
CONFER-2

CONcurrency and Functions:

Evaluation and Reduction

Working Group

Project Number: 21836

?
???

?
?
?
? ? ?

?
?

Periodic Progress Report
December, 1997

Contents

1 Overview 3

2 Executive summary 5

3 Management 7
3.1 Consortium level . 7
3.2 Università di Bologna . 8
3.3 University of Cambridge . 10
3.4 CWI . 14
3.5 University of Edinburgh . 15
3.6 ENS . 17
3.7 France Telecom – CNET . 19
3.8 ICL . 20
3.9 INRIA-Rocquencourt . 22
3.10 INRIA-Sophia . 26
3.11 KTH . 29
3.12 Università di Pisa . 30
3.13 University of Sussex . 35
3.14 University of Warwick . 38

4 Deliverables 41
4.1 Workshop 1 . 41
4.2 Workshop 2 . 43
4.3 Software deliverables . 45

5 Progress 47
5.1 Foundational models and abstract machines 47
5.2 Calculi . 53
5.3 Logics for Concurrency and λ-calculus 60
5.4 Programming Languages . 63

6 Appendices 69

1

2 CONTENTS

Chapter 1

Overview

This report contains the First Periodic Progress Report for ESPRIT WG Nr. 21836
(CONFER-2).

The report contains 4 main parts: management at consortium level and at each site,
deliverables (programs of each CONFER-2 workshops 1 and 2, software deliverables),
a progress report describing the technical work achieved during the first year, and
appendices listing CONFER-2 publications.

Further information may be requested from the coordinator:
Jean-Jacques Lévy
INRIA, Rocquencourt
bat.8, Domaine de Voluceau
78153–Le Chesnay, Cedex
France
tel: +33-1-39-63-56-89
fax: +33-1-39-63-53-30
e-mail: Jean-Jacques.Levy@inria.fr

This document has been compiled from input from all of the partners in the CON-
FER project: Andrea Asperti, Peter Sewell, Jan Willem Klop, Samson Abramsky and
Paul-André Mellies, Pierre-Louis Curien, Jean-Francois Monin, Bent Thomsen and
Lone Leth, Davide Sangiorgi, Bjorn Lisper, Gianluigi Ferrari, Matthew Hennessy, and
David Walker. Lone Leth and Bent Thomsen from ICL greatly helped in the writing
and the assembly of the document.

3

4 CHAPTER 1. OVERVIEW

Chapter 2

Executive summary

The Confer-2 Working Group follows Basic Research Action CONFER. It is a frame-
work to keep together the CONFER community, and to provide 2 annual workshops.

The overall objective of Confer-2 action is similar to the one of CONFER and to
create both the theoretical foundations and the technology for combining the expres-
sive power of the functional and the concurrent computational models. The action is
organised around four main areas:

• Foundational Models and Abstract Machines

• Calculi

• Logics for Concurrency and the λ-calculus

• Programming Languages

(see Periodic Progress Reports of CONFER, for more explanations). In this first year
of Confer-2, we may notice the following important and successful facts.

In the area of Foundational Models and Abstract Machines, progress has been done
in three areas, there has been a major result by Asperti and Mairson on the non
elementary-recursive cost of optimal reductions in the lambda calculus. The work on
action calculi has been continued which now provide a uniform setting for dealing with
rewrite rules on terms with bound variables. Work on tile models, axiomatic rewrite
rules, the sequentiality theorem for the lambda calculus and syntactic transformation
of recursive program schemes with non determinism is also part of this section.

In the area of Calculi work has been done at many levels. First, the new blue calculus
of Boudol gives a nice language with both the functional and concurrent paradigms.
The update-calculus of Parrow and Victor simplifies and extends the π-calculus, making
it suitable also for models with shared states and concurrent constraints. Many results
have been obtained to develop new theories for the equivalences of processes, to model
concurrent objects or secure communication, or to prove transformations of programs
with concurrency.

In the area of Logics for Concurrency and the λ-calculus, work has proceeded on
the development of games semantics for the sequential lambda calculus, linear logic or

5

6 CHAPTER 2. EXECUTIVE SUMMARY

concurrent processes. Denotational semantics has also been used to give semantics of
core Facile.

In the area of Programming Languages several efforts have been completed: a sta-
bilised public release of the PICT language, a first public release of the Join Calculus
language, a distributed garbage collector collecting cycles, the design of Linda with
localities, an efficient automata-based verification environment for the π-calculus. Sev-
eral experiments are also led to investigate the real uses of mobility and agents in
programming examples.

As for BRA CONFER, the progress reports in chapter 5 reflect that crossfertilisation
of ideas among fellow researchers in the working group is very lively. As in previous
years it is evident that related work done at other sites in the consortium is referenced
often and also very often used as the basis for development of new results. It is no
surprise that a number of these results have been achieved in collaboration between
sites, enabled through site visits for shorter or longer periods. Leading researchers
outside the consortium have also been involved in fruitful collaborations.

During Year 1 of Confer-2 two workshops have been held.
The working group has produced a large number (about 70) of reports and several of

these have been published at conferences, international workshops and journals. Many
of theses works are accessible at URL http://www.cs.auc.dk/mobility/, where a Web
page on Mobility is maintained by Uwe Nestmann, who moved in September 1997 from
INRIA Rocquencourt to Aalborg.

Several Ph.D.’s are in preparation in the action, and several have been defended.

Chapter 3

Management

3.1 Consortium level

The main management of the project is done at INRIA, Rocquencourt, and at ICL.
The following activities at the consortium level have taken place during the first

year of the CONFER-2 working group:
Two workshops have been held. The first took place in March 1997 at University

of Bologna with 20 presentations and 30 participants, and was organised by Andrea
Asperti. The second workshop took place in October 1997 at CWI in Amsterdam with
14 presentations and 30 participants. It was organised by Inge Bethke and J.-W. Klop.

As specified in §2.6 of the Working Group Programme, the vast majority of the
activity of CONFER-2 is devoted to the organisation of 2 workshops per year. The
cost statements forms will strengthen this distribution of the activity, although some
of the funds are still reserved for travelling expenses between sites.

As a general remark on the technical orientation of the Working Group, it should
be noticed that the subject of area 3 in the Progress section has a bit changed with
respect to the initial programme. The title remains unchanged, but the area covers
more semantics foundations of the various syntactic calculi considered in the two first
parts of the programme: foundational models and calculi. The third area is now more
oriented towards game semantics and denotational semantics. However, the overall
project keeps its very syntactic initial flavour. The aim of the Working Group is also
still to consider the fusion of the functional and concurrent approach.

7

8 CHAPTER 3. MANAGEMENT

3.2 Università di Bologna

3.2.1 Research

The research activity in Bologna, organized along the main task of the Working Group,
has been the following:

Calculi In this area, we have been involved both in the static semantics (polymorphic
type theory) and the dynamic one (analysis of bisimulation) of concurrent calculi.

Polymorphic Type Theory We have studied the adaptation of the Damas-
Milner typing discipline to the join-calculus [FLMR97]. Since interactions in the
join-calculus are explicitly defined, it turns out that polymorphic types may be
effectively inferred as in the lambda-calculus with the let-operator. Our main
result is a new generalization criterion that extends the polymorphism of ML to
join-calculus definitions. We prove the correctness of our typing rules with regard
to a chemical semantics and we also relate typed extensions of the join-calculus
to functional languages.

Analysis of Bisimulation We have mainly investigated the theory of bisim-
ulation in the join-calculus [BFL97]. To this purpose, we introduce a refined
operational model that makes interactions with the environment explicit. In
this framework we show that the so-called “locality property” strongly affects the
treatment of bisimulation, and provides a semantics simpler than other propos-
als in the literature. We also propose several formulations of bisimulation and
we establish that all formulations yield the same equivalence, which is finer than
barbed congruence. Bisimulation and barbed congruence coincide in the presence
of name-testing.

Logics for Concurrency λ-calculus Our research in this field has been mainly fo-
cused on the theory of optimal sharing in β-reduction. In particular, we proved
that the notion of optimal “parallel” reduction, as formalized by Lèvy, is not
elementary recursive [AM98]. The result should not be understood in a negative
sense: it just says that the notion of optimal sharing cannot have a simple imple-
mentation since, essentially, all the computational work can be done via sharing.
Actually, the result is straightforward consequence of the fact that every term of
the simply typed lambda calculus can be essentially reduced in a linear number
of “parallel” (i.e. sharable) β-reduction.

Programming Languages We proceeded in two directions, here:

BOHM We are still working on our implementation of Lamping’s graph reduc-
tion algorithm for optimal reduction of functional languages (the Bologna
Optimal Higher-order Machine [AG98]). We have almost completed a new

3.2. UNIVERSITÀ DI BOLOGNA 9

“light” version, essentially inspired by Girard’s Light Linear Logic. The
light version provides a much sharper syntactical control over the shape of
sharing graphs than that provided by the rough encoding of intuitionistic
implication into linear logic, with a significant impact on the efficiency of
the reduction.

Join-calculus We have a first prototype of a C implementation of the distributed
join-calculus. This has been mostly conceived as an implementation exer-
cise, and some features are still missing (especially in the type system: no
type inference, no polymorphism, no recursive types, . . .). According to our
(very preliminary) tests, the performance looks comparable with the imple-
mentation developed at INRIA (but several optimizations are still missing).
We expect to make a first release for the beginning of 1998.

3.2.2 Workshops, Travels and Visits

Workshops Bologna organized the first Workshop of the Working Group, from
march 24 to march 26. We had more than 30 participants, and 20 talks. For more infor-
mations on the Workshop in Bologna, look at “http://www.cs.unib.it/ asperti/CONFER/bolo-
gna.html”.
Please remark that we got the first money for the WG about two months after the
Workshop.

Travels Cosimo Laneve participated at the Second Confer Workshop held in Ams-
terdam from 20 to 22 October 1997.

Visits Cédric Fournet visited the University of Bologna from July 29 to 2 August
1997. He worked with Cosimo Laneve on the issue of “Bisimulations in the Join-
Calculus”.

3.2.3 Publications

[AM98] A. Asperti, H.Mairson Optimal β-reduction is not elementary recursive.
Proc. of the twenty-fifth Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL’98).

[AG98] A. Asperti, S. Guerrini The Optimal Implementation of Functional Pro-
gramming Languages. To appear in the “Cambridge Tracts in Theoretical
Computer Science” Series, Cambridge University Press, 1998.

[BFL97] M. Boreale, C. Fournet, C. Laneve: Bisimulations in the Join-Calculus.
October 1997. Submitted.

[FLMR97] C. Fournet, C. Laneve, L. Maranget, D. Rèmy: Implicit Typing à la ML in
the Join-Calculus. In Proceeding CONCUR ’97, LNCS 1243.

10 CHAPTER 3. MANAGEMENT

3.3 University of Cambridge

3.3.1 Research directions

The research at Cambridge that is most relevant to CONFER 2 has been focused on
the dynamics of action calculi, on the structure of higher-order and reflexive action
calculi, and on the foundations of concurrent and distributed programming languages.

Action Calculi

• Labelled transition systems and bisimulation congruences The semantics
of a process calculus, several of which have been introduced during CONFER,
can often be most intuitively given as a reduction relation, defined by a structural
congruence and reduction axioms. The action calculus framework embraces a
rather wide class of such definitions. A central problem is then that of deriving,
from such a definition of reduction, a labelled transition semantics for which
bisimulation is a satisfactory congruence. Considerable progress has been made,
e.g. by Jensen [Jen98] for a form of graph rewriting approximating to a graphical
presentation of action calculi, and by Sewell for special cases of term rewriting.
Work on more general cases is being undertaken by Gardner, Jensen, Leifer,
Milner and Sewell.

• Expressiveness A uniform framework for the operational semantics of calculi
allows comparisons of expressiveness to be made. Using natural homomorphisms
between control structures (the models of action calculi), it is possible to char-
acterise important properties of calculi such as mobility of channels. Leifer has
shown that the π-calculus is mobile in this sense, whilst many other calculi such
as CCS, the λ-calculus, and Petri nets, are not. This work, extending the work
of Mifsud at Edinburgh, gives a precise meaning to the intuitive sense in which
the π-calculus is more expressive than, say, CCS.

• Gardner has introduced a type-theoretic description of action calculi [GH97]
which develops her previous work on a name-free account of action calculi and
gives a logical interpretation based on the general binding operators studied by
Aczel. With her Ph.D student Hasegawa, at Edinburgh, she has shown that
the type-theoretic account of higher-order action calculi corresponds to Moggi’s
commutative computational λ-calculus. With Gordon Plotkin and Andrew Bar-
ber, also at Edinburgh, they have introduced a further extension of action calculi,
called the linear action calculi [BGHP97]. Linear action calculi extend the higher-
order case, and the associated type theory corresponds to the linear type theories
studied by Barber and Nick Benton of Cambridge. The conservative extension
results follow from looking at the corresponding categorical models.

• Examples Several example action calculi have been considered, including a func-
tional programming language with mutable store and exceptions, the ambient
calculus of Abadi and Cardelli, and distributed process calculi.

3.3. UNIVERSITY OF CAMBRIDGE 11

• Higher-order reflexive action calculi The first of these examples required two
previously separate enrichments of AC, namely, the higher-order and the reflexive
extensions (the latter in a simplified form). The proof that an AC combining the
two is well-defined reduces to a proof of strong normalisation for the higher-order
beta-reduction of the molecular forms corresponding to this enriched AC. Leifer
completed this proof and, in the process of doing so, developed several new tech-
niques for handling molecular forms, including the formalisation of manipulations
involving reflexive substitutions.

Concurrent and distributed programming languages Our work on program-
ming languages builds on the PICT language, based on the π-calculus, of Pierce and
Turner. PICT now has a stable public release; its design is described in [PT97]. Pierce,
who has moved from Cambridge to Indiana, has continued to work on type inference
and (with Sangiorgi of INRIA-Sophia-Antipolis) on bisimulation in the presence of
polymorphism. We are collaborating on calculi for distribution.

• Observational semantics for concurrent programming languages Sewell
has studied the semantics of PICT in [Sew97c], and has shown how the behaviour
of implementations of the language relates precisely to the labelled transitions of
the π-calculus. His results indicate that there is an essentially unique behavioural
equivalence appropriate for PICT, from the large space of choices in the literature.

• Global/Local typing In the design of distributed programming languages there
is a tension between the implementation cost and the expressiveness of the com-
munication mechanisms provided. In [Sew97a] a static type system for a distribut-
ed π-calculus has been introduced, in which the input and output capabilities of
channels may be either global or local. This allows compile-time optimization
where possible but retains the expressiveness of channel communication. Subtyp-
ing allows all communications to be invoked uniformly. The distributed π-calculus
used integrates location and migration primitives from the Distributed Join Cal-
culus with asynchronous π communication, with a simple reduction semantics
that can be presented as an action calculus. Abstract machines for similar calculi
have been considered by Unyapoth.

• Location Independence In [SWP97] we have begun to study in more detail
the design, semantic definition and implementation of communication primitives
by which mobile agents can interact. We have proposed a simple calculus of a-
gents that can migrate between sites and can interact by both location dependent
and location independent message passing. It has a precise reduction semantic-
s. Implementations of the location independent primitives can be expressed as
encodings, or compilations, of the whole calculus into the fragment with only
location dependent communication. This allows the algorithms to be stated and
understood precisely, a clean implementation strategy for prototype languages
(such an encoding can be realized as one phase of a compiler), and reasoning. It

12 CHAPTER 3. MANAGEMENT

also provides a setting in which multiple communication mechanisms can coexist
gracefully.

A prototype implementation, building on that of PICT, is ongoing, as is work on
reasoning, in particular on correctness and robustness results.

Work has also been completed on the algebraic theory of processes [Sew97b] and
on closed action calculi [Gar98].

3.3.2 Personnel and exchanges

Researchers and PhD students associated with CONFER at Cambridge include Adri-
ana Compagnoni, Philippa Gardner, Ole Jensen, James Leifer, Robin Milner, Paola
Quaglia, Peter Sewell, Asis Unyapoth and Pawe l Wojciechowski.

During 96–97 Gardner and Sewell have given seminars at Sussex, and Sewell has
visited Edinburgh. In November 97 Sewell spent a week with the INRIA-Rocquencourt
group in discussions of distributed calculi and of labelled transition systems and bisim-
ulation for arbitrary rewriting systems.

3.3.3 Publications

[BGHP97] Andrew Barber, Philippa Gardner, Masahito Hasegawa, and Gordon Plotkin.
From action calculi to linear logic,. In Proceedings of CSL 97, Aarhus, 1997.

[Gar98] Philippa Gardner. Closed action calculi. Theoretical Computer Science,
1998. To appear.

[GH97] Philippa Gardner and Masahito Hasegawa. Types and models in higher-
order action calculi. In Proceedings of TACS 97, Sendai, Japan, 1997.

[Jen98] Ole Høgh Jensen. PhD thesis, University of Cambridge. Forthcoming,
1998.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. Technical Report CSCI 476, Computer Science
Department, Indiana University, 1997. To appear in Proof, Language and
Interaction: Essays in Honour of Robin Milner, Gordon Plotkin, Colin
Stirling, and Mads Tofte, editors, MIT Press.

[Sew97a] Peter Sewell. Global/local subtyping for a distributed π-calculus. Technical
Report 435, Computer Laboratory, University of Cambridge, August 1997.
Available from http://www.cl.cam.ac.uk/users/pes20/.

[Sew97b] Peter Sewell. Nonaxiomatisability of equivalences over finite state processes.
Annals of Pure and Applied Logic, 1997. To appear.

[Sew97c] Peter Sewell. On implementations and semantics of a concurrent pro-
gramming language. In Proceedings of CONCUR ’97. LNCS 1243, pages
391–405. Springer-Verlag, 1997.

3.3. UNIVERSITY OF CAMBRIDGE 13

[SWP97] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location
independence for mobile agents. Submitted for publication, 1997.

14 CHAPTER 3. MANAGEMENT

3.4 CWI

3.4.1 Research Directions

J.W. Klop and I. Bethke have continued work on a generalization of Berry’s Sequen-
tiality Theorem for lambda calculus. Using the setting of infinitary lambda calculus
where Bohm trees are infinite normal forms, the technique of origin tracking was em-
ployed to obtain the sequentiality property for lambda calculus. The infinitary lambda
calculus differentiates in three versions according to the way syntactic depth is counted:
the three versions yield ordinary lambda calculus with Bohm trees, the lazy lambda
calculus with Levy-longo trees, and a version introduced by Berarducci. For all three
versions Berry’s sequentiality theorem is uniformly proved by the same arguments. Al-
so, a strengthening of Berry’s theorem was obtained that can be used to prove more
undefinability results.

3.4.2 Participation to workshops

- I. Bethke and J.W. Klop have attended the Confer workshop in Bologna from March
24-26, 1997. J.W. Klop gave a talk: Infinitary lambda calculus and Berry’s sequentiality
theorem.
- I. Bethke and J.W. Klop attended the second Confer workshop in Amsterdam, from
October 20-22, 1997. I. Bethke gave a talk: Sequentiality in lambda calculus.

3.5. UNIVERSITY OF EDINBURGH 15

3.5 University of Edinburgh

3.5.1 Research directions

Abramsky has developed a concurrent version of game semantics, using the Kahn-
Plotkin theory of concrete domains and sequential functions. This has been used to give
a game semantics for Classical Linear Logic. It has also been used to give a model for
logic with branching quantifiers and information hiding, as proposed by Hintikka. This
work was presented in invited talks given at the Workshop on “Problems and Advance
in the Semantics of Linear Logic” held in Utrecht, November 28th and 29th 1997, and
at the Amsterdam Colloquium, December 17-20 1997. Honda and Yoshida developed a
version of game semantics for call-by-value PCF, and proved a full abstraction result.
Their description of their model used some tools from the pi-calculus. Abramsky and
McCusker gave a more abstract and general construction of call-by-value models from
call-by-name ones, and showed that when applied to the call-by-name games model of
PCF it gave rise to the call-by-value one of Honda and Yoshida; when applied to the
model for the richer functional language FPC studied by McCusker in his thesis, it gave
a fully abstract model for call-by-value FPC; and when applied to the model previously
given by them for Idealized Algol, it gave a full abstract model for a fragment of ML
with ground reference types.

Honda and Yoshida’s paper appeared in ICALP ‘97, while Abramsky and Mc-
Cusker’s paper was given in CSL ‘97, and will appear in the proceedings of that con-
ference. Subsequently, Abramsky, Honda and McCusker have obtained a fully abstract
games model for general reference types; a paper containing this result has been sub-
mitted to LiCS ‘98.

A factorisation theorem in the sense of Freyd & Kelly has been obtained by Mel-
liès in the framework of axiomatic rewriting systems. The theorem means that the
efficient part of a computation can always be separated from its useless part modulo
redex permutations, and that this separation is categorically functorial. This work was
presented at the Confer workshop in Bologna and at the CTCS ‘97 conference in Santa
Margherita.

Subsequently, Melliès has obtained a stability result in the sense of Berry expressing
the existence of a cone (ei : M → Vi)i∈I of minimal computations from any term M
to the set of its values Vi. The result whose proof relies heavily on the factorisation
theorem is verified by any axiomatic rewriting system. In the lambda-calculus, it
extends the result by Wadsworth that the head-reduction is the minimal reduction path
from a lambda-term to its head-normal form. In the call-by-value lambda-calculus, the
cone (ei : M → Vi)i∈I contains at most a singleton which describes the strategy of
Landin SECD machine. In the lambda-sigma calculus, the existence of a cone and its
finiteness implies the completeness of various weak strategies and the corresponding
abstract machines. A paper containing these results has been submitted to LiCS ‘98.

3.5.2 Workshops, Travels and Visits

Travels Paul-André Melliès participated at the Confer Workshops held in Bologna and

16 CHAPTER 3. MANAGEMENT

Amsterdam.

3.5.3 Publications

[AM97] S. Abramsky, G. McCusker, Call-by-Value games (extended abstract) To
appear in Proc. of CSL’97.

[HY97] K. Honda, N. Yoshida, Game-theoretic analysis of Call-by-Value Computa-
tion (extended abstract). To appear in Proc. of ICALP’97.

[M97] P.-A. Melliès, A factorisation theorem in Rewriting Theory. Proc. of the
Category Theory and Computer Science symposium (CTCS’97).

3.6. ENS 17

3.6 ENS

3.6.1 Research Directions

At ENS, work has progressed in game semantics and in the investigation of Boudol’s
calculus of resources.

Game semantics. A key interest of game semantics is that it provides a framework
within which one may conciliate dynamic and static aspects of meaning. It is expected
that such semantics can help in complexity theory on the one hand and in extend-
ing denotational semantics to model concurrent and distributed languages (so-called
process-calculi).

1. In [DHR96], V. Danos, H. Herbelin and L. Regnier explain the operational side of
the two game models of Hyland-Ong (HO) and Abramsky-Jagadeesan-Malacaria
(AJM) in terms of abstract machines. Building on this explanation, an embed-
ding of the AJM model in the HO model is given that leads to aneasy proof of
completeness for the former.

2. In [BDER97], P. Baillot, V. Danos, T. Ehrhard and L. Regnier adapt the AJM
construction to give the first known games model which encompasses all of clas-
sical linear logic. Composition of strategies is recast as a communication process.
The exponential part of the model is based on the idea of sticking to strate-
gies which contain all possible encodings of copy-tags. This works is pursued in
[BDER97b], which gives an explicit transformation that goes from that linear
logic games model to the traditional relational model. This concrete extensional
collapse helps in understanding what games semantics is good to.

3. In [CuBoeh] P.-L. Curien presents a formalism of trees with pointers, called ab-
stract Böhm trees, that provide a suitable abstract framework in which various
cut-free proofs or normal terms of several λ-calculus based languages (including
PCF and Parigot’s λµ-calculus) can be faithfully encoded. A simple abstract
machine allows us to compute over abstract Böhm trees. This machine is closely
related to Coquand’s interaction sequences and debates. The execution over finite
abstract Böhm trees always terminates. We introduce an abstract notion of type
that fits the purpose of guaranteeing that the execution cannot go into deadlock,
i.e., that it always reaches a satisfactory final state. The operational aspects of
(untyped) Böhm trees are investigated in more depth in [CuHer96], a joint paper
by P.-L. Curien and H. Herbelin,

Calculus with resources (λr). C. Lavatelli has been working on the definition of an
algebraic semantics of λr based on approximants, in the flat scenario (where both
abstractions and deadlock are observable), which turns out to be sound. Work in
progress concerns completeness. The aim is to use these results as intermediate steps in
the characterization of the flat semantics through an intersection type system. Another
work in progress, by C. Lavatelli and P.-L. Curien, concerns the use of techniques of

18 CHAPTER 3. MANAGEMENT

logical relations to compare the inequational theories of two models of λr that have
arisen naturally when trying to give a semantics to λr.

3.6.2 Publications

[BDER97] P. Baillot, V. Danos, and T. E. andL. Regnier. Believe it or not, AJM’s
games model is a model of classical linear logic. In Proc. 12th LICS, pages
68–75. IEEE, 1997.

[BDER97b] P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Timeless games. In
Proc. CSL ’97, volume to appear. Springer Verlag, 1997.

[CuBoeh] P.-L. Curien. Abstract böhm trees. Mathematical Structures in Computer
Science, 1998. to appear.

[CuHer96] P.-L. Curien and H. Herbelin. Computing with abstract böhm trees. In
Proc. of Third Fuji International Symposium on Functional and Logic Pro-
gramming, World Scientific (Singapour), 1998.

[DHR96] V. Danos, H. Herbelin, and L. Regnier. Game semantics and abstract
machines. In Proc. 11th LICS, pages 394–405. IEEE, 1996.

3.7. FRANCE TELECOM – CNET 19

3.7 France Telecom – CNET

CNET is involved in the design of many algorithms to be used in a distributed envi-
ronment. During 1997, CNET participated to two meetings (Bologna and Amsterdam)
and two experiments related to CONFER-2 have been made.

The first one consists of adapting a theorem prover (Coq) for specifying and proving
safety and liveness properties of protocols and distributed algorithms in a modular
way. This works implements results obtained in 1996 by P. Crégut and B. Heyd on the
theory of Unity. In order to apply Coq-Unity to real-world protocol, a translation from
SDL is used. This method is currently applied on an ATM protocol.

Our second experiment is with join-calculus language (P. Brisset). The release of an
implementation of the join-calculus by INRIA in 1997 allowed us to begin evaluating
its usefulness for real-world applications.

We took advantage of the features of the join-calculus to design a very primitive
distributed search engine that indexes text files residing on a network of workstations.
Each workstation runs an autonomous agent which first builds an indexed database
of the local files, then answers keyword-based queries while continuously updating the
database. The only central element is a name-server whose function is mainly to trans-
mit queries and answers between these agents and client processes.

Compared to popular WWW search engines like AltaVista, which fetch files from
servers through the Internet and process them in a high-performance, centralized
database server, this distributed architecture yields lower network usage (assuming
low query rates) and allows the database to be kept consistent with the original files at
a much lower cost.

Future work on this application might include:

• designing a generic mechanism that would allow agents to be upgraded without
interrupting the system;

• testing a hybrid architecture in which local databases are transmitted incremen-
tally to a central server; this would allow high query rates while still yielding
good consistency with low usage of network resources;

• implementation of fault-tolerance, which is expected to be easy with upcoming
releases of the join-calculus.

20 CHAPTER 3. MANAGEMENT

3.8 ICL

3.8.1 Research Directions

The role of ICL in CONFER-2 is, through our work on designing programming lan-
guages and advanced end-user applications, to be serving as a “laboratory” in which
theoretical results are transferred into industrial usage.

Since the start of CONFER-2 a new research programme, called the ICL GTD1

framework in Agents and Mobility, has been set up. The programme encourages I-
CL businesses to take part in the research process from an early stage to ensure they
are prepared for knowledge and technology transfer as results emerge. The framework
includes setting up a virtual laboratory in collaboration with Fujitsu Laboratories, coor-
dinating sponsored medium/longer term research at universities and external research
laboratories (ANSA at APM, Cambridge and IC-Parc at Imperial College), a number of
research and development projects with ICL businesses (TeamWare, Financial Services,
ProcessWise and DAIS) and coordinating and participating in ICL efforts in defining
market and technical strategies, architectural and methodological developments across
the company. The participation in CONFER-2 is an integral part of this framework.

Of particular interest to CONFER-2 are activities on understanding the relationship
between mobile agents, higher order processes, Milner’s action structures, distributed
concurrent functional programming languages, such as Facile and Business Process
Modeling, in particular the POSD formalism developed by ICL ProcessWise. This is
work in progress, but preliminary results may be viewed on the web (http://www.prat-
tens.demon.co.uk/webposd/posdw.htm).

Furthermore, work on understanding the foundation for mobile agent programming
and mobile/distributed computing support in general is forming a core of activities in
developing ICL’s technical strategy in this area.

In addition to the technical work relevant to CONFER-2 Lone Leth Thomsen and
Bent Thomsen have assisted Jean-Jacques Levy in the management of the working
group.

3.8.2 Exchange of Personnel

Lone Leth Thomsen and Bent Thomsen participated in the 2nd CONFER-2 workshop
at CWI 20.10.97-22.10.97.

Lone Leth Thomsen and Bent Thomsen visited the CONFER-2 group at Edinburgh
University 8.11.96.

In addition two meetings with the Theory and OPERA groups at the CS Lab in
Cambridge and a meeting with the Theory group at Sussex University have taken
place in the first year of CONFER-2. Although these meetings are not considered
official CONFER-2 meetings issues related to CONFER-2 were discussed.

1Group Technical Directorate

3.8. ICL 21

3.8.3 Publications

In the first year of CONFER-2 the group at ICL involved in the working group has
produced two relevant publications:

• Leth Thomsen, L., and Thomsen, B.: “Mobile Agents – THE new paradigm in
computing”, ICL Systems Journal, Volume 12, Issue 1, pp. 14–40, May 1997.

• Thomsen, B.: “Programming Languages, Analysis Tools and Concurrency Theo-
ry”, ACM Computing Surveys 28A(4), December 1996. (http://www.acm.org/-
pubs/articles/journals/surveys/1996-28-4es/a57-thomsen/a57-thomsen.html)

22 CHAPTER 3. MANAGEMENT

3.9 INRIA-Rocquencourt

3.9.1 Research directions

INRIA Rocquencourt has worked in the following directions.

• Distributed Join-Calculus.

Version 1.04 has been released in June by Fournet and Maranget. This prototype
includes a distributed implementation of the join-calculus, which is about 20000
lines of Caml-light code. The system comprises a byte-code compiler, a run-time
interpreter, an on-line documentation, a tutorial and many examples. As demo
programs, we have a distributed calculation of the Mandelbrot set and several
games. An article on the type-inference algorithm and a demo were presented
at CONCUR’97 [FLMR97] and at TACS’97 [Le97]. The system is available at
http://www.pauillac.inria/join/.

• Equivalences in the Join-Calculus

A new theory of bisimulation has been developed by Boreale (Roma), Fournet
(INRIA) and Laneve (Bologna). They consider open terms of the join calculus,
and define two bisimulation, weak and asynchronous, which are both refinments
of the observational equivalence. This gives a compositional sense to the inter-
action of the terms of the join-calculus with contexts, and is a start point to
logical systems for reasoning on join-terms. An article has been submitted to a
conference, the work has been presented at the Confer Workshop in Amsterdam
[BFL98].

More generally, many equivalences have been proposed for process algebra for
the study of convergence, security or fairness. Gonthier started a comparison of
equivalences used both in the pi and join calculus, mostly based on reduction se-
mantics, observation of barbs and preservation by contexts. Many variants appear
according to the way these elementary constructs are combined. But fortunately
many lead to a same result. One shows that fair-testing is connected to coupled
bisimulation, or that omega-limit bisimulation is also related to single-barb gfp
bisimulation. This provides new proof techniques and a better understanding of
process calculi. An article is in preparation, the work has been presented at the
Confer Workshop in Amsterdam [Gon98].

• Concurrency and Security

Secure implementation of communication in the join calculus has been developed
by Abadi (DEC/SRC), Fournet and Gonthier. It is easy to write secure protocols
when lexical scope is guaranteed, but one needs cryptographic means to enforce
a secure lexical scope discipline. By compositionality, two protocols can be con-
sidered: one based on the redefinition of secure emission/reception primitives,
another one based on firewalls for some locations. The correctness proofs are
based on bisimulation techniques.

3.9. INRIA-ROCQUENCOURT 23

A presentation by Fournet has been made at the DARPA workshop on Founda-
tions for Secure Mobile Code, March 26-28 mars in Monterey [Fou97], and at the
Confer meeting in Amsterdam. An article is in preparation [AFG98].

• Distributed Garbage Collection

F. le Fessant designed and implemented a scalable distributed GC algorithm
which can collect cycles. It is a feasible implementation of an old idea by Hughes.
An article has been sent to a conference [leF97].

• Expressivity and types

The π-calculus with synchronous output and mixed-guarded choices is strictly
more expressive than the π-calculus with asynchronous output and no choice.
Palamidessi recently proved that there is no fully compositional encoding from
the former into the latter that preserves divergence-freedom and symmetries.
However there are ‘good’ encodings for languages with (1) input-guarded choice,
(2) both input- and output-guarded choice, and (3) mixed-guarded choice. One
can investigate them with respect to compositionality and divergence-freedom.
The first and second encoding satisfy all criteria, but various ‘good’ candidates
for the third encoding — inspired by an existing distributed implementation —
invalidate one or the other criterion. This study suggests that the combination of
strong compositionality and divergence-freedom is too strong for more practical
purposes [Ne97a].

We investigated confluence properties for concurrent systems of message-passing
processes, because such properties have proved to be useful for a variety of applica-
tions, ranging from reasoning about concurrent objects to mobile and high-speed
telecommunication protocols. Confluence means that for every two computations
starting from a common system state, it is possible to continue the computation-
s, so to reach a common state again. In order to prove confluence for a given
system, we are required to demonstrate that for all states reachable by compu-
tation from the starting state, the ’flowing together’ of possible computations is
possible. However, it is possible to prove confluence properties for concurrent
systems without having to generate all reachable states by use of a type system
that supports a static analysis of possible sources of non-confluence. In message-
passing systems, confluence is invalidated whenever two processes compete for
communication with another process. We may statically check the occurrence
of such situations by reducing them to the concurrent access on a shared com-
munication port. For the technical development, we focus on the setting of a
polarized pi-calculus, where we formalize the notion of port-uniqueness by means
of overlapping-free context-redex decompositions. We then present a type system
for port-uniqueness that, taking advantage of a subject reduction property, yields
a sufficient criterion for guaranteeing confluence. This work is published in the
Proceedings of FMICS’97 [NS97].

24 CHAPTER 3. MANAGEMENT

3.9.2 Persons and exchanges

INRIA Rocquencourt participants are Jean-Jacques Lévy, Fabrice le Fessant, Cédric
Fournet, Georges Gonthier, Luc Maranget, Uwe Nestmann and Didier Rémy.

Uwe Nestmann moved to Aalborg in November, Carolina Lavatelli moved from
ENS to Rocquencourt in December. Cédric Fournet (PhD student) visited Bologna to
acheive a common paper with Michele Boreale and Cosimo Laneve.

From Cambridge, we had visits 2 one-week visits with Andrew Gordon, May 26-
29, and Peter Sewell, November 24-28. Also Cosimo Laneve (Bologna), Julian Rathke
(Sussex), and Nobuko Yoshida (Edinburgh) visited our site.

3.9.3 Publications

[AFG98] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel
abstractions. To be submitted for a conference, November 1997 .

[BFL98] M. Boreale, C. Fournet, and C. Laneve. Bisimulations in the join-calculus.
Submitted for a conference, September 1997.

[leF97] F. le Fessant, I. Piumarta, and M. Shapiro, An implementation for com-
plete asynchronous distributed garbage collection. Submitted for publica-
tion, November 1997, available electronically (http://www-sor.inria.fr/
docs/).

[Fou97] C. Fournet. Security within a calculus of mobile agents? April 1997,
http://www.cs.nps.navy.mil/research/languages/statements/fournet.ps.

[FLMR97] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing à la
ML for the join-calculus. In A. Mazurkiewicz and J. Winkowski, editors,
CONCUR ’97: Concurrency Theory (8th International Conference, War-
saw, Poland, July 1997), volume 1243 of LNCS, pages 196–212. Springer,
1997.

[FouMa97] C. Fournet and L. Maranget. The join-calculus language. Available elec-
tronically (http://pauillac.inria.fr/join), June 1997.

[Gon98] G. Gonthier. On asynchronous barbs, simulations, and fair testing. Sub-
mitted to a conference, Octobre 1997.

[Le97] J.-J. Lévy. Some results in the join-calculus. In M. Abadi and T. Ito,
editors, TACS ’97: Theoretical Aspects of Computer Software, volume 1281
of LNCS, pages 233–249. Springer, 1997.

[Ne97a] U. Nestmann. What is a ‘good’ encoding of guarded choice? In C. Palamidessi
and J. Parrow, editors, EXPRESS ’97: Expressiveness in Concurrency
(Santa Margherita Ligure, Italy, September 8–12, 1997), volume 7 of ENTC-
S. Elesevier Science Publishers, 1997.

3.9. INRIA-ROCQUENCOURT 25

[NePie97] U. Nestmann and B. C. Pierce. Decoding choice encodings. In U. Montanari
and V. Sassone, editors, CONCUR ’96: Concurrency Theory (7th Interna-
tional Conference, Pisa, Italy, August 1996), volume 1119 of LNCS, pages
179–194. Springer, 1996. Revised full version as report ERCIM-10/97-
R051, European Research Consortium for Informatics and Mathematics,
1997.

[NS97] U. Nestmann and M. Steffen. Typing confluence. In S. Gnesi and D. Latel-
la, editors, Second International ERCIM Workshop on Formal Methods
in Industrial Critical Systems (Cesena, Italy, July 4–5, 1997), pages 77–
101. Consiglio Nazionale Ricerche di Pisa, 1997. Also available as report
ERCIM-10/97-R052, European Research Consortium for Informatics and
Mathematics, 1997.

26 CHAPTER 3. MANAGEMENT

3.10 INRIA-Sophia

3.10.1 Research directions

The notion of type, intended in a very general sense as a “partial specification of the
way system components should be used”, is present, at various degrees, in most of our
works this year.

In [Am97] R. Amadio presents a model of mobility based on the pi-calculus. He
relies on an elementary typing, which ensures that in a system, at every moment, to a
given name there corresponds a unique resource (whose state can change from one call
to another, however). In this way, one can consider a site – or a locality – as a name
associated to a resource whose state is either ‘alive’ or ‘dead’. R. Amadio develops on
this basis a formalism to speak about migration and failures, and he provides reasoning
methods which use a notion of bisimulation.

In [San97a], D. Sangiorgi formulates a type system for mobile processes that guar-
antees, in a distributed process, that at any moment a given name gives the access to
a unique stateless resource. This discipline, called uniform receptiveness, is employed,
for instance, when modeling functions, objects, higher-order communications, remote-
procedure calls. The impact of the discipline on behavioural equivalences and process
reasoning is studied. Some theory and proof techniques for uniform receptiveness is
developed, and their usefulness on some non-trivial examples is illustrated.

The work [San97J] is an application of the proof techniques developed in [San97a].
Cliff Jones has proposed transformations between concrete programs and general trans-
formation rules that increase concurrency in a system of objects, and has raised the
challenge of how to prove their validity. A proof of correctness of the hardest of Jones’s
concrete transformations is presented.

The blue calculus, introduced by G. Boudol in a POPL’97 paper [Bou97a], proposes
a synthesis of the lambda-calculus and the pi-calculus. This calculus contains a new
type system which incorporates both the notion of functional type and that of sort for
communication channels. This type system has been further studied by S. Dal-Zilio in
[Dal97], where it is shown to extend naturally to an implicit polymorphic type system
à la ML.

However, these types only express very weak properties of the behaviour of pro-
cesses. For instance, one cannot guarantee the absence of deadlock; here we mean by
deadlock that a process calls a resource that will never become available. To overcome
this lack of expressiveness, G. Boudol has proposed in [Bou97b] a more refined notion
of type, which incorporates a part of Hennessy-Milner logic: a resource declaration is
given a modal type indicating that a value of a certain type is available on a certain
name. This new type system is shown to enjoy the subject reduction property. This
research will be hopefully extended with a proof that typability implies the absence of
deadlock.

In [PiSa97], parametric polymorphism in message-based concurrent programs is
investigated, focusing on behavioral equivalences in a typed process calculus analogous
to the polymorphic lambda-calculus of Girard and Reynolds. Polymorphism constrains

3.10. INRIA-SOPHIA 27

the power of observers by preventing them from directly manipulating data values
whose types are abstract, leading to notions of equivalence much coarser than the
standard untyped ones. The nature of these constraints is studied through simple
examples of concurrent abstract data types and develop basic theoretical machinery
for establishing bisimilarity of polymorphic processes. Some surprising interactions
between polymorphism and aliasing are also observe, drawing examples from both the
polymorphic pi-calculus and ML.

Another work on mobility [AmPra97] concerns the modelling of mobile hosts on a
network in a simple name-passing process calculus. The protocol considered is a highly
simplified version of proposals for mobility support in the version 6 of the Internet
Protocols (IP). We concentrate on the issue of ensuring that messages to and from
mobile agents are delivered without loss of connectivity. We provide three models
of increasingly complex nature of a network of routers and computing agents that
are interconnected via the routers: the first is without mobile agents and is treated
as a specification for the next two; the second supports mobile agents, and the third
additionally allows correspondent agents to cache the current location of a mobile agent.
Following a detailed analysis of the three models to extract invariant properties, we
show that the three models are related by a suitable notion of equivalence based on
bisimulation.

In [AmCou97] we consider the issue of representing “infinite” and “total” objects like
infinite streams or non-terminating processes in type theory. We present a realizability
interpretation of co-inductive types based on partial equivalence relations (per’s). We
extract from the per’s interpretation sound rules to type recursive definitions. These
recursive definitions are needed to introduce ‘infinite’ objects of co-inductive type. We
show that the proposed type system enjoys the basic syntactic properties of subject
reduction and strong normalization with respect to a confluent rewriting system first
studied by Gimenez. We also compare the proposed type system with those studied
by Coquand and Gimenez. In particular, we provide a semantic reconstruction of
Gimenez’s system which suggests a rule to type nested recursive definitions.

The final version of the book [AmCu97] has been delivered. The book addresses the
mathematical aspects of the semantics of programming languages. The mathematical
objects manipulated are order-theoretic structures, and the languages we consider are
typed lambda-calculi. The book considers various extensions of typed lambda-calculi
to include non-determinism, communication, and concurrency, and it summarizes some
of the work carried on in the Confer project.

3.10.2 Participation to CONFER Workshops

R. Amadio, G. Boudol, I. Castellani, D. Sangiorgi and S. Dal-Zilio attended the first
CONFER II workshop in Bologna.

G. Boudol, I. Castellani and M. Merro attended the second CONFER II workshop
in Amsterdam.

(We have not used CONFER money for other visits or activities.)

28 CHAPTER 3. MANAGEMENT

3.10.3 Publications

[Am97] R. Amadio. An asynchronous model of locality, failure, and process mobil-
ity. In Proc. Coordination 97, Springer Lect. Notes in Comp. Sci. 1282,
1997.

[AmCou97] R. Amadio and S. Coupet-Grimal. Analysis of a guard condition in type
theory (preliminary report). Technical Report TR 1997.245. Also RR-3300
INRIA, Université de Provence (LIM), 1997.

[AmCu97] R. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge
University Press. To appear.

[AmPra97] R. Amadio and S. Prasad. Modelling IP mobility. Technical Report TR
1997.244. Also RR-3301 INRIA, Université de Provence (LIM), 1997.

[Bou97a] G. Boudol. The pi-calculus in direct style. In Proceedings POPL’97, 1997.

[Bou97b] G. Boudol. Typing the use of resources in a concurrent calculus. In
Proceedings ASIAN’97, LNCS 1345, 1997.

[Dal97] S. Dal-Zilio. Implicit polymorphic type system for the blue calculus. Tech-
nical Report RR-3244, INRIA, 1997.

[PiSa97] B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic
pi-calculus. In 24th POPL. ACM Press, 1997.

[San97a] D. Sangiorgi. The name discipline of receptiveness. volume 1256 of
Lecture Notes in Computer Science. Springer Verlag, 1997. Full paper
available electronically as ftp://zenon.inria.fr/meije/theorie-par/-
davides/Receptiveness.ps.Z.

[San97J] D. Sangiorgi. Typed π-calculus at work: a proof of Jones’s parallelisation
transformation on concurrent objects. Presented at the Fourth Workshop
on Foundations of Object-Oriented Languages (FOOL 4). To appear in
Theory and Practice of Object-oriented Systems, 1997.

3.11. KTH 29

3.11 KTH

3.11.1 Research directions

We have developed the update-calculus where processes can perform update actions
with side effects, and a scoping operator controls the extent of the effects [PV97]. In
this way it incorporates fundamental concepts from imperative languages, concurrent
constraints and from functional formalisms. Structurally it is similar to but simpler
than the pi-calculus; it has only one binding operator and a symmetry between inpout
and output.

Furthermore, we have completed earlier work within Confer-1 regarding unfold/fold
program transformations in languages with nondeterminism [Lisp98]. These results
hold under the classical condition of “restricted folding-unfolding” [Cou90], which is
quite restrictive with respect to the formation of new recursive definitions. We have
made some initial investigations towards extending the results to the particular forma-
tion of new recursive definitions that typically occur during program specialization.

3.11.2 Persons and exchanges

During 1997, the following persons have been active within Confer-2: Björn Lisper,
Joachim Parrow, Björn Victor (Uppsala University), and José Luis Vivas. Lisper,
Parrow and Vivas attended the Confer workshop in Bologna. Victor attended the
workshop in Amsterdam.

3.11.3 Publications

[Cou90] B. Courcelle. Recursive applicative program schemes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, chapter 9, pages 459–
492. Elsevier Science Publishers B. V., 1990.

[Lisp98] B. Lisper. Computing in unpredictable environments: Semantics, reduc-
tion strategies, and program transformations. Theoretical Comput. Sci.,
190(1):61–85, Jan. 1998.

[PV97] J. Parrow and B. Victor. The update calculus (full version). Technical
Report DoCS 97/93, Department of Computer Systems, Uppsala University,
Sweden, Sept. 1997. Extended abstract to appear in the proceedings of
AMAST’97.

30 CHAPTER 3. MANAGEMENT

3.12 Università di Pisa

3.12.1 Outline

The major line of research of the group at the Dipartimento di Informatica, Università
di Pisa, has been in the areas of Calculi, Foundational Models and Abstract Machines
and Programming Languages.

• Calculi

Research has continued on developing efficient finite-state techniques for verifying
properties of history dependent process calculi (e.g. calculi for mobile process-
es). A prototype version of a semantic-based verification environment for the
π-calculus, based on Montanari and Pistore HD-Automata has been developed.
The environment supports verification of both behavioral properties (bisimulation
checkers) and logical formulae (model checkers).

• Foundational Models and Abstract Machines

The tile model relies on certain rewrite rules with side effects, called tiles, rem-
iniscent of both SOS rules and rewriting logic rules. The tile model provides a
logic of concurrent systems with conditional state changes and synchronization.
The tile model has been shown to be especially useful for defining compositional
models of mobile processes and causal and located concurrent systems. The tile
model has been used for modelling coordination formalisms equipped with flexible
synchronization primitives. The main advantage of the tile approach is the full
compositionality of the underlying logic, which is able to handle computations of
(nonclosed) system components as they were new rewrite rules specifying complex
coordinators.

• Programming Languages

We introduces a kernel programming language, called LLinda, which supports
a programming paradigm where processes as well as data can migrate from one
computing environment to another. The language is equipped with a sophisticat-
ed type system which statically checks access rights violations of mobile agents.

3.12.2 Perspective

We are interested to further develop theoretical models for mobile process calculi and
the verification techniques based on these models. Bisimulations for the π-calculus
are instances of a larger class of bisimulation semantics for processes calculi, called
history dependent. This concept can be found in various semantics for process calculi,
e.g. locality or causality. One aspect that we intend to study is the development of
verification methods for checking history dependent bisimulation semantics.

We intend to exploit the capabilities of the tile model to formally describe arbitrary
coordination patterns (e.g. workflows) between tasks to be executed by sequential pro-

3.12. UNIVERSITÀ DI PISA 31

cesses or by other coordinators. One aspect that we intend to study is the development
of a tile-based model for the specification of Software Architectures.

We intend to further investigate notions of types which ensure only authorized
accesses to information. We aim at demonstrating that typing information can be
systematically used to guarantee that well–typed processes always enjoy classes of se-
curity properties. One aspect that we intend to study is the modelling of dynamic
transmission of access rights.

3.12.3 Persons

The group at Pisa involved in the project consists of Ugo Montanari, Gianluigi Ferrari,
Marco Pistore, Roberto Bruni and Gioia Ristori.

Two PhD-students, Marco Pistore and Roberto Bruni, both under the supervision
of Ugo Montanari, are working on topics which are closely related to the aims of the
CONFER 2 Working Group.

3.12.4 Publications

1. De Nicola, R., Ferrari, G., Pugliese, R., Locality Based Linda: Programming with
Explicit Localities, In Proc. TAPSOFT’97, LNCS 1214, 1997.

2. De Nicola, R., Ferrari, G., Pugliese, R., Coordinating Mobile Agents via Black-
boards and Access Rights, In Proc. COORDINATION’97, LNCS 1282, 1997.

3. Ferrari, G., Ferro, G., Gnesi, S., Montanari, U., Pistore, M., Ristori, G., An au-
tomata based verification environment for mobile processes, In Proc. TACAS’97,
LNCS 1217, 1997.

4. Ferrari, G., Montanari, U. A Tile-Based Coordination View of Asynchronous
π-calculus, In Proc. MFCS’97, LNCS 1295, 1997.

5. Ferrari, G., Montanari, U. Tiles for Concurrent and Located Calculi. In Proc.
EXPRESS’97, ENTCS 7, 1997.

6. Gadducci, F. and Montanari, U., The Tile Model. In: Gordon Plotkin, Colin Stir-
ling, and Mads Tofte, Eds., Proof, Language and Interaction: Essays in Honour
of Robin Milner, MIT Press, to appear.

7. Montanari, U. and Pistore, M., Minimal Transition Systems for History-Preser-
ving Bisimulation. In Proc. STACS’97, LNCS 1200, 1997.

8. Bruni, R., Montanari, U., Zero-Safe Nets, or Transition Synchronization Made
Simple In Proc. EXPRESS’97, ENTCS 7, 1997.

32 CHAPTER 3. MANAGEMENT

3.12.5 Description of Technical Contributions

1. The issue of defining a process calculus which supports programming with ex-
plicit localities is investigated. We introduce a language which embeds the asyn-
chronous Linda communication paradigm extended with explicit localities in a
process calculus. We consider multiple tuple spaces that are distributed over a
collections of sites and use localities to distribute/retrieve tuples and processes
over/from these sites. The operational semantics of the language turns out to be
useful for discussing the language design, e.g. the effects of scoping disciplines
over mobile agents which maintain their connections to the located tuple spaces
while moving along sites. The flexibility of the language is illustrated by a few
examples.

2. LLinda (Locality based Linda) is a variant of Linda which supports a program-
ming paradigm where agents can migrate from one computing environment to
another. In this paper, we define a type system for LLinda that permits statical-
ly checking access rights violations of mobile agents. Types are used to describe
processes intentions (read, write, execute, ...) relatively to the different localities
they are willing to interact with or they want to migrate to. The type system is
used to determine the operations that processes want to perform at each locality,
to check whether they comply with the declared intentions and whether they have
the necessary rights to perform the intended operations at the specific localities.

3. An automata-based verification environment for the π-calculus is developed. The
environment takes a direct advantage of a general theory which allows to asso-
ciate ordinary finite state automata to a wide class of π-calculus agents, so that
equivalent automata are associated to equivalent agents. A key feature of the ap-
proach is the re-use of efficient algorithms and verification techniques (equivalence
checkers and model checkers) which have been developed and implemented for or-
dinary automata. The verification environment has been implemented on top of
an existing verification environment for process calculi: the JACK environment.

4. Tiles are rewrite rules with side effects, reminiscent of both Plotkin SOS and
Meseguer rewriting logic rules. They are well suited for modeling coordination
languages, since they can be composed both statically and dynamically via pos-
sibly complex synchronization and workflow mechanisms. In this paper, we give
a tile-based bisimilarity semantics for the asynchronous π-calculus of Honda and
Tokoro and prove it equivalent to the ordinary semantics. Two kinds of tiles
are provided: activity tiles and coordination tiles. Activity tiles specify the ba-
sic interactions sequential processes are able to perform, without considering the
operational environment where they live. Instead, coordination tiles control the
global evolution of programs.

5. When concurrency is a primitive notion, models of process calculi usually include
commuting diamonds and observations of causality links or of abstract locations.
However it is still debatable if the existing approaches are natural, or rather if

3.12. UNIVERSITÀ DI PISA 33

they are an ad hoc addition to the more basic interleaving semantics. In the paper
a treatment of concurrent process calculi is proposed where the same operational
and abstract concurrent semantics described in the literature now descend from
general, uniform notions. More precisely we introduce a tile-based semantics
for located CCS and we show it consistent with the ordinary concurrent (via
permutation of transitions) and bisimilarity based location semantics. Tiles are
rewrite rules with side effects, reminiscent of both Plotkin SOS and Meseguer
rewriting logic rules. We argue that the tile model is particularly well suited for
defining directly operational and abstract semantics of concurrent process calculi
in a compositional style.

6. In this paper we aim at describing a framework for specifying the behaviour of
a wide class of rule-based computational systems. We gathered our inspiration
both from the world of term rewriting, in particular from the rewriting logic
approach, and of concurrency theory, the structural operational semantics, the
context systems and the structured transition systems approaches among others.
Our framework recollects many properties from these sources: First, it provides a
compositional way to describe both the states and the sequences of transitions per-
formed by a given system, taking into account their distributed nature. Second, a
suitable notion of typed proof allows us to recast also those formalisms relying on
the notions of synchronization and side-effects to determine the actual behaviour
of a system. Moreover, both an operational and an observational semantics can be
introduced: Operationally, those sequences of transitions are identified, that de-
note a family of “computationally equivalent” behaviours. Observationally, those
states are identified, that denote a family of “bisimilar” configurations. Finally,
and as a further abstraction step, our framework can be conveniently recasted
using double-categories, recovering also its operational semantics.

7. In this paper we propose a new approach to check history-preserving equivalence
for Petri nets. Exploiting this approach, history-preserving bisimulation is proved
decidable for the class of finite nets which are n-safe for some n. Moreover, since
we map nets on ordinary transition systems, standard results and algorithms can
be re-used, yielding for instance the possibility of deriving minimal realizations.
The proposed approach can be applied also to other concurrent formalisms based
on partial order semantics, like CCS with causality.

8. In addition to ordinary places, called stable, zero-safe nets are equipped with
zero places, which in a stable marking cannot contain any token. An evolution
between two stable markings, instead, can be a complex computation called stable
transaction, which may use zero places, but which is atomic when seen from
stable places: no stable token generated in a transaction can be reused in the
same transaction. Every zero-safe net has an ordinary Place-Transition net as its
abstract counterpart, where only stable places are maintained, and where every
transaction becomes a transition. The two nets allow us to look at the same
system from both an abstract and a refined viewpoint. To achieve this result no

34 CHAPTER 3. MANAGEMENT

new interaction mechanism is used, besides the ordinary token-pushing rules of
nets. The refined zero-safe nets can be much smaller than their corresponding
abstract P/T nets, since they take advantage of a transition synchronization
mechanism. For instance, when transactions of unlimited length are possible in
a zero safe net, the abstract net becomes infinite, even if the refined net is finite.
In the second part of the paper two universal constructions - both following the
Petri nets are monoids approach and the collective token philosophy - are used to
give evidence of the naturality of our definitions. More precisely, the operational
semantics of zero-safe nets is characterized as an adjunction, and the derivation
of abstract P/T nets as a coreflection.

3.13. UNIVERSITY OF SUSSEX 35

3.13 University of Sussex

3.13.1 Research directions

Value-passing processes
There were two publications in this area. In [Ra97a] an axiomatic characterisation of

both late and early observational congruence for a class of fully parameterised processes
is given. This result uses a new derivation rule which is an intuitive generalisation of
unique fixpoint induction based on loop invariants for symbolic graphs. In the same
paper it is shown that the new rule can actually be derived from existing formulations
of unique fixpoint induction for value-passing calculi.

In [Ra97b] a first order modal mu-calculus is described which uses parameterised
maximal fixpoints to describe safety and liveness properties of value-passing processes.
A proof system for deciding if a process satisfies a formula is presented. Certain deduc-
tion rules of the system carry side conditions which leave auxiliary proof obligations
of checking properties of the value language. Although the proof system is in general
incomplete two completeness results are given for significant sub-logics.

Mathematical Models for concurrent languages
There are two streams of work here. The first, summarised in [Je97], gives a precise

relationship between

• mixed data and control flow graphs, which are commonly used in software engi-
neering as a semi-formal notation for describing and analysing algorithms

• and an abstract representation of formal semantics which uses partially traced
Cartesian categories.

This document also contains some more speculative work on how closed structure (to
represent higher-order functions) or two-category structure (to represent operational
semantics) might be included in this graphical framework.

In [HaHen97e] traditional denotational techniques are used to give a denotational
model of a subset of core Facile. Specifically this is applied typed call-by-value language
which in addition to the usual types has an extra type for processes, which can exchange
values along communication channels, a la CCS. The model is shown to be fully-abstract
with respect to a version of may testing. It is notable that in order to achieve full-
abstraction it is necessary to add to the language an operator which allows processes
report the result of a computation.

Semantic theories for distributed processes
In [RieHen97a] location failure for distributed processes is studied in detail. A

language is defined in which threads are run at distributed locations, and from this
a semantic theory is developed using the basic notions of observer and experiment.
Roughly, an observer interacts with a distributed process either by synchronizing with

36 CHAPTER 3. MANAGEMENT

one of its threads or by halting one of its locations; two programs are equivalent if
they present the same structure of observations, evolving over time. The main result of
this work is to provide an alternative characterization of this observational equivalence
which is suitable to automatic verification. This is done using a temporal logic to
characterize the interdependence between synchronization events and failures.

In [RieHen97b] a more expressive language is presented, which includes agent migra-
tion, location failure and a rich system of capabilities used to tag communicated data.
Intuitively, when the name, say, of a location is communicated, a set of capabilities
for that location is communicated at the same time; these may include the capability
to read data, to write data, to halt the location, to migrate to it, or to allocate fresh
resources at it. We present a series of type systems for this language and show, through
examples, that very expressive type systems are necessary in order to be able to type
many important practical programs.

3.13.2 Personnel and Exchanges

The personnel at the University of Sussex who were actively involved in Confer-2 re-
lated research during the period covered by the progress report are currently Chrysafis
Hartonas, Matthew Hennessy, Alan Jeffrey, Dusko Pavlovic, Julian Rathke, James
Riely.

Matthew Hennessy and James Riely attended the first CONFER II workshop in
Bologna.

Matthew Hennessy and Alan Jeffrey attended the second CONFER II workshop in
Amsterdam.

3.13.3 Publications

[HaHen97e] C. Hartonas and M. Hennessy. Full abstractness for a functional/concurrent
language with higher-order value-passing. Full version available as Com-
puter Science Technical Report 1/97, University of Sussex, 1997. Available
from http://www.cogs.susx.ac.uk/.

[Je97] A. Jeffrey. Flow graphs and semantics of programs. available from
http://www.cogs.susx.ac.uk/users/alanje/premon/, 1997.

[Ra97a] J. Rathke. Unique fixpoint induction for value-passing processes. In Proc.
LICS’97, 12th Annual Symposium on Logic in Computer Science, Warsaw.
IEEE Computer Society Press, 1997. To appear.

[Ra97b] J. Rathke and M. Hennessy. Local model checking for value-passing pro-
cesses. In Proc. TACS’97, International Symposium on Theoretical Aspects
of Computer Software, Sendai. Springer-Verlag, 1997.

[RieHen97a] J. Riely and M. Hennessy. Distributed processes and location failures.
Technical Report 2/97, 1997. Extended abstract presented at ICALP97.

3.13. UNIVERSITY OF SUSSEX 37

[RieHen97b] J. Riely and M. Hennessy. A typed language for distributed mobile pro-
cesses. In Proc. POPL’98, ACM Conference on Principle of Programming
Languages, San Diego.

38 CHAPTER 3. MANAGEMENT

3.14 University of Warwick

3.14.1 Research activity

Work has been done on theory of π-calculus, semantic definition of concurrent object-
oriented programming languages, and correctness of transformation rules for programs
and of concurrent algorithms on data structures.

In a process setting, the essence of confluence is that the occurrence of one action
may not preclude others. In the case of π-calculus, where names may be extruded from
their scopes, care is needed to find the right definition. Basic results on confluence in
π-calculus are presented in [PW97]. In particular, conditions under which combinations
of confluent, or almost-confluent, processes yield confluent systems are presented.

The view that general models of mobile processes, such as π-calculus and Higher-
Order π-calculus, provide a good framework for the definition of a variety of concur-
rent object-oriented languages is illustrated in [LW97a]. A technique involving process
continuations is used to give a natural and direct semantic definition for a language
containing constructs for several kinds of inter-object communication. In the unpub-
lished MSc dissertation [S97], an experimental extension of Pict with actor primitives
is given semantic definition and implemented. Its author is now studying for a PhD at
Cambridge.

In [LW97b], which was revised for publication this year, a theory of partial-confluen-
ce of processes is developed, in CCS and in π-calculus. The main theorem concerns
systems which can be thought of as composed from two components: a questioner,
and an answerer which may process questions concurrently. It gives conditions under
which a system of this kind is behaviourally indistinguishable from the corresponding
system in which the answerer may handle only one question at a time. This result,
together with a semantic definition of the kind described above, is used to show the
interchangeability in an arbitrary program context of two class definitions which pre-
scribe binary-tree symbol-table data structures, one supporting concurrent operations,
the other sequential.

In [PW97b], this work is extended to show the soundness of transformation rules for
concurrent object-oriented programs which increase the scope for concurrent activity
within the system prescribed by a program, without altering its observable behaviour.
The rules allow one object to release another from a rendezvous before it has finished
all the associated activity, and allow one object to delegate to a second object the
responsibility for returning a result to a third object.

In [PW97c], the theory of [PW97b]is extended to encompass a larger class of answer-
ers. Analogous behavioural indistinguishability results are obtained, for an appropriate
class of questioners. The main advance is that whereas in the case of the symbol-table
data structures, the answer to a question is determined at the moment the question
is submitted, in [6] up to one state-changing internal action may occur in determining
the answer.

This result is used in [PW97d] where algorithms for operating concurrently on a
variant of the B-tree data structure are modelled and analysed using π-calculus. In this

3.14. UNIVERSITY OF WARWICK 39

case the state-changing internal action is the act of locking the disk page in which the
operation in question will take effect. Deficiences in and improvements to published
algorithms were discovered.

The PhD thesis [P97phd] contains also other work on confluence of processes. The
MSc dissertation [I97] begins to explore a new approach to modelling asynchronous
communication and fault-tolerance in a process-calculus setting. Its author is now
studying for a PhD at Edinburgh.

3.14.2 Workshops and site visits

Working-Group funds were used to support David Walker’s participation in the Bologna
workshop in March 1997, a visit to the Bologna site in July 1997 where the main focus
of interaction was joint work on π-calculus with Davide Sangiorgi at INRIA Sophia-
Antipolis, and a visit to the Edinburgh site in November 1996.

3.14.3 Publications

[PW97] A. Philippou and D. Walker, On confluence in the π-calculus, in Proceedings
of International Colloquium on Automata, Languages and Programming,
Bologna, July 1997, Springer-Verlag Lecture Notes in Computer Science,
vol. 1256, 314–324.

[LW97a] X. Liu and D. Walker, Concurrent objects as mobile processes, in Proof,
Language and Interaction: Essays in Honour of Robin Milner, G. Plotkin,
C. Stirling, and M. Tofte (eds.), MIT Press, to appear.

[S97] M. Sawle, A π-calculus semantics for actor systems, MSc dissertation,
University of Warwick, September 1997.

[LW97b] X. Liu and D. Walker, Partial confluence of processes and systems of objects,
Theoretical Computer Science B, to appear.

[PW97b] A. Philippou and D. Walker, On transformations of concurrent object pro-
grams, Theoretical Computer Science B, to appear.

[PW97c] A. Philippou and D. Walker, Social confluence in client-server systems, in
Proceedings of Computer Science Logic, Utrecht, September 1996, Springer-
Verlag Lecture Notes in Computer Science, vol. 1258, 385–398.

[PW97d] A. Philippou and D. Walker, A rigorous analysis of concurrent operations
on B-trees, in Proceedings of Concurrency Theory, Warsaw, July 1997,
Springer-Verlag Lecture Notes in Computer Science, vol. 1243, 361–375.

[P97phd] A. Philippou, Reasoning about systems with evolving structure, PhD thesis,
University of Warwick, December 1996.

[I97] C. Ionitoiu, An operational semantics for loosely coupled systems, MSc
dissertation, University of Warwick, September 1997.

40 CHAPTER 3. MANAGEMENT

Chapter 4

Deliverables

4.1 Workshop 1

At University of Bologna, with more than 30 participants.

Monday, March 24

9.00 Welcome
9.10 - 9.50 The pi-calculus in direct style

G. Boudol
9.50 - 10.30 Pieces of pi: substitution and scoping

J. Parrow
11.10 - 11.50 A denotational Model for a subset of Core Facile

M. Hennessy
11.50 - 12.30 Encoding Mixed-guarded Choice

U. Nestmann

12.45-14.15 Lunch

14.30 - 15.10 An asynchronous model of locality, failure, and process mobility
R. Amadio

15.10 - 15.50 Distributed Processes and Location failures
J. Riely

16.30 - 17.10 Locality based Linda: programming with explicit localities
G. Ferrari

17.10 - 17.50 From Action Calculi to Linear Logic
P. Gardner

41

42 CHAPTER 4. DELIVERABLES

Tuesday, March 25

9.10 - 9.50 Sequentiality in lambda calculus and PCF via origin tracking
J.W. Klop

9.50 - 10.30 A Factorisation Theorem for external derivation
P. Mellies

11.10 - 11.50 Zero Safe Nets
R. Bruni

11.50 - 12.30 Graph rewriting and labelled transition semantics
O. H.Jensen

12.45-14.15 Lunch

14.30 - 15.10 Local Channel Typing for a distributed pi-calculus
P. Sewell

15.10 - 15.50 Interpreting Typed Object calculi into typed pi-calculus
D. Sangiorgi

16.30 - 17.10 Implicit typing a la ML for the join calculus
D. Remy

17.10 - 17.50 The implementation fo the join calculus
L. Maranget

Wednesday, March 26

9.10 - 9.50 Distributed functional evaluation
V. Danos

9.50 - 10.30 GOI and coherent semantic
L. Regnier

11.10 - 11.50 AJM game semantics for classical LL
P. Baillot

11.50 - 12.30 P = NP, up to sharing
A. Asperti

12.45-14.15 Lunch

List of Participants: Roberto Amadio, Andrea Asperti, Patrick Baillot, Inge Bethke, Gerard
Boudol, Roberto Bruni, Ilaria Castellani, Silvano Dal-Zilio, Vincent Danos, Gianluigi Ferrari,
Philippa Gardner, Matthew Hennessy, Ole Hoegh Jensen, Jan Willem Klop, Cosimo Laneve,
Carolina Lavatelli, James Leifer, Jean-Jacques Levy, Bjorn Lisper, Luc Maranget, Paul-Andre
Mellies, Jean-Francois Monin, Uwe Nestmann, Joachim Parrow, Paola Quaglia, Laurent Reg-
nier, Didier Remy, James Riely, Davide Sangiorgi, Peter Sewell, Jose-Luis Vivas.

4.2. WORKSHOP 2 43

4.2 Workshop 2

At CWI in Amsterdam, with 30 participants.

Monday, October 20

9.15 Welcome

9.30 - 10.10 Typing the use of resources in a concurrent calculus
G. Boudol

10.10 - 10.50 The asynchronous pi-calculus, revisited
M. Merro & D. Sangiorgi

11.30 - 12.10 On implementations and semantics of a concurrent
P. Sewell

12.10 - 12.50 Functions in fusion: A symmetric calculus of mobile processes
B. Victor

13.00-14.15 Lunch

14.30 - 15.10 Abstract Bohm trees, or games as abstract machines
P.-L. Curien

15.40 - 16.20 Sequentiality in lambda calculus.
I. Bethke & J.W. Klop

Tuesday, October 21

9.30 - 10.10 Bisimulations in the Join Calculus
C. Laneve

10.10 - 10.50 A graphical presentation of categorical semantics
A. Jeffrey

11.30 - 12.30 On asynchronous barbs, simulations, and fair testing
G. Gonthier

12.45-13.45 Lunch

14.00 - 15.00 Games semantics and traditional denotational semantics
V. Danos

15.40 - 16.20 Bisimulations and other games
J. Loddo & S. Nicolet

19.00 Dinner

44 CHAPTER 4. DELIVERABLES

Wednesday, October 22

9.30 - 10.30 Secure implementation of channel abstractions
C. Fournet

11.10 - 11.50 An implementation of distributed garbage collection
F. le Fessant

11.50 - 12.30 On the distributed implementation of languages based on the
chemical paradigm, C. Palamidessi

12.45-13.45 Lunch

List of Participants: Andrea Asperti, Inge Bethke, Gerard Boudol, Ilaria Castellani, Pierre
Cregut, Pierre-Louis Curien, Silvano Dal-Zilio, Vincent Danos, Roberto Di Cosmo, Fabrice le
Fessant, Cedric Fournet, Georges Gonthier, Matthew Hennessy, Alan Jeffrey, Jan Willem Klop,
Cosimo Laneve, James Leifer, Jean-Jacques Levy, Jean Loddo, Paul-Andre Mellies, Massimo
Merro, Jean-Francois Monin, Uwe Nestmann, Stephane Nicolet, Vincent van Oostrom, Catuscia
Palamidessi, Femke van Raamsdonk, Peter Sewell, Lone Thomson, Bent Thomson, Bjorn Victor

4.3. SOFTWARE DELIVERABLES 45

4.3 Software deliverables

Several pieces of software have been constructed during the this year of CONFER-2.
Note that most of these softwares were started during Confer-1, and that the software
deliverables are only planned for at Milestone 3.

The following is a listing of constructed software during the first year of CONFER-2:

• PICT
Cambridge — Typed higher-order programming language based on π-calculus
University of Cambridge and Edinburgh — B. Pierce, D. Turner.
Also with contributions of P. Sewell, P. Wojciechowski.
Available at http://www.cs.indiana.edu/hyplan/pierce/ftp/pict

• The Join-Calculus
INRIA-Rocquencourt — C. Fournet, L. Maranget.
Also with contributions of G. Gonthier, J.-J. Lévy, D. Rémy. Available at
http://pauillac.inria.fr/join/

• BOHM, Prototype compiler for λ-calculus, based on graph reduction
INRIA — A. Asperti.

• An implementation for complete asynchronous distributed garbage collection.
INRIA-Rocquencourt — F. le Fessant. Also with contributions of I. Piumarta,
and M. Shapiro

• Automata-based verification for the JACK environment.
Pisa — G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore, G. Ristori.

46 CHAPTER 4. DELIVERABLES

Chapter 5

Progress

Reports are done along the 4 areas announced in page 4 of the technical annex.

5.1 Foundational models and abstract machines

This area treats of various models for rewrite systems with bound variables. It has
actually 3 parts. First, we pursue the work on functional models, i.e. optimal reductions
in the lambda calculus, sequentiality and axiomatic rewriting systems. Secondly, we
consider new models for concurrency, ie action calculi and the tile model. Finally, we
treat of the use of rewrite rules as a model for the optimisation of concurrent programs.

5.1.1 Optimal reductions in the λ-calculus

The theory of optimal sharing in β-reduction had many significant improvements re-
cently (see the results of Asperti, Gonthier, Laneve, and Lévy in BRA Confer-1). In
1977, Lévy designed the notion of so-called family-complete reductions, optimal in the
number of β-steps. Each of the elementary steps had to contract a set of redexes,
and these steps were unit costs. In 1988, Lamping exhibited a data structure and an
algorithm, fitting these costs. He heavily used shared structures to keep a single object
to contract in each of the elementary steps of family-complete reductions. However,
between each of these steps, several bookkeeping operations were needed to share or
unshare objects.

Asperti and Mairson (Brandeis University) showed that the number of these boo-
keeping steps was very large. In fact their number is not elementary recursive in
the size of the original term, decorated by the type of all its subterms, whereas the
number of β-steps is polynomial. More precisely, it is polynomial in the size of some
η-expansion of the initial term. This means that the notion of optimal “parallel”
reduction, as formalized by Lèvy, is not elementary recursive. It cannot have a simple
implementation since, essentially, all the computational work can be done via sharing.
Actually, the result is a straightforward consequence of the fact that every term of the
simply typed lambda calculus can be essentially reduced in a linear number of “parallel”
(i.e. sharable) β-reduction. [AM98]

47

48 CHAPTER 5. PROGRESS

The result should not be understood in a too negative sense. On the road to
this result, many interesting and fine properties have been found in the behaviour of
redexes families, which can be of use for other areas such as sequentiality or strong
normalisation.

[AM98] A. Asperti, H.Mairson Optimal β-reduction is not elementary recursive.
Proc. of the twenty-fifth Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL’98).

5.1.2 Axiomatic Rewriting Systems

Melliès pursues his work on abstract rewriting systems which are an axiomatic presen-
tation of rewriting systems with bound variables. This year he obtained a factorisation
theorem in the sense of Freyd & Kelly. The theorem means that the efficient part of a
computation can always be separated from its useless part modulo redex permutations,
and that this separation is categorically functorial. This work was presented at the
Confer workshop in Bologna and at the CTCS ‘97 conference in Santa Margherita.

Subsequently, Melliès has obtained a stability result in the sense of Berry expressing
the existence of a cone (ei : M → Vi)i∈I of minimal computations from any term M
to the set of its values Vi. The result whose proof relies heavily on the factorisation
theorem is verified by any axiomatic rewriting system. In the lambda-calculus, it
extends the result by Wadsworth that the head-reduction is the minimal reduction path
from a lambda-term to its head-normal form. In the call-by-value lambda-calculus, the
cone (ei : M → Vi)i∈I contains at most a singleton which describes the strategy of
Landin SECD machine. In the lambda-sigma calculus, the existence of a cone and its
finiteness implies the completeness of various weak strategies and the corresponding
abstract machines. A paper containing these results has been submitted to LiCS ‘98.

[M97] P.-A. Melliès, A factorisation theorem in Rewriting Theory. Proc. of the
Category Theory and Computer Science symposium (CTCS’97).

5.1.3 Sequentiality

Berry’s Sequentiality Theorem for lambda calculus was generalised by J.W. Klop and
I. Bethke. Using the setting of infinitary lambda calculus where Bohm trees are infinite
normal forms, the technique of origin tracking (also used by Bertot at PLDI’91 and
Abadi, Lévy and Lampson at ICFP’96) was employed to obtain the sequentiality prop-
erty for lambda calculus. The infinitary lambda calculus differentiates in three versions
according to the way syntactic depth is counted: the three versions yield ordinary lamb-
da calculus with Bohm trees, the lazy lambda calculus with Levy-Longo trees, and a
version introduced by Berarducci. For all three versions, Berry’s sequentiality theorem
is uniformly proved by the same arguments. Also, a strengthening of Berry’s theorem
was obtained that can be used to prove more undefinability results.

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 49

5.1.4 The Theory of Action calculi

In Confer-1, Action structures have been proposed as an algebra for both the syntax
and the semantics of interactive computation. Action calculi are action structures of a
concrete nature, with added structure, and which represent a wide variety of calculi of
computation – functional, sequential, and concurrent. Each action in an action calculus
is represented as an assembly of molecules; the syntactic binding of names is the means
by which molecules are bound together. One action calculus differs from another only
in its generators, called controls. The work on action calculi has been pursued this year
in Cambridge in the following directions:

• Labelled transition systems and bisimulation congruences The semantics
of a process calculus, several of which have been introduced during CONFER,
can often be most intuitively given as a reduction relation, defined by a structural
congruence and reduction axioms. The action calculus framework embraces a
rather wide class of such definitions. A central problem is then that of deriving,
from such a definition of reduction, a labelled transition semantics for which
bisimulation is a satisfactory congruence. Considerable progress has been made,
e.g. by Jensen [Jen98] for a form of graph rewriting approximating to a graphical
presentation of action calculi, and by Sewell for special cases of term rewriting.
Work on more general cases is being undertaken by Gardner, Jensen, Leifer,
Milner and Sewell.

• Expressiveness A uniform framework for the operational semantics of calculi
allows comparisons of expressiveness to be made. Using natural homomorphisms
between control structures (the models of action calculi), it is possible to char-
acterise important properties of calculi such as mobility of channels. Leifer has
shown that the π-calculus is mobile in this sense, whilst many other calculi such
as CCS, the λ-calculus, and Petri nets, are not. This work, extending the work
of Mifsud at Edinburgh, gives a precise meaning to the intuitive sense in which
the π-calculus is more expressive than, say, CCS.

• Gardner has introduced a type-theoretic description of action calculi [GH97]
which develops her previous work on a name-free account of action calculi and
gives a logical interpretation based on the general binding operators studied by
Aczel. With her Ph.D student Hasegawa, at Edinburgh, she has shown that
the type-theoretic account of higher-order action calculi corresponds to Moggi’s
commutative computational λ-calculus. With Gordon Plotkin and Andrew Bar-
ber, also at Edinburgh, they have introduced a further extension of action calculi,
called the linear action calculi [BGHP97]. Linear action calculi extend the higher-
order case, and the associated type theory corresponds to the linear type theories
studied by Barber and Nick Benton of Cambridge. The conservative extension
results follow from looking at the corresponding categorical models.

• Examples Several example action calculi have been considered, including a func-
tional programming language with mutable store and exceptions, the ambient

50 CHAPTER 5. PROGRESS

calculus of Abadi and Cardelli, and distributed process calculi.

• Higher-order reflexive action calculi The first of these examples required two
previously separate enrichments of AC, namely, the higher-order and the reflexive
extensions (the latter in a simplified form). The proof that an AC combining the
two is well-defined reduces to a proof of strong normalisation for the higher-order
beta-reduction of the molecular forms corresponding to this enriched AC. Leifer
completed this proof and, in the process of doing so, developed several new tech-
niques for handling molecular forms, including the formalisation of manipulations
involving reflexive substitutions.

[BGHP97] Andrew Barber, Philippa Gardner, Masahito Hasegawa, and Gordon Plotkin.
From action calculi to linear logic,. In Proceedings of CSL 97, Aarhus, 1997.

[Gar98] Philippa Gardner. Closed action calculi. Theoretical Computer Science,
1998. To appear.

[GH97] Philippa Gardner and Masahito Hasegawa. Types and models in higher-
order action calculi. In Proceedings of TACS 97, Sendai, Japan, 1997.

[Jen98] Ole Høgh Jensen. PhD thesis, University of Cambridge. Forthcoming,
1998.

5.1.5 The tile model

The tile model relies on certain rewrite rules with side effects, called tiles, reminiscent of
both Plotkin SOS and Meseguer rewriting logic rules. It provides a logic of concurrent
systems with conditional state changes and synchronization, and has been shown to be
especially useful for defining compositional models of mobile processes and causal and
located concurrent systems. The tile model has been used for modelling coordination
formalisms equipped with flexible synchronization primitives. The main advantage of
the tile approach is the full compositionality of the underlying logic, which is able to
handle computations of (nonclosed) system components as they were new rewrite rules
specifying complex coordinators. [FM97a, GM97].

Ferrari and Montanari used tiles to give a tile-based semantics for located CCS in
[FM97b]. They give a treatment of concurrent process calculi where the same opera-
tional and abstract concurrent semantics described in the literature now descend from
general, uniform notions. More precisely, a tile-based semantics for located CCS is
shown to be consistent with the ordinary concurrent (via permutation of transitions)
and bisimilarity based location semantics. The tile model is particularly well suited for
defining directly operational and abstract semantics of concurrent process calculi in a
compositional style.

[FM97a] Ferrari, G., Montanari, U. A Tile-Based Coordination View of Asynchronous
π-calculus, In Proc. MFCS’97, LNCS 1295, 1997.

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 51

[FM97b] Ferrari, G., Montanari, U. Tiles for Concurrent and Located Calculi. In
Proc. EXPRESS’97, ENTCS 7, 1997.

[GM97] Gadducci, F. and Montanari, U., The Tile Model. In: Gordon Plotkin, Colin
Stirling, and Mads Tofte, Eds., Proof, Language and Interaction: Essays in
Honour of Robin Milner, MIT Press, to appear.

5.1.6 Correct Transformations of Nondeterministic Programs

Computing systems have two parts: a computational part and a descriptive part. The
descriptive part specifies the environment in which the computational part is to execute,
and it may be nondeterministic (e.g. asynchrony in a system with communicating pro-
cesses). The computational part is most often deterministic and can be implemented
in various ways, which gives opportunities for optimisations.

Traditional program transformations, like fold/unfold-transformations, are however
not always correct in the presence of nondeterminism. Yet, there is a need to perform
optimising transformations on programs containing an environmental part, especially
if the language concepts are very high level (and thus expensive to implement). The
motivation for this work is to provide a theory to support the design and implementation
of languages where the computational part can be optimised as freely as possible while
preserving the (possibly nondeterministic) semantics for the full system. The results
are general, but the intended target is recursive languages with process constructs.

If the computational and descriptive parts (both described as rewrite rules) com-
mute, it is however possible to prove the validity of unfold/fold program tranformations.
This earlier work within Confer-1 has been completed during this year [Lisp98]. These
results hold under the classical condition of “restricted folding-unfolding” [Cou90],
which is quite restrictive with respect to the formation of new recursive definitions. We
have made some initial investigations towards extending the results to the particular
formation of new recursive definitions that typically occur during program specializa-
tion.

[Lisp98] B. Lisper. Computing in unpredictable environments: Semantics, reduc-
tion strategies, and program transformations. Theoretical Comput. Sci.,
190(1):61–85, Jan. 1998.

5.1.7 Flow graphs and semantics

In [Je97], Jeffrey gives a precise relationship between

• mixed data and control flow graphs, which are commonly used in software engi-
neering as a semi-formal notation for describing and analysing algorithms

• and an abstract representation of formal semantics which uses partially traced
Cartesian categories.

52 CHAPTER 5. PROGRESS

This document also contains some more speculative work on how closed structure
(to represent higher-order functions) or two-category structure (to represent operational
semantics) might be included in this graphical framework.

[Je97] A. Jeffrey. Flow graphs and semantics of programs. available from
http://www.cogs.susx.ac.uk/users/alanje/premon/, 1997.

5.2. CALCULI 53

5.2 Calculi

The work done this year mainly deals with 4 main topics: new calculi for mobile and
distributed processes, basic properties and types, bisimulations, proofs of protocols and
transformational rules.

5.2.1 New Calculi for mobile and distributed processes

Boudol introduced the blue calculus [Bou97a]. It proposes a synthesis of the lambda-
calculus and the pi-calculus. This calculus contains a new type system which incorpo-
rates both the notion of functional type and that of sort for communication channels.
This type system has been further studied by Dal-Zilio in [Dal97], where it is shown to
extend naturally to an implicit polymorphic type system à la ML.

These types only express very weak properties of the behaviour of processes. For
instance, one cannot guarantee the absence of deadlock; here we mean by deadlock
that a process calls a resource that will never become available. To overcome this lack
of expressiveness, G. Boudol has proposed in [Bou97b] a more refined notion of type,
which incorporates a part of Hennessy-Milner logic: a resource declaration is given a
modal type indicating that a value of a certain type is available on a certain name.
This new type system is shown to enjoy the subject reduction property. This research
will be hopefully extended with a proof that typability implies the absence of deadlock.

In [Am97] Amadio presents a model of mobility based on the pi-calculus. He relies
on an elementary typing, which ensures that in a system, at every moment, to a given
name there corresponds a unique resource (whose state can change from one call to
another, however). In this way, one can consider a site – or a locality – as a name
associated to a resource whose state is either ‘alive’ or ‘dead’. Amadio develops on this
basis a formalism to speak about migration and failures, and he provides reasoning
methods which use a notion of bisimulation.

In [RieHen97a] Riely and Hennessy studied in detail location failure for distributed
processes. A language is defined in which threads are run at distributed locations, and
from this a semantic theory is developed using the basic notions of observer and experi-
ment. Roughly, an observer interacts with a distributed process either by synchronizing
with one of its threads or by halting one of its locations; two programs are equivalent
if they present the same structure of observations, evolving over time. The main result
of this work is to provide an alternative characterization of this observational equiva-
lence which is suitable to automatic verification. This is done using a temporal logic
to characterize the interdependence between synchronization events and failures.

In [RieHen97b] Riely and Hennessy present a more expressive language, which in-
cludes agent migration, location failure and a rich system of capabilities used to tag
communicated data. Intuitively, when the name, say, of a location is communicated,
a set of capabilities for that location is communicated at the same time; these may
include the capability to read data, to write data, to halt the location, to migrate to it,
or to allocate fresh resources at it. We present a series of type systems for this language
and show, through examples, that very expressive type systems are necessary in order

54 CHAPTER 5. PROGRESS

to be able to type many important practical programs.
Lavatelli works on the definition of an algebraic semantics of λr based on approx-

imants, in the flat scenario (where both abstractions and deadlock are observable),
which turns out to be sound. Work in progress concerns completeness. The aim is
to use these results as intermediate steps in the characterization of the flat semantic-
s through an intersection type system. Another work in progress, by Lavatelli and
Curien, concerns the use of techniques of logical relations to compare the inequational
theories of two models of λr that have arisen naturally when trying to give a semantics
to λr.

Now, Parrow and Victor have also developed the update-calculus where processes
can perform update actions with side effects, and a scoping operator controls the extent
of the effects [PV97]. In this way it incorporates fundamental concepts from imperative
languages, concurrent constraints and from functional formalisms. Structurally it is
similar to but simpler than the pi-calculus; it has only one binding operator and a
symmetry between inpout and output.

Finally, in [SWP97], Sewell, Wojciechowski and Pierce have proposed a simple cal-
culus of agents that can migrate between sites and can interact by both location depen-
dent and location independent message passing. It has a precise reduction semantics.
Implementations of the location independent primitives can be expressed as encodings,
or compilations, of the whole calculus into the fragment with only location dependent
communication. This allows the algorithms to be stated and understood precisely, a
clean implementation strategy for prototype languages (such an encoding can be re-
alized as one phase of a compiler), and reasoning. It also provides a setting in which
multiple communication mechanisms can coexist gracefully.

[Am97] R. Amadio. An asynchronous model of locality, failure, and process mobil-
ity. In Proc. Coordination 97, Springer Lect. Notes in Comp. Sci. 1282,
1997.

[AmCou97] R. Amadio and S. Coupet-Grimal. Analysis of a guard condition in type
theory (preliminary report). Technical Report TR 1997.245. Also RR-3300
INRIA, Université de Provence (LIM), 1997.

[Bou97a] G. Boudol. The pi-calculus in direct style. In Proceedings POPL’97, 1997.

[Bou97b] G. Boudol. Typing the use of resources in a concurrent calculus. In
Proceedings ASIAN’97, LNCS 1345, 1997.

[Dal97] S. Dal-Zilio. Implicit polymorphic type system for the blue calculus. Tech-
nical Report RR-3244, INRIA, 1997.

[RieHen97a] J. Riely and M. Hennessy. Distributed processes and location failures.
Technical Report 2/97, 1997. Extended abstract presented at ICALP97.

[RieHen97b] J. Riely and M. Hennessy. A typed language for distributed mobile pro-
cesses. In Proc. POPL’98, ACM Conference on Principle of Programming
Languages, San Diego.

5.2. CALCULI 55

[PV97] J. Parrow and B. Victor. The update calculus (full version). Technical
Report DoCS 97/93, Department of Computer Systems, Uppsala University,
Sweden, Sept. 1997. Extended abstract to appear in the proceedings of
AMAST’97.

[SWP97] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location
independence for mobile agents. Submitted for publication, 1997.

5.2.2 Basic properties and types

In [San97a], Sangiorgi formulates a type system for mobile processes that guarantees,
in a distributed process, that at any moment a given name gives the access to a u-
nique stateless resource. This discipline, called uniform receptiveness, is employed,
for instance, when modeling functions, objects, higher-order communications, remote-
procedure calls. The impact of the discipline on behavioural equivalences and process
reasoning is studied. Some theory and proof techniques for uniform receptiveness is
developed, and their usefulness on some non-trivial examples is illustrated.

In [PiSa97], Pierce and Sangiorgi investigate parametric polymorphism in message-
based concurrent programs, focusing on behavioral equivalences in a typed process
calculus analogous to the polymorphic lambda-calculus of Girard and Reynolds. Poly-
morphism constrains the power of observers by preventing them from directly manip-
ulating data values whose types are abstract, leading to notions of equivalence much
coarser than the standard untyped ones. The nature of these constraints is studied
through simple examples of concurrent abstract data types and develop basic theoret-
ical machinery for establishing bisimilarity of polymorphic processes. Some surprising
interactions between polymorphism and aliasing are also observe, drawing examples
from both the polymorphic pi-calculus and ML.

Philippou and Walker looks at confluence properties: in a process setting, the
essence of confluence is that the occurrence of one action may not preclude others. In
the case of π-calculus, where names may be extruded from their scopes, care is needed
to find the right definition. Basic results on confluence in π-calculus are presented in
[PW97] and [P97phd]. In particular, conditions under which combinations of confluent,
or almost-confluent, processes yield confluent systems are presented.

In [LW97b], a theory of partial-confluence of processes is developed, in CCS and in
π-calculus. The main theorem concerns systems which can be thought of as composed
from two components: a questioner, and an answerer which may process questions
concurrently. It gives conditions under which a system of this kind is behaviourally
indistinguishable from the corresponding system in which the answerer may handle
only one question at a time. This result, together with a semantic definition of the kind
described above, is used to show the interchangeability in an arbitrary program context
of two class definitions which prescribe binary-tree symbol-table data structures, one
supporting concurrent operations, the other sequential.

In [NS97], Nestmann and Steffen also investigates confluence properties for concur-
rent systems of message-passing processes. In order to prove confluence for a given

56 CHAPTER 5. PROGRESS

system, one has to demonstrate that for all states reachable by computation from the
starting state, the ’flowing together’ of possible computations is possible. However,
it is possible to prove confluence properties for concurrent systems without having to
generate all reachable states by use of a type system that supports a static analysis of
possible sources of non-confluence. One may statically check the occurrences of critical
situations by reducing them to the concurrent access on a shared communication port.
For the technical development, one focuses on the setting of a polarized pi-calculus,
whith the notion of port-uniqueness being formalised by means of overlapping-free
context-redex decompositions.

Finally, in [Sew97a], Sewell considers global/local typing. In the design of dis-
tributed programming languages, there is a tension between the implementation cost
and the expressiveness of the communication mechanisms provided. In [Sew97a] a stat-
ic type system for a distributed π-calculus is introduced, in which the input and output
capabilities of channels may be either global or local. This may allow compile-time op-
timization, but retains the expressiveness of channel communication. Subtyping allows
all communications to be invoked uniformly.

[LW97b] X. Liu and D. Walker, Partial confluence of processes and systems of objects,
Theoretical Computer Science B, to appear.

[NS97] U. Nestmann and M. Steffen. Typing confluence. In S. Gnesi and D. Latel-
la, editors, Second International ERCIM Workshop on Formal Methods
in Industrial Critical Systems (Cesena, Italy, July 4–5, 1997), pages 77–
101. Consiglio Nazionale Ricerche di Pisa, 1997. Also available as report
ERCIM-10/97-R052, European Research Consortium for Informatics and
Mathematics, 1997.

[PW97] A. Philippou and D. Walker, On confluence in the π-calculus, in Proceedings
of International Colloquium on Automata, Languages and Programming,
Bologna, July 1997, Springer-Verlag Lecture Notes in Computer Science,
vol. 1256, 314–324.

[PiSa97] B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic
pi-calculus. In 24th POPL. ACM Press, 1997.

[San97a] D. Sangiorgi. The name discipline of receptiveness. volume 1256 of
Lecture Notes in Computer Science. Springer Verlag, 1997. Full paper
available electronically as ftp://zenon.inria.fr/meije/theorie-par/-
davides/Receptiveness.ps.Z.

[Sew97c] Peter Sewell. Global/local subtyping for a distributed π-calculus. Technical
Report 435, Computer Laboratory, University of Cambridge, August 1997.
Available from http://www.cl.cam.ac.uk/users/pes20/.

5.2. CALCULI 57

5.2.3 Bisimulations

In [BFL98], Boreale, Fournet and Laneve developed a new theory of bisimulation for
the join calculus. They consider open terms, and define two bisimulations, weak and
asynchronous, both refinments of the observational equivalence. This gives a more
compositional sense to the interaction of the terms of the join-calculus with contexts,
and is a start point to logical systems for reasoning on join-terms.

More generally, many equivalences have been proposed for process algebra for the s-
tudy of convergence, security or fairness. Gonthier started a comparison of equivalences
used both in the pi and join calculus, mostly based on reduction semantics, observation
of barbs and preservation by contexts. Many variants appear according to the way
these elementary constructs are combined. But fortunately many lead to a same result.
One shows that fair-testing is connected to coupled bisimulation, or that omega-limit
bisimulation is also related to single-barb gfp bisimulation. This provides new proof
techniques and a better understanding of process calculi. An article is in preparation,
the work has been presented at the Confer Workshop in Amsterdam [Gon98].

Sewell has studied the semantics of PICT in [Sew97c], and has shown how the
behaviour of implementations of the language relates precisely to the labelled transitions
of the π-calculus. His results indicate that there is an essentially unique behavioural
equivalence appropriate for PICT, from the large space of choices in the literature.

In [Ra97a] an axiomatic characterisation of both late and early observational con-
gruence for a class of fully parameterised processes is given. This result uses a new
derivation rule which is an intuitive generalisation of unique fixpoint induction based
on loop invariants for symbolic graphs. In the same paper it is shown that the new
rule can actually be derived from existing formulations of unique fixpoint induction for
value-passing calculi.

In [Ra97b] a first order modal mu-calculus is described which uses parameterised
maximal fixpoints to describe safety and liveness properties of value-passing processes.
A proof system for deciding if a process satisfies a formula is presented. Certain deduc-
tion rules of the system carry side conditions which leave auxiliary proof obligations
of checking properties of the value language. Although the proof system is in general
incomplete two completeness results are given for significant sub-logics.

Abadi (DEC/SRC), Fournet and Gonthier studied secure implementation of com-
munication in the join calculus. It is easy to write secure protocols when lexical scope
is guaranteed, but one needs cryptographic means to enforce a secure lexical scope
discipline. By compositionality, two protocols can be considered: one based on the
redefinition of secure emission/reception primitives, another one based on firewalls for
some locations. The correctness proofs use bisimulation techniques. A presentation
by Fournet has been made at the DARPA workshop on Foundations for Secure Mobile
Code, March 26-28 mars in Monterey [Fou97], and at the Confer meeting in Amsterdam.
An article is in preparation [AFG98].

[AFG98] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel
abstractions. To be submitted for a conference, November 1997.

58 CHAPTER 5. PROGRESS

[BFL98] M. Boreale, C. Fournet, and C. Laneve. Bisimulations in the join-calculus.
Submitted for a conference, September 1997.

[Fou97] C. Fournet. Security within a calculus of mobile agents? April 1997,
http://www.cs.nps.navy.mil/research/languages/statements/fournet.ps.

[Gon98] G. Gonthier. On asynchronous barbs, simulations, and fair testing. Sub-
mitted to a conference, Octobre 1997.

[Ra97a] J. Rathke. Unique fixpoint induction for value-passing processes. In Proc.
LICS’97, 12th Annual Symposium on Logic in Computer Science, Warsaw.
IEEE Computer Society Press, 1997. To appear.

[Ra97b] J. Rathke and M. Hennessy. Local model checking for value-passing pro-
cesses. In Proc. TACS’97, International Symposium on Theoretical Aspects
of Computer Software, Sendai. Springer-Verlag, 1997.

[Sew97c] Peter Sewell. On implementations and semantics of a concurrent pro-
gramming language. In Proceedings of CONCUR ’97. LNCS 1243, pages
391–405. Springer-Verlag, 1997.

5.2.4 Proofs of protocols and transformational rules

In [San97J], Sangiorgi applies the proof techniques developed in [San97a] to solve a
problem submitted by Cliff Jones. Jones has proposed transformations between con-
crete programs and general transformation rules that increase concurrency in a system
of objects, and has raised the challenge of how to prove their validity. A proof of
correctness of the hardest of Jones’s concrete transformations is presented.

In [PW97b], Philippou and Walker use the technique based on partial confluence of
processes to show the soundness of transformation rules for concurrent object-oriented
programs which increase the scope for concurrent activity within the system prescribed
by a program, without altering its observable behaviour. The rules allow one object
to release another from a rendez-vous before it has finished all the associated activity,
and allow one object to delegate to a second object the responsibility for returning a
result to a third object.

In [PW97c], the theory of [PW97b] is extended to encompass a larger class of
answerers. Analogous behavioural indistinguishability results are obtained, for an ap-
propriate class of questioners. The main advance is that whereas in the case of the
symbol-table data structures, the answer to a question is determined at the moment
the question is submitted, in [PW97c] up to one state-changing internal action may
occur in determining the answer. This result is used in [PW97d] where algorithms
for operating concurrently on a variant of the B-tree data structure are modelled and
analysed using π-calculus. In this case the state-changing internal action is the act of
locking the disk page in which the operation in question will take effect. Deficiences in
and improvements to published algorithms were discovered. In [I97] Ionitoiu begins to

5.2. CALCULI 59

explore a new approach to modelling asynchronous communication and fault-tolerance
in a process-calculus setting.

Another work on mobility [AmPra97] concerns the modelling of mobile hosts on a
network in a simple name-passing process calculus. The protocol considered is a highly
simplified version of proposals for mobility support in the version 6 of the Internet
Protocols (IP). We concentrate on the issue of ensuring that messages to and from
mobile agents are delivered without loss of connectivity. We provide three models
of increasingly complex nature of a network of routers and computing agents that
are interconnected via the routers: the first is without mobile agents and is treated
as a specification for the next two; the second supports mobile agents, and the third
additionally allows correspondent agents to cache the current location of a mobile agent.
Following a detailed analysis of the three models to extract invariant properties, we
show that the three models are related by a suitable notion of equivalence based on
bisimulation.

[AmPra97] R. Amadio and S. Prasad. Modelling IP mobility. Technical Report TR
1997.244. Also RR-3301 INRIA, Université de Provence (LIM), 1997.

[San97J] D. Sangiorgi. Typed π-calculus at work: a proof of Jones’s parallelisation
transformation on concurrent objects. Presented at the Fourth Workshop
on Foundations of Object-Oriented Languages (FOOL 4). To appear in
Theory and Practice of Object-oriented Systems, 1997.

[PW97b] A. Philippou and D. Walker, On transformations of concurrent object pro-
grams, Theoretical Computer Science B, to appear.

[PW97c] A. Philippou and D. Walker, Social confluence in client-server systems, in
Proceedings of Computer Science Logic, Utrecht, September 1996, Springer-
Verlag Lecture Notes in Computer Science, vol. 1258, 385–398.

[PW97d] A. Philippou and D. Walker, A rigorous analysis of concurrent operations
on B-trees, in Proceedings of Concurrency Theory, Warsaw, July 1997,
Springer-Verlag Lecture Notes in Computer Science, vol. 1243, 361–375.

[P97phd] A. Philippou, Reasoning about systems with evolving structure, PhD thesis,
University of Warwick, December 1996.

[I97] C. Ionitoiu, An operational semantics for loosely coupled systems, MSc
dissertation, University of Warwick, September 1997.

60 CHAPTER 5. PROGRESS

5.3 Logics for Concurrency and λ-calculus

In this section, works has been carried out on semantic models of the λ-calculus, possibly
extended by some δ-rules, and of linear logic. Denotational semantics is also used to
provide models for concurrent languages and infinite streams. Research has been mainly
conducted at Edinburgh, ENS, INRIA Sophia-Antipolis and Sussex.

5.3.1 Game semantics for the λ-calculus and linear logic

A key interest of game semantics is that it provides a framework within which one may
conciliate dynamic and static aspects of meaning. It is expected that such semantics
can help in complexity theory on the one hand and in extending denotational semantics
to model concurrent and distributed languages (so-called process-calculi).

Abramsky has developed a concurrent version of game semantics, using the Kahn-
Plotkin theory of concrete domains and sequential functions. This has been used to
give a game semantics for Classical Linear Logic. It has also been used to give a model
for logic with branching quantifiers and information hiding, as proposed by Hintikka.
This work was presented in invited talks given at the Workshop on “Problems and
Advance in the Semantics of Linear Logic” held in Utrecht, November 28th and 29th
1997, and at the Amsterdam Colloquium, December 17-20 1997.

Honda and Yoshida developed a version of game semantics for call-by-value PCF,
and proved a full abstraction result. Their description of their model used some tool-
s from the pi-calculus. Abramsky and McCusker gave a more abstract and general
construction of call-by-value models from call-by-name ones, and showed that when
applied to the call-by-name games model of PCF it gave rise to the call-by-value one of
Honda and Yoshida; when applied to the model for the richer functional language FPC
studied by McCusker in his thesis, it gave a fully abstract model for call-by-value FPC;
and when applied to the model previously given by them for Idealized Algol, it gave
a full abstract model for a fragment of ML with ground reference types. Abramsky,
Honda and McCusker have obtained a fully abstract games model for general reference
types; a paper containing this result has been submitted to LiCS ‘98.

Danos, Herbelin and Regnier explain, in [DHR96], the operational side of the t-
wo game models of Hyland-Ong (HO) and Abramsky-Jagadeesan-Malacaria (AJM) in
terms of abstract machines. Building on this explanation, an embedding of the AJM
model in the HO model is given that leads to an easy proof of completeness for the
former.

In [BDER97], Baillot, Danos, Ehrhard and Regnier adapt the AJM construction
to give the first known games model which encompasses all of classical linear logic.
Composition of strategies is recast as a communication process. The exponential part
of the model is based on the idea of sticking to strategies which contain all possible
encodings of copy-tags. This works is pursued in [BDER97b], which gives an explicit
transformation that goes from that linear logic games model to the traditional relational
model. This concrete extensional collapse helps in understanding what games semantics
is good to.

5.3. LOGICS FOR CONCURRENCY AND λ-CALCULUS 61

In [CuBoeh] Curien presents a formalism of trees with pointers, called abstract
Böhm trees, that provide a suitable abstract framework in which various cut-free proofs
or normal terms of several λ-calculus based languages (including PCF and Parigot’s
λµ-calculus) can be faithfully encoded. A simple abstract machine allows us to compute
over abstract Böhm trees. This machine is closely related to Coquand’s interaction se-
quences and debates. The execution over finite abstract Böhm trees always terminates.
We introduce an abstract notion of type that fits the purpose of guaranteeing that the
execution cannot go into deadlock, i.e., that it always reaches a satisfactory final state.
The operational aspects of (untyped) Böhm trees are investigated in more depth in
[CuHer96], a joint paper by Curien and Herbelin,

[AM97] S. Abramsky, G. McCusker, Call-by-Value games (extended abstract) To
appear in Proc. of CSL’97.

[BDER97] P. Baillot, V. Danos, and T. E. andL. Regnier. Believe it or not, AJM’s
games model is a model of classical linear logic. In Proc. 12th LICS, pages
68–75. IEEE, 1997.

[BDER97b] P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Timeless games. In
Proc. CSL ’97, volume to appear. Springer Verlag, 1997.

[CuBoeh] P.-L. Curien. Abstract böhm trees. Mathematical Structures in Computer
Science, 1998. to appear.

[CuHer96] P.-L. Curien and H. Herbelin. Computing with abstract böhm trees. In
Proc. of Third Fuji International Symposium on Functional and Logic Pro-
gramming, World Scientific (Singapour), 1998.

[DHR96] V. Danos, H. Herbelin, and L. Regnier. Game semantics and abstract
machines. In Proc. 11th LICS, pages 394–405. IEEE, 1996.

[HY97] K. Honda, N. Yoshida, Game-theoretic analysis of Call-by-Value Computa-
tion (extended abstract). To appear in Proc. of ICALP’97.

5.3.2 Denotational semantics

In [AmCou97] Amadio and Coupet-Grimal consider the issue of representing “infinite”
and “total” objects like infinite streams or non-terminating processes in type theory.
They present a realizability interpretation of co-inductive types based on partial equiv-
alence relations (per’s), and extract from the per’s interpretation sound rules to type
recursive definitions. These recursive definitions are needed to introduce ‘infinite’ ob-
jects of co-inductive type. One can show that the proposed type system enjoys the
basic syntactic properties of subject reduction and strong normalization with respect
to a confluent rewriting system first studied by Gimenez. The proposed type system
is compared with those by Coquand and Gimenez. In particular, it provides a seman-
tic reconstruction of Gimenez’s system which suggests a rule to type nested recursive
definitions.

62 CHAPTER 5. PROGRESS

The final version of the book [AmCu97] has been delivered. The book addresses the
mathematical aspects of the semantics of programming languages. The mathematical
objects manipulated are order-theoretic structures, and the languages we consider are
typed lambda-calculi. The book considers various extensions of typed lambda-calculi
to include non-determinism, communication, and concurrency, and it summarizes some
of the work carried on in the Confer project.

In [HaHen97e] Hartonas and Hennessy use traditional denotational techniques to
give a denotational model of a subset of core Facile. Specifically this is applied typed
call-by-value language which in addition to the usual types has an extra type for pro-
cesses, which can exchange values along communication channels, a la CCS. The model
is shown to be fully-abstract with respect to a version of may testing. It is notable that
in order to achieve full-abstraction it is necessary to add to the language an operator
which allows processes report the result of a computation.

[Am97] R. Amadio. An asynchronous model of locality, failure, and process mobil-
ity. In Proc. Coordination 97, Springer Lect. Notes in Comp. Sci. 1282,
1997.

[AmCou97] R. Amadio and S. Coupet-Grimal. Analysis of a guard condition in type
theory (preliminary report). Technical Report TR 1997.245. Also RR-3300
INRIA, Université de Provence (LIM), 1997.

[AmCu97] R. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge
University Press. To appear.

[AmPra97] R. Amadio and S. Prasad. Modelling IP mobility. Technical Report TR
1997.244. Also RR-3301 INRIA, Université de Provence (LIM), 1997.

[HaHen97e] C. Hartonas and M. Hennessy. Full abstractness for a functional/concurrent
language with higher-order value-passing. Full version available as Com-
puter Science Technical Report 1/97, University of Sussex, 1997. Available
from http://www.cogs.susx.ac.uk/.

5.4. PROGRAMMING LANGUAGES 63

5.4 Programming Languages

This section is composed of 4 parts. First, there is the work on the Join Calculus
language and PICT, both with public releases. Secondly, the work on the BOHM
machine has been pursued. Thirdly, a prototype of LLinda has been implemented.
Finally, practical experiments have been designed in the ICL GTD project and at CNET
Lannion. These researchs have been carried out at INRIA Rocquencourt, Bologna, Pisa,
ICL and CNET.

5.4.1 The Join Calculus Language

The join-calculus has been designed in BRA Confer-1 by Fournet and Gonthier. It is
a variant of the PICT language, specially defined for a distributed implementation on
any Unix-like environment. The basic difference with respect to PICT is to impose a
single location for receptors on any communication channel.

Version 1.04 has been released in June by Fournet and Maranget. This prototype
includes a distributed implementation of the join-calculus, which is about 20000 lines of
Caml-light code. The system comprises a byte-code compiler, a run-time interpreter,
an on-line documentation, a tutorial and many examples. As demo programs, we
have a distributed calculation of the Mandelbrot set and several distributed games.
In this release of the join-calculus, the syntax of the language is very similar with
the one of Caml, and there is a type-inference system including a polymorphic typing
discipline a la ML, a natural interface system for CAML-light, which gives access to
the graphics library. Failures have also been implemented, but only the voluntary ones.
True asynchronous permanent failures will be implemented in a future release.

An article on the type-inference algorithm and a demo were presented at CON-
CUR’97 [FLMR97] and at TACS’97 [Le97]. The system is available at http://www.-
pauillac.inria/join/.

5.4.2 A distributed garbage collector

Le Fessant, Piumarta, and Shapiro expanded an acyclic distributed garbage collector
(the cleanup protocol of Stub-Scion Pair Chains) with a detector of distributed cycles
of free cells. The whole results in a complete and asynchronous distributed garbage
collector.

The detection algorithm for free cycles is inspired by Hughes. A local collector
marks outgoing references with dates, which are propagated asynchronously between
spaces. A central server computes the minimal allowed dates, permitting cycles to be
detected, cut and further collected.

This new algorithm is asynchronous and fault-tolerant. Furthermore, it can be
adapted to large-scale systems. It also requires few resources and is easy to implement.
In the mid-range, it will be included in a future release of the Join Calculus language.

[FLMR97] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing à la
ML for the join-calculus. In A. Mazurkiewicz and J. Winkowski, editors,

64 CHAPTER 5. PROGRESS

CONCUR ’97: Concurrency Theory (8th International Conference, War-
saw, Poland, July 1997), volume 1243 of LNCS, pages 196–212. Springer,
1997.

[leF97] F. le Fessant, I. Piumarta, and M. Shapiro, An implementation for com-
plete asynchronous distributed garbage collection. Submitted for publica-
tion, November 1997, available electronically (http://www-sor.inria.fr/
docs/).

[FouMa97] C. Fournet and L. Maranget. The join-calculus language. Available elec-
tronically (http://pauillac.inria.fr/join), June 1997.

[Le97] J.-J. Lévy. Some results in the join-calculus. In M. Abadi and T. Ito,
editors, TACS ’97: Theoretical Aspects of Computer Software, volume 1281
of LNCS, pages 233–249. Springer, 1997.

5.4.3 Distributed PICT

PICT is a language, based on the π-calculus, designed by Pierce and Turner. PICT
now has a stable public release; its design is described in [PT97]. Pierce, has moved
from Cambridge to Indiana. Sewell, Wojciechowski, and Pierce (see section 5.2), work
on a study in more detail of the design, semantic definition and implementation of
communication primitives by which mobile agents can interact. This has led to a
prototype implementation, building on that of PICT, which is ongoing, as is work on
reasoning, in particular on correctness and robustness results.

PICT has also been used to model concurrent objects. The view that general models
of mobile processes, such as π-calculus and Higher-Order π-calculus, provide a good
framework for the definition of a variety of concurrent object-oriented languages is
illustrated in [LW97a]. A technique involving process continuations is used to give a
natural and direct semantic definition for a language containing constructs for several
kinds of inter-object communication. In the unpublished MSc dissertation [S97], Sawle
gives a semantic definition to an experimental extension of Pict with actor primitives
and implements a prototype. Sawle now studies for a PhD at Cambridge.

[LW97a] X. Liu and D. Walker, Concurrent objects as mobile processes, in Proof,
Language and Interaction: Essays in Honour of Robin Milner, G. Plotkin,
C. Stirling, and M. Tofte (eds.), MIT Press, to appear.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. Technical Report CSCI 476, Computer Science
Department, Indiana University, 1997. To appear in Proof, Language and
Interaction: Essays in Honour of Robin Milner, Gordon Plotkin, Colin
Stirling, and Mads Tofte, editors, MIT Press.

[S97] M. Sawle, A π-calculus semantics for actor systems, MSc dissertation,
University of Warwick, September 1997.

5.4. PROGRAMMING LANGUAGES 65

5.4.4 The BOHM machine

Asperti, Giovannetti, and Naletto are still working on the implementation of Lamping’s
graph reduction algorithm for optimal reduction of functional languages (the Bologna
Optimal Higher-order Machine [AG98]). We have almost completed a new “light”
version, essentially inspired by Girard’s Light Linear Logic. The light version provides
a much sharper syntactical control over the shape of sharing graphs than that provided
by the rough encoding of intuitionistic implication into linear logic, with a significant
impact on the efficiency of the reduction.

BOHM is a simple interpreter written in C, and it runs on most systems having a C
compiler, including Personal Computers. BOHM’s source language constitutes the full
core of a typical (dynamically-typed) lazy functional language, including a few data-
types, conditional expressions, recursive values and multiple recursion and lazy pattern
matching.

BOHM’s performance has been compared with two standard and fully developed
implementations of functional languages: Caml-light (Rocquencourt, France) and Yale
Haskell (UK). It is always comparable with that of Yale Haskell (i.e. approximately ten
time slower than Caml-light), while it can run surprisingly faster on many interesting
examples. Two typical cases are the incremental modification of arrays represented as
functions from indices to values, and the direct evaluation of Denotational Semantics
for imperative languages.

[BOHM] Asperti, A., Giovannetti, C., Naletto, A.: “The Bologna Optimal Higher-
order Machine”. Internal Report UBLCS-95-9, Laboratory for Computer
Science, University of Bologna, Italy.

[AG98] A. Asperti, S. Guerrini The Optimal Implementation of Functional Pro-
gramming Languages. To appear in the “Cambridge Tracts in Theoretical
Computer Science” Series, Cambridge University Press, 1998.

5.4.5 LLinda

De Nicola, Ferrari, and Pugliese design a kernel programming language, called LLinda,
to support a programming paradigm where processes as well as data can migrate from
one computing environment to another. The language is equipped with a sophisticated
type system.

LLinda (Locality based Linda) is a variant of the Linda system of David Gelernter,
which supports a programming paradigm where agents can migrate from one computing
environment to another. It is possible to define a type system for LLinda that permits
statically checking access rights violations of mobile agents. Types are used to describe
processes intentions (read, write, execute, ...) relatively to the different localities they
are willing to interact with or they want to migrate to. The type system is used to
determine the operations that processes want to perform at each locality, to check
whether they comply with the declared intentions and whether they have the necessary
rights to perform the intended operations at the specific localities.

66 CHAPTER 5. PROGRESS

[NFP97] De Nicola, R., Ferrari, G., Pugliese, R., Coordinating Mobile Agents vi-
a Blackboards and Access Rights, In Proc. COORDINATION’97, LNCS
1282, 1997.

5.4.6 Practical uses of Agents and Mobility

L. Leth and B. Thomsen worked on designing programming languages and advanced
end-user applications, to be serving as a “laboratory” in which theoretical results are
transferred into industrial usage.

A new research programme, called the ICL GTD (Group Technical Directorate)
framework in Agents and Mobility, has been set up. The programme encourages I-
CL businesses to take part in the research process from an early stage to ensure they
are prepared for knowledge and technology transfer as results emerge. The framework
includes setting up a virtual laboratory in collaboration with Fujitsu Laboratories, coor-
dinating sponsored medium/longer term research at universities and external research
laboratories (ANSA at APM, Cambridge and IC-Parc at Imperial College), a number of
research and development projects with ICL businesses (TeamWare, Financial Services,
ProcessWise and DAIS) and coordinating and participating in ICL efforts in defining
market and technical strategies, architectural and methodological developments across
the company.

There have been activities on understanding the relationship between mobile agents,
higher order processes, Milner’s action structures, distributed concurrent functional
programming languages, such as Facile and Business Process Modeling, in particular
the POSD formalism developed by ICL ProcessWise. Ppreliminary results may be
viewed on the web (http://www.prattens.demon.co.uk/webposd/posdw.htm).

At CNET Lannion, Brisset started to evaluate the usefulness of the join-calculus
language for real-world applications. He takes advantage of the features of the join-
calculus to design a very primitive distributed search engine that indexes text files
residing on a network of workstations. Each workstation runs an autonomous agent
which first builds an indexed database of the local files, then answers keyword-based
queries while continuously updating the database. The only central element is a name-
server whose function is mainly to transmit queries and answers between these agents
and client processes. Compared to popular WWW search engines like AltaVista, which
fetch files from servers through the Internet and process them in a high-performance,
centralized database server, this distributed architecture yields lower network usage
(assuming low query rates) and allows the database to be kept consistent with the
original files at a much lower cost.

[LT97a] Leth Thomsen, L., and Thomsen, B.: “Mobile Agents – THE new paradigm
in computing”, ICL Systems Journal, Volume 12, Issue 1, pp. 14–40, May
1997.

[LT97b] Thomsen, B.: “Programming Languages, Analysis Tools and Concurrency
Theory”, ACM Computing Surveys 28A(4), December 1996. (http://www.acm.org/-
pubs/articles/journals/surveys/1996-28-4es/a57-thomsen/a57-thomsen.html)

5.4. PROGRAMMING LANGUAGES 67

5.4.7 Proofs systems

Ferrari Ferro, Gnesi, Montanari, and Pistore, developed an automata-based verification
environment for the π-calculus. The environment takes a direct advantage of a general
theory which allows to associate ordinary finite state automata to a wide class of π-
calculus agents, so that equivalent automata are associated to equivalent agents. A key
feature of the approach is the re-use of efficient algorithms and verification techniques
(equivalence checkers and model checkers) which have been developed and implemented
for ordinary automata. The verification environment has been implemented on top of
an existing verification environment for process calculi: the JACK environment.

CNET is also involved in adapting the Coq theorem prover to specify and prove
safety and liveness properties of protocols and of distributed algorithms in a modular
way. This works implements results already obtained in 1996 by Crégut and Heyd with
the theory of Unity. In order to apply Coq-Unity to real-world protocol, a translation
from SDL is used. This method is currently applied on an ATM protocol, and is
research in progress.

68 CHAPTER 5. PROGRESS

Chapter 6

Appendices

[AM98] A. Asperti, H.Mairson Optimal β-reduction is not elementary recursive.
Proc. of the twenty-fifth Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL’98).

[AG98] A. Asperti, S. Guerrini The Optimal Implementation of Functional Pro-
gramming Languages. To appear in the “Cambridge Tracts in Theoretical
Computer Science” Series, Cambridge University Press, 1998.

[BFL97] M. Boreale, C. Fournet, C. Laneve: Bisimulations in the Join-Calculus.
October 1997. Submitted.

[FLMR97] C. Fournet, C. Laneve, L. Maranget, D. Rèmy: Implicit Typing à la ML in
the Join-Calculus. In Proceeding CONCUR ’97, LNCS 1243.

[BGHP97] Andrew Barber, Philippa Gardner, Masahito Hasegawa, and Gordon
Plotkin. From action calculi to linear logic,. In Proceedings of CSL 97,
Aarhus, 1997.

[Gar98] Philippa Gardner. Closed action calculi. Theoretical Computer Science,
1998. To appear.

[GH97] Philippa Gardner and Masahito Hasegawa. Types and models in higher-
order action calculi. In Proceedings of TACS 97, Sendai, Japan, 1997.

[Jen98] Ole Høgh Jensen. PhD thesis, University of Cambridge. Forthcoming, 1998.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. Technical Report CSCI 476, Computer Science
Department, Indiana University, 1997. To appear in Proof, Language and
Interaction: Essays in Honour of Robin Milner, Gordon Plotkin, Colin
Stirling, and Mads Tofte, editors, MIT Press.

[Sew97a] Peter Sewell. Global/local subtyping for a distributed π-calculus. Technical
Report 435, Computer Laboratory, University of Cambridge, August 1997.
Available from http://www.cl.cam.ac.uk/users/pes20/.

69

70 CHAPTER 6. APPENDICES

[Sew97b] Peter Sewell. Nonaxiomatisability of equivalences over finite state processes.
Annals of Pure and Applied Logic, 1997. To appear.

[Sew97c] Peter Sewell. On implementations and semantics of a concurrent program-
ming language. In Proceedings of CONCUR ’97. LNCS 1243, pages 391–405.
Springer-Verlag, 1997.

[SWP97] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location
independence for mobile agents. Submitted for publication, 1997.

[AM97] S. Abramsky, G. McCusker, Call-by-Value games (extended abstract) To
appear in Proc. of CSL’97.

[HY97] K. Honda, N. Yoshida, Game-theoretic analysis of Call-by-Value Computa-
tion (extended abstract). To appear in Proc. of ICALP’97.

[M97] P.-A. Melliès, A factorisation theorem in Rewriting Theory. Proc. of the
Category Theory and Computer Science symposium (CTCS’97).

[BDER97] P. Baillot, V. Danos, and T. E. andL. Regnier. Believe it or not, AJM’s
games model is a model of classical linear logic. In Proc. 12th LICS, pages
68–75. IEEE, 1997.

[BDER97b] P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Timeless games. In
Proc. CSL ’97, volume to appear. Springer Verlag, 1997.

[CuBoeh] P.-L. Curien. Abstract böhm trees. Mathematical Structures in Computer
Science, 1998. to appear.

[CuHer96] P.-L. Curien and H. Herbelin. Computing with abstract böhm trees. In
Proc. of Third Fuji International Symposium on Functional and Logic Pro-
gramming, World Scientific (Singapour), 1998.

[DHR96] V. Danos, H. Herbelin, and L. Regnier. Game semantics and abstract ma-
chines. In Proc. 11th LICS, pages 394–405. IEEE, 1996.

[LT97a] Leth Thomsen, L., and Thomsen, B.: “Mobile Agents – THE new paradigm
in computing”, ICL Systems Journal, Volume 12, Issue 1, pp. 14–40, May
1997.

[LT97b] Thomsen, B.: “Programming Languages, Analysis Tools and Concurrency
Theory”, ACM Computing Surveys 28A(4), De-
cember 1996. (http://www.acm.org/pubs/articles/journals/surveys/1996-
28-4es/a57-thomsen/a57-thomsen.html)

[AFG98] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel
abstractions. To be submitted for a conference, November 1997.

71

[BFL98] M. Boreale, C. Fournet, and C. Laneve. Bisimulations in the join-calculus.
Submitted for a conference, September 1997.

[leF97] F. le Fessant, I. Piumarta, and M. Shapiro, An implementation for com-
plete asynchronous distributed garbage collection. Submitted for publica-
tion, November 1997, available electronically (http://www-sor.inria.fr/
docs/).

[Fou97] C. Fournet. Security within a calculus of mobile agents? April 1997,
http://www.cs.nps.navy.mil/research/languages/statements/fournet.ps.

[FLMR97] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing à la
ML for the join-calculus. In A. Mazurkiewicz and J. Winkowski, editors,
CONCUR ’97: Concurrency Theory (8th International Conference, War-
saw, Poland, July 1997), volume 1243 of LNCS, pages 196–212. Springer,
1997.

[FouMa97] C. Fournet and L. Maranget. The join-calculus language. Available elec-
tronically (http://pauillac.inria.fr/join), June 1997.

[Gon98] G. Gonthier. On asynchronous barbs, simulations, and fair testing. Sub-
mitted to a conference, Octobre 1997.

[Le97] J.-J. Lévy. Some results in the join-calculus. In M. Abadi and T. Ito,
editors, TACS ’97: Theoretical Aspects of Computer Software, volume 1281
of LNCS, pages 233–249. Springer, 1997.

[Ne97a] U. Nestmann. What is a ‘good’ encoding of guarded choice? In
C. Palamidessi and J. Parrow, editors, EXPRESS ’97: Expressiveness in
Concurrency (Santa Margherita Ligure, Italy, September 8–12, 1997), vol-
ume 7 of ENTCS. Elesevier Science Publishers, 1997.

[NePie97] U. Nestmann and B. C. Pierce. Decoding choice encodings. In U. Montanari
and V. Sassone, editors, CONCUR ’96: Concurrency Theory (7th Interna-
tional Conference, Pisa, Italy, August 1996), volume 1119 of LNCS, pages
179–194. Springer, 1996. Revised full version as report ERCIM-10/97-R051,
European Research Consortium for Informatics and Mathematics, 1997.

[NS97] U. Nestmann and M. Steffen. Typing confluence. In S. Gnesi and D. Latel-
la, editors, Second International ERCIM Workshop on Formal Methods
in Industrial Critical Systems (Cesena, Italy, July 4–5, 1997), pages 77–
101. Consiglio Nazionale Ricerche di Pisa, 1997. Also available as report
ERCIM-10/97-R052, European Research Consortium for Informatics and
Mathematics, 1997.

[Am97] R. Amadio. An asynchronous model of locality, failure, and process mobility.
In Proc. Coordination 97, Springer Lect. Notes in Comp. Sci. 1282, 1997.

72 CHAPTER 6. APPENDICES

[AmCou97] R. Amadio and S. Coupet-Grimal. Analysis of a guard condition in type
theory (preliminary report). Technical Report TR 1997.245. Also RR-3300
INRIA, Université de Provence (LIM), 1997.

[AmCu97] R. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge
University Press. To appear.

[AmPra97] R. Amadio and S. Prasad. Modelling IP mobility. Technical Report TR
1997.244. Also RR-3301 INRIA, Université de Provence (LIM), 1997.

[Bou97a] G. Boudol. The pi-calculus in direct style. In Proceedings POPL’97, 1997.

[Bou97b] G. Boudol. Typing the use of resources in a concurrent calculus. In Pro-
ceedings ASIAN’97, LNCS 1345, 1997.

[Dal97] S. Dal-Zilio. Implicit polymorphic type system for the blue calculus. Tech-
nical Report RR-3244, INRIA, 1997.

[PiSa97] B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic
pi-calculus. In 24th POPL. ACM Press, 1997.

[San97a] D. Sangiorgi. The name discipline of receptiveness. volume 1256 of
Lecture Notes in Computer Science. Springer Verlag, 1997. Full paper
available electronically as ftp://zenon.inria.fr/meije/theorie-par/-
davides/Receptiveness.ps.Z.

[San97J] D. Sangiorgi. Typed π-calculus at work: a proof of Jones’s parallelisation
transformation on concurrent objects. Presented at the Fourth Workshop on
Foundations of Object-Oriented Languages (FOOL 4). To appear in Theory
and Practice of Object-oriented Systems, 1997.

[Cou90] B. Courcelle. Recursive applicative program schemes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, chapter 9, pages 459–
492. Elsevier Science Publishers B. V., 1990.

[Lisp98] B. Lisper. Computing in unpredictable environments: Semantics, reduc-
tion strategies, and program transformations. Theoretical Comput. Sci.,
190(1):61–85, Jan. 1998.

[PV97] J. Parrow and B. Victor. The update calculus (full version). Technical
Report DoCS 97/93, Department of Computer Systems, Uppsala University,
Sweden, Sept. 1997. Extended abstract to appear in the proceedings of
AMAST’97.

[NFP97a] De Nicola, R., Ferrari, G., Pugliese, R., Locality Based Linda: Program-
ming with Explicit Localities, In Proc. TAPSOFT’97, LNCS 1214, 1997.

73

[NFP97b] De Nicola, R., Ferrari, G., Pugliese, R., Coordinating Mobile Agents via
Blackboards and Access Rights, In Proc. COORDINATION’97, LNCS 1282,
1997.

[FFGMPR] Ferrari, G., Ferro, G., Gnesi, S., Montanari, U., Pistore, M., Ristori, G.,
An automata based verification environment for mobile processes, In Proc.
TACAS’97, LNCS 1217, 1997.

[FM97a] Ferrari, G., Montanari, U. A Tile-Based Coordination View of Asyn-
chronous π-calculus, In Proc. MFCS’97, LNCS 1295, 1997.

[FM97b] Ferrari, G., Montanari, U. Tiles for Concurrent and Located Calculi. In
Proc. EXPRESS’97, ENTCS 7, 1997.

[GM97] Gadducci, F. and Montanari, U., The Tile Model. In: Gordon Plotkin, Colin
Stirling, and Mads Tofte, Eds., Proof, Language and Interaction: Essays in
Honour of Robin Milner, MIT Press, to appear.

[MP97] Montanari, U. and Pistore, M., Minimal Transition Systems for History-
Preserving Bisimulation. In Proc. STACS’97, LNCS 1200, 1997.

[BM97] Bruni, R., Montanari, U., Zero-Safe Nets, or Transition Synchronization
Made Simple In Proc. EXPRESS’97, ENTCS 7, 1997.

[HaHen97e] C. Hartonas and M. Hennessy. Full abstractness for a function-
al/concurrent language with higher-order value-passing. Full version avail-
able as Computer Science Technical Report 1/97, University of Sussex, 1997.
Available from http://www.cogs.susx.ac.uk/.

[Je97] A. Jeffrey. Flow graphs and semantics of programs. available from
http://www.cogs.susx.ac.uk/users/alanje/premon/, 1997.

[Ra97a] J. Rathke. Unique fixpoint induction for value-passing processes. In Proc.
LICS’97, 12th Annual Symposium on Logic in Computer Science, Warsaw.
IEEE Computer Society Press, 1997. To appear.

[Ra97b] J. Rathke and M. Hennessy. Local model checking for value-passing pro-
cesses. In Proc. TACS’97, International Symposium on Theoretical Aspects
of Computer Software, Sendai. Springer-Verlag, 1997.

[RieHen97a] J. Riely and M. Hennessy. Distributed processes and location failures.
Technical Report 2/97, 1997. Extended abstract presented at ICALP97.

[RieHen97b] J. Riely and M. Hennessy. A typed language for distributed mobile pro-
cesses. In Proc. POPL’98, ACM Conference on Principle of Programming
Languages, San Diego.

74 CHAPTER 6. APPENDICES

[PW97] A. Philippou and D. Walker, On confluence in the π-calculus, in Proceedings
of International Colloquium on Automata, Languages and Programming,
Bologna, July 1997, Springer-Verlag Lecture Notes in Computer Science,
vol. 1256, 314–324.

[LW97a] X. Liu and D. Walker, Concurrent objects as mobile processes, in Proof,
Language and Interaction: Essays in Honour of Robin Milner, G. Plotkin,
C. Stirling, and M. Tofte (eds.), MIT Press, to appear.

[S97] M. Sawle, A π-calculus semantics for actor systems, MSc dissertation,
University of Warwick, September 1997.

[LW97b] X. Liu and D. Walker, Partial confluence of processes and systems of objects,
Theoretical Computer Science B, to appear.

[PW97b] A. Philippou and D. Walker, On transformations of concurrent object pro-
grams, Theoretical Computer Science B, to appear.

[PW97c] A. Philippou and D. Walker, Social confluence in client-server systems, in
Proceedings of Computer Science Logic, Utrecht, September 1996, Springer-
Verlag Lecture Notes in Computer Science, vol. 1258, 385–398.

[PW97d] A. Philippou and D. Walker, A rigorous analysis of concurrent operations
on B-trees, in Proceedings of Concurrency Theory, Warsaw, July 1997,
Springer-Verlag Lecture Notes in Computer Science, vol. 1243, 361–375.

[P97phd] A. Philippou, Reasoning about systems with evolving structure, PhD thesis,
University of Warwick, December 1996.

[I97] C. Ionitoiu, An operational semantics for loosely coupled systems, MSc
dissertation, University of Warwick, September 1997.

