofinal

Equivalence by permutations (4/4)

- Same with $0 \not\simeq \rho$ when $\rho : \Delta\Delta \longrightarrow \Delta\Delta$ $\Delta = \lambda x.xx$
- Exercice 1: Give other examples of non-equivalent reductions between same terms
- Exercice 2: Show following equalities

$$ho/0 =
ho$$
 $ho^n/\rho =
ho^n$
 $ho/\rho = 0$ $0 \simeq
ho^n$
 $ho/\rho^n =
ho$ $\rho/\rho =
ho^n$

• Exercice 3: Show that \simeq is an equivalence relation.

Perrities of equivalent

Proposition

Proof

As $\rho \simeq \sigma$, one has $\sigma/\rho = \emptyset^n$. Therefore $\tau/\rho = (\tau/\rho)/(\sigma/\rho)$. That is $\tau/\rho = \tau/(\rho \sqcup \sigma)$. Similarly as $\sigma \simeq \rho$, one gets $\tau/\sigma = \tau/(\sigma \sqcup \rho)$. But cube lemma says $\tau/(\rho \sqcup \sigma) = \tau/(\sigma \sqcup \rho)$. Therefore $\tau/\rho = \tau/\sigma$.

Perentians of equivalent

ullet Proposition \simeq is the smallest congruence containing

$$\mathcal{F}\left(\mathcal{G}/\mathcal{F}\right)\simeq\mathcal{G}\left(\mathcal{F}/\mathcal{G}\right)$$
 $0\simeq\emptyset$

Beyond the \lambda-calculus

Context-free languages

permutations of derivations in contex-free languages

each parse tree corresponds to an equivalence class

Term rewriting

- permutations of derivations are defined with critical pairs
- critical pairs make conflicts
- only 2nd definition of equivalence works [Boudol, 1982]

Process algebras

• similar to TRS [Boudol-Castellani, 1982]

Exercices CENTRE DE RECHERCHE COMMUN INRIA MICROSOFT RESEARCH

Exercices

- Exercice 4: Complete all proofs of propositions
- Exercice 5: Show equivalent reductions in

Proof Parallel moves

Parallel moves (1/4)

• Lemma $M \xrightarrow{\mathcal{F}} N, M \xrightarrow{\mathcal{G}} P \Rightarrow N \xrightarrow{\mathcal{F}} Q, P \xrightarrow{\mathcal{G}} Q$

Proof

Case 1: M = x = N = P = Q. Obvious.

Case 2: $M = \lambda x. M_1$, $N = \lambda x. N_1$, $P = \lambda x. P_1$. Obvious by induction on M_1

Case 3: (App-App) $M = M_1 M_2$, $N = N_1 N_2$, $P = P_1 P_2$. Obvious by induction on M_1 , M_2 .

Case 4: (Red'-Red') $M = (\lambda x. M_1)^a M_2$, $N = (\lambda x. N_1)^a N_2$, $P = (\lambda x. P_1)^a P_2$, $a \notin \mathcal{F} \cup \mathcal{G}$

Then induction on M_1 , M_2 .

Case 4: (beta-Red') $M = (\lambda x. M_1)^a M_2$, $N = N_1 \{x := N_2\}$, $P = (\lambda x. P_1)^a P_2$, $a \in \mathcal{F}$, $a \notin \mathcal{G}$

By induction $N_1 \xrightarrow{\mathcal{G}} Q_1$, $P_1 \xrightarrow{\mathcal{F}} Q_1$. And $N_2 \xrightarrow{\mathcal{G}} Q_2$, $P_1 \xrightarrow{\mathcal{F}} Q_2$.

By lemma, $N_1\{x:=N_2\} \xrightarrow{\mathcal{G}} Q_1\{x:=Q_2\}$. And $(\lambda x.P_1)^a P_2 \xrightarrow{\mathcal{F}} Q_1\{x:=Q_2\}$

Case 5: (beta-beta) $M = (\lambda x. M_1)^a M_2$, $N = N_1 \{x := N_2\}$, $P = P_1 \{x := P_2\}$, $a \in \mathcal{F} \cap \mathcal{G}$

As before with same lemma.

Parallel moves (1/4)

• Lemma $M \xrightarrow{\mathcal{F}} N, P \xrightarrow{\mathcal{F}} Q \Rightarrow M\{x := P\} \xrightarrow{\mathcal{F}} N\{x := Q\}$ Proof: exercice!

• Lemma [subst] $M\{x := N\}\{y := P\} = M\{y := P\}\{x := N\{y := P\}\}$ when x not free in P