
CONFER

CONcurrency and Functions:

Evaluation and Reduction

Basic Research Action

Project Number: 6454

?
???

?
?
?
? ? ?

?
?

Periodic Progress Report
October 7, 1994

Contents

1 Overview 3

2 Executive summary 5

3 Management 9
3.1 Consortium level . 9
3.2 CWI . 10
3.3 University of Edinburgh . 13
3.4 ECRC . 16
3.5 ENS . 21
3.6 Imperial College, London . 25
3.7 INRIA-Rocquencourt . 27
3.8 INRIA-Sophia . 29
3.9 Università di Pisa . 31
3.10 SICS . 33

4 Deliverables 35
4.1 Workshop 3 . 35
4.2 Workshop 4 . 37
4.3 Software deliverables . 39

5 Progress 41
5.1 Foundational models and abstract machines . 41
5.2 Calculi . 49
5.3 Logics for Concurrency and λ-calculus . 56
5.4 Programming Languages . 67

6 Appendices 75

1

2 CONTENTS

Chapter 1

Overview

This report contains the Second Periodic Progress Report for ESPRIT BRA Nr. 6454 (CON-
FER).

The report contains 4 main parts: management at consortium level and at each site, de-
liverables (programs of each CONFER workshops 3 and 4, software deliverables), a progress
report describing the technical work achieved during the second year, and appendices listing
CONFER publications.

Further information may be requested from the coordinator:
Jean-Jacques Lévy
INRIA, Rocquencourt
bat.8, Domaine de Voluceau
78153–Le Chesnay, Cedex
France
tel: +33-1-39-63-56-89
fax: +33-1-39-63-53-30
e-mail: Jean-Jacques.Levy@inria.fr

This document has been compiled from input from all of the partners in the CONFER
project. Lone Leth and Bent Thomsen from ECRC greatly helped in the writing and the
assembly of the document. Gérard Boudol from INRIA Sophia-Antipolis prepared the area
report on Calculi, Rajagopal Nagarajan from Imperial College did the area report on Logics
for Concurrency and the λ-calculus, Lone Leth and Bent Thomsen from ECRC wrote the area
report on Programming Languages.

3

4 CHAPTER 1. OVERVIEW

Chapter 2

Executive summary

The overall objective of the CONFER action is to create both the theoretical foundations
and the technology for combining the expressive power of the functional and the concurrent
computational models. The action is organized around four main areas of work:

• Foundational Models and Abstract Machines

• Calculi

• Logics for Concurrency and the λ-calculus

• Programming Languages

The objectives for the second year of CONFER put forth at the end of Year 1 of CONFER have
been achieved at the end of Year 2. Significant results beyond these objectives have also been
obtained. Furthermore, results obtained in the CONFER action are now having a considerable
impact in many areas beyond the objectives of CONFER. Thus the second year of CONFER
has been very successful.

In the area of Foundational Models and Abstract Machines, progress has been done in the
theory of Actions Structures where action calculi have been defined. Also, various frameworks
for dealing with bound variables have been precisely studied: combinatory systems, interac-
tion systems, λ-calculus with explicit recursion. The work on explicit substitutions is pursued
within the π-calculus or higher-order unification. Meta-theory has been also accomplished by
considering abstract reduction systems and categorical models of term rewriting systems.

In the Calculi area the work has mainly dealt with the semantics of the π-calculus and other
related formalisms. The work in this area has been subdivided into studies of the notion of
bisimulation, non-interleaving semantics and relating calculi. All of the work in the area of
Calculi is motivated by the desire of having a satisfactory semantic theory which is well suited
for verification purposes.

Bisimulation is a powerful proof techniques which may be implemented in software verifi-
cation tools. The understanding of bisimulation for higher order calculi has been advanced,
however, for higher order calculi of concurrent processes the right notion of bisimulation is not
easy to define.

The non-interleaving semantics was developed for CCS-like process algebras with the idea
that a semantics reducing parallel composition to sequential non-determinism is not entirely
appropriate for dealing with distributed systems. Both causal and spatial approaches are being
considered. A remarkable result is that these approaches may be reduced to name passing and

5

6 CHAPTER 2. EXECUTIVE SUMMARY

interleaving in the π-calculus, thus demonstrating the fundamental nature of name passing. This
enables the proof techniques for the π-calculus to be applied to non-interleaving semantics.

Several higher order process calculi have emerged, and relating these calculi have been an
obvious needed task. Various sequential models of computations have also been compared.

In the area of Logics for Concurrency and the λ-calculus, work has proceeded on developing
type systems for processes, based on principles derived from the work on Interaction Categories,
to address issues in synchronous and asynchronous concurrent computation, verification of
concurrent systems and mobility. These are non-trivial applications of the Interaction Category
paradigm. There has been much work based on Linear Logic, Girard’s LU and Categorical Logic
as a basis for typed frameworks of processes. Game Semantics and Linear Logic have been used
to advance the state-of-the-art in the theory of functional computation.

In the area of Programming Languages concrete results have started to emerge. There is
now an advanced implementation of Pict, and some advanced demonstration programs have
been developed.

The semantic foundation of important techniques on compile time optimisations via unfold-
ing of programs has been studied. This work continues previous activities regarding termina-
tion properties of unfolding established last year. The latest results are expected to be mature
enough to be applied in prototype compilers.

A programme of research – the Geometry of Implementations – aimed at developing efficient
implementations of functional programs based on Girard’s Linear Logic and the Geometry of
Interaction semantics has been initiated. This work is derived from previous CONFER results
of Gonthier et. al. on optimal reduction implementations and the work of Danos and Regnier
on local and asynchronous β-reduction.

The Calumet demonstrator written in Facile presented at the first CONFER review has
been developed into a robust application running on wide area networks. Calumet is now used
frequently for presentations at ECRC.

The first release of Facile – the Facile Antigua Release – has been announced on the news net
and made available for research and educational purposes. Technology transfer to the ECRC
shareholders has also taken place 1.

The summaries in chapter 5 clearly reflect that the central idea of crossfertilization of ideas
among fellow researchers in the consortium is very lively. It is evident that related work done
at other sites in the consortium is referenced often and also very often used as the basis for
development of new results. Many of these results are obtained in collaboration between sites,
enabled through visits and longer stays. Some results are even produced in collaboration with
leading researchers outside the consortium.

During Year 2 of CONFER two workshops have been held. The first was organised by
Jan Willem Klop and Femke van Raamsdonk and took place in September 1993 at CWI.
The workshop had 19 presentations and 35 participants. The first Year review took place on
October 1st, 1993 at CWI. The second workshop in Year 2 was organised by Lone Leth and
Bent Thomsen and took place in April 1994 at ECRC. The workshop had 21 presentations and
37 participants. A panel discussion on “What is mobility” was held at this workshop.

The action has produced a large number of reports and several of these have been published
at conferences, international workshops and journals.

Several Ph.D.’s are in preparation in the action.
As in last years report, we would like to point out that the results achieved in CONFER

so far are the result of the involvement of a large research community at each site, involving

1It should be noted that the Facile project was already in progress before the beginning of CONFER and the
dimensions and scope of the project are wider than what can be considered as strictly relevant to the CONFER
BRA.

7

not only the researchers strictly supported by the CONFER funding. Furthermore, a number
of researchers outside the consortium are contributing to the effort. To this regard it is worth
mentioning the impact that the results produced in CONFER on formalisms such as Linear
Logic, π-calculus, CHOCS and CHAM are having on the research community not only in
Europe. Furthermore, these results are being ued in other BRAs such as CLICS, ACCLAIM
and LOMAPS. Beyond the research community in Europe, researchers in Japan and in the U.S.
have started to use results form CONFER and to work on areas related to CONFER.

Objectives of the CONFER project for Year 3

This section contains a description of the objectives of the CONFER project for Year 3. It is a
refinement of the addendum to the first periodic progress report of November 11th, 1993 which
describes objectives of the CONFER project for Year 2 and Year 3.

Area 1: Foundational models and abstract machines

The group at Edinburgh (Cambridge) will more develop the new theory of Action Structures
and Calculi, one of the possible goals being to capture both elementary interaction and calculi
with bound variables. Progress in understanding of termination in corresponding frameworks
(strong normalisation) is also possible. Finally, λ-reducers with sharing would have more official
theory.

Area 2: Calculi

It is expected that the semantic foundation of Facile will be further investigated. In particular
further studies of the constructs for distributed computing are expected. A collaboration with
the CONFER group at University of Pisa has been initiated on this subject. More concretely
this collaboration intends to apply the methodologies developed by G. Ferrari, U. Montanari
and P. Quaglia in Year 1 of CONFER to the Facile language.

Area 3: Logics for Concurrency and λ-calculus

The collaboration between ECRC and SICS initiated last year on developing logics for reasoning
about concurrent functional programs has been extended to include the group at LIENS. The
objective of creating a full specification logic may be beyond what can be expected to be
achieved in the CONFER action.

Area 4: Programming Languages

Future plans for the development of the Facile programming language include porting the
software to other hardware platforms (such as Intel x86 processors).Related to this is work
in progress on interoperability between Facile systems on different platforms. We currently
use a system called the contract mechanism for connecting systems written in Facile with
systems written in different languages. We expect to address questions such as interoperability
with systems implementedin different programming languages (such as C, C++, prolog) via
industrial standards (possibly the emerging CORBA standard). The question of interoperability
may turn out to be a more involved research topic than what can be expected to be achieved in
the CONFER action. It is expected that the Calumet system will be released to the scientific
community and that technology transfer to the ECRC share holder companies will take place
in the near future.

8 CHAPTER 2. EXECUTIVE SUMMARY

Chapter 3

Management

3.1 Consortium level

The main management of the project is done at INRIA, Rocquencourt, and at ECRC, Munich.
The following activities at the consortium level have taken place during the second year of

the CONFER project:
Two workshops have been held. The first took place in September 1993 at CWI with 19

presentations and 35 participants. The second workshop took place in April 1994 at ECRC
with 21 presentations and 37 participants. The first annual review to place on October 1st 1993
at CWI.

At the workshop at ECRC a management meeting was held to plan for the second annual
review.

The fifth CONFER workshop will take place at the beginning of October at Imperial College,
prior to the annual review on October 7th, 1994.

The ftp site at Imperial College has been operational for quite some time. All documents
produced in CONFER can be found at this site (theory/CONFER at theory.doc.ic.ac.uk).

To disseminate information about the progress of CONFER the (technical) coordinators
produced an overview of the first Year results. This report was published in Bulletin of EATCS,
Number 52, February 1994, pp. 164-174.

9

10 CHAPTER 3. MANAGEMENT

3.2 CWI

3.2.1 Research directions

In the past year CWI has worked – and is continuing to work – in the following directions.

Higher-order rewriting

(E.g. in the format of Combinatory Reduction Systems or CRSs.) Roughly, this consists of term
rewriting with bound variables. Various calculi featuring in the project have this characteristic:
lambda calculi, pi-calculi. In the past year essential progress has been made: Van Raamsdonk
proved in cooperation with Van Oostrom that also weakly orthogonal higher-order rewrite
systems are confluent, thereby extending the well-known confluence for orthogonal systems. (A
preliminary announcement of this result was already in last year’s report.) The paradigm of
a weakly orthogonal higher-order rewrite system is lambda calculus with beta and eta rule;
also the typed versions such as system F with beta and eta. Also a useful “modularity” result
was obtained: the disjoint union of left-linear confluent higher-order rewrite systems is again
confluent. Actually, a refined version of that theorem states that confluence is also preserved in
combinations of left-linear confluent higher-order rewrite systems when trivial critical pairs are
allowed, generated by rules from different systems. (Inside each system separately there may
be nontrivial critical pairs.)

Furthermore, Van Raamsdonk and Van Oostrom have worked out a general framework for
higher-order rewriting (HORSs, Higher Order Rewriting Systems), where there is the parameter
of the “substitution calculus” that is employed. For instance, Nipkow’s Higher-order Rewrite
Systems (HRSs) employ as substitution calculus the simply typed lambda calculus, while Klop’s
CRSs have underlined lambda calculus (as in “Finite Developments”) as substitution calculus.
The substitutions calculus is the underlying mechanism governing how actual rule instantiations
are formed. Much of this work is reported in Van Oostrom’s Ph.D. thesis, written under
supervision of J.W. Klop at the Free University Amsterdam; this work formally is not in the
project, but is influential for our work in the project.

Term Rewriting and Lambda Calculus with explicit recursion

The second major research direction of CWI continued the work initiated last year on term
graph rewriting and cyclic lambda graph rewriting. This work is done in cooperation with
Zena Ariola (University of Oregon). The origin of this work was in the former ESPRIT BRA
Semagraph, now a WG. The addition which makes it interesting in CONFER, is the consid-
eration of bound variables in the form of recursion variables: a term graph can be described
as a system of recursive equations, in fact as a subclass of the well-known and much studied
Recursive Program Schemes. The issue of bound variables becomes prominent when nested
systems of such recursion systems are considered. Added to lambda calculus, we have in fact
lambda calculus with “explicit recursion” - somewhat in analogy with the lambda calculi with
“explicit substitution” or lambda sigma calculi that are also studied in our project. The ob-
jects of interest are “cyclic lambda graphs with a modular structure”. Graphically, the modular
structure (arising from nesting of recursion systems) consists of boxes, possibly nested, around
parts of the graph; the inside of a box cannot be addressed directly, but only through its root.
The β-rule gets in this framework an extremely simple form:

(λα.M)N → 〈M | α = N〉

where the role change in the binding of alpha is remarkable: first bound by lambda, later
by the recursion construct. In functional programming these constructs are well-known as

3.2. CWI 11

the “let” and “letrec”; but as yet in our opinion the theory behind these constructs is not
developed. It turns out for instance that lambda calculus with letrec, or our lambda calculus
with explicit recursion, has a highly nontrivial confluence problem, consisting in first designing
suitable rewrite rules and second in proving it confluent. In fact, a naive but “obvious” version
of defining β-reduction on cyclic lambda terms turns out to be essentially non-confluent, unless
one forbids the presence of certain cycles in the graph. Another way out is the introduction of
boxes as a means of restricting all too liberal “copying” of parts of the graph. Interestingly,
some of the rules are similar to the rules for lambda sigma calculus; and our calculus may be
seen as a lambda calculus with explicit cyclic substitutions.

Process Algebra

This is work done by CWI’s subcontractor, the University of Amsterdam (J.A. Bergstra and
co-workers). In the report “Process Algebra with Combinators” a typed combinatory process
algebra is introduced, that combines process algebra in the ACP framework with types and the
classical combinators I, K, B, C. These serve to eliminate recursion variables altogether (thus
having the opposite concern compared to (2) above), so that computations can be done in an
entirely equational way. As an extended example the simple Alternating Bit Protocol is veri-
fied using only first-order equational logic. Another endeavour has been to eliminate recursion
variables in process specifications in favour of iteration using variants of Kleene star. Axioma-
tisations have been given and different versions compared. Other work of a more practical
signature was reported in the report The Toolbus - a component interconnection architecture.
Basic frameworks here are Process Algebra, and the specification formalisms ASF and SDF.

3.2.2 Persons and exchanges

CWI participants are: Jan Willem Klop, Fer-Jan de Vries (until February 1, 1994), Femke van
Raamsdonk. Part of the work is subcontracted to the University of Amsterdam: Jan Bergstra,
Piet Rodenburg.

Cosimo Laneve, October 7, 1993, talk: About paths in lambda terms. Luke Ong, Univ. of
Cambridge, February 22, 1994: The full abstraction problem for PCF.

3.2.3 Perspectives, work in progress

Work in progress.

1. Van Raamsdonk, in cooperation with Van Oostrom (presently at NTT Research Labs
Tokyo): A new formalism of rewriting is introduced based on the analogy “rewriting = sub-
stitution + rules”. The attempt is to find sufficient conditions on rewrite rules which allow to
reduce optimality of rewriting to optimality of the logic embodied in the substitution mecha-
nism. This work is related to and is strongly inspired by work of Gonthier, Abadi and Lévy
and work (also in this project) of Asperti and Laneve.

2. Van Raamsdonk, in cooperation with Van Oostrom and Khasidashvili (University of East-
Anglia). Rewriting with higher-order environments is introduced, where a context (possibly
involving binders) can be replaced by another context. Furthermore, in the framework of Higher-
Order Rewriting Systems (as in Van Oostrom’s thesis and in the paper “Weak orthogonality
implies confluence: the higher-order case”, by van Oostrom & van Raamsdonk) we aim to
study rewriting on terms containing some version of “explicit substitutions”. We aim to show
that these two approaches are equivalent and that they allow to simulate an implementation of
optimal reduction for the case of untyped lambda-calculus.

12 CHAPTER 3. MANAGEMENT

3. J.W. Klop, in cooperation with Zena Ariola (Oregon). Continuation of development of
confluent calculi for cyclic graphs, or phrased differently, explicit recursion; both as extension
of the first-order case of rewriting and the lambda calculus. In cooperation with M.R. Sleep,
J.R. Kennaway (both at the University of East-Anglia) and F.J. de Vries (until February 1994
involved in our project and presently at NTT Research Lab, Kyoto) we are developing the
theory of infinite lambda calculus where terms are possibly infinite trees and rewrite sequences
may have infinite length. This calculus is partly well-known as it contains the “Boehm-trees”.
Understanding of the infinite lambda calculus turned out to be important as an (operational)
semantics for cyclic lambda graphs; after unwinding such a graph we are in the infinite lambda
calculus.

3.2.4 Publications, technical reports

• J.A. Bergstra, P. Klint. The Toolbus: a Component Interconnection Architecture. Techni-
cal Report P9408, March 1994, Programming Research Group, University of Amsterdam

• V. van Oostrom. Confluence for Abstract and Higher-order Rewriting, Ph.D. thesis, March
1994, Free University of Amsterdam.

• J.W. Klop, V. van Oostrom, F. van Raamsdonk. Combinatory Reduction Systems: intro-
duction and survey. TCS, Vol.121, Nrs.1-2, Dec. 1993, guest eds. M. Dezani-Ciancaglini,
S. Ronchi Della Rocca, M. Venturini-Zilli, A Collection of Contributions in Honour of
Corrado Boehm on the Occasion of his 70th Birthday, p.279-308.

• J.A. Bergstra, I. Bethke, A. Ponse. Process Algebra with Combinators. In: Proc. 7th
Workshop CSL ’93 (Computer Science Logic), Swansea 1993, eds.: E. Borger, Y. Gurevich,
K. Meinke, Springer LNCS 832, pp.36-65.

• J.A. Bergstra, I. Bethke, A. Ponse. Process algebra with iteration and nesting. Technical
Report P9314b, Programming Research Group, University of Amsterdam, 1994.

• Z. Ariola, J.W. Klop. Cyclic Lambda Graph Rewriting. In: Proc. 9th Annual IEEE
Symposium on Logic in Computer Science (LICS ‘94), Paris, July 1993, pp. 416-425.

• V. van Oostrom & F. van Raamsdonk. Comparing Combinatory Reduction Systems and
Higher-order Rewrite Systems. In: J. Heering, K. Meinke, B. Möller, T. Nipkow (Eds.),
Higher-Order Algebra, Logic and Term Rewriting (HOA ’93), Lecture Notes in Computer
Science, Vol. 816, pp. 276-304.

• V. van Oostrom & F. van Raamsdonk. Weak Orthogonality Implies Confluence: The
Higher-Order Case. In: A. Nerode, Yu.V. Matiyasevich (Eds.), Logical Foundations of
Computer Science (LFCS ’94), Lecture Notes in Computer Science, Vol. 813. pp. 379-392

3.3. UNIVERSITY OF EDINBURGH 13

3.3 University of Edinburgh

3.3.1 Research directions

The major areas of research of the Edinburgh group have been π-calculus and action structures.

There has been strong progress in action structures. The main contribution has been the
definition of action calculi, which are concrete action structures representing many familiar
calculi (Petri nets, π-calculus, λ-calculus) in a single framework. The foundations for this work
were laid in the preceding year, but many publications and new technical developments occurred
within the review period. Significant work has also been done in defining and analysing the
category of control structures, which is intended to accommodate the model theory of action
structures. An alternative presentation of action calculi in which names are less prominent,
and the connection between higher order action calculi and the lambda calculus have been
investigated.

Research has continued on developing the semantics of π-calculus and the programming
language Pict, which is based on the π-calculus. Various true-concurrent behavioural equiva-
lences for π-calculus have been examined and carefully compared with the ordinary interleaving
equivalences. A study of open bisimulation and barbed bisimulation in π-calculus has been
made. Other works focusing on the notion of bisimulation include: a study of proof techniques
for bisimulation, aimed at relieving the effort needed to prove bisimilarity results; a study of
the meaning of bisimulation in higher-order calculi. Work also continued on applications of
π-calculus theory to parallel object-oriented programming languages.

The implementation of the Pict language has been substantially refined, and novel aspects
of the type system (higher-order polymorphism, extensible records, type inference) have been
examined. The compiler is now fast enough to begin experimenting with medium-scale exam-
ples: a concurrent graphics toolkit and a demonstration minesweeper game that runs to over
three thousand lines of Pict are now available.

3.3.2 Perspectives, work in progress

Action structures. We anticipate progress mainly in the topic of control structures. Here, two
important topics come into focus: (1) the generalised treatment of bisimilarity in action calculi,
as a special kind of morphism of control structures; (2) the investigation the structure of names
– which have hitherto been treated as an unstructured set.

π-calculus. We have recently isolated a calculus, called πI, which lies in between π-calculus
and CCS. πI appears to have an expressiveness comparable to that of π-calculus, but yet an
algebraic theory very close to that of CCS. The main motivation for this study is to understand
the reasons for the gap between CCS and π-calculus, in terms of expressiveness and algebraic
theory. We have also begun to explore the theory of confluence in π-calculus and to apply it to
problems in parallel object-oriented programming.

As for the language Pict, our main focus now is on cleaning up and documenting the
implementation for a first public release. We plan to write two or more retrospective papers on
our experience with the language design and implementation.

3.3.3 Person and exchanges

The Edinburgh group involved in the project comprises Robin Milner, Davide Sangiorgi, Ben-
jamin Pierce, David Turner, Peter Sewell, Alex Mifsud, Philippa Gardner, John Power and
David Walker. Davide Sangiorgi is full-time employed within the project.

14 CHAPTER 3. MANAGEMENT

David Turner, Peter Sewell and Alex Mifsud are PhD students, under the supervision of
Robin Milner whose theses are relevant to the CONFER project and are under completion in
this period.

Benjamin Pierce has visited twice INRIA-Rocquencourt, to discuss issues related to the Pict
implementation. Davide Sangiorgi has visited CWI in the period 15 October – 15 November
1993, Pisa in June 1994, and INRIA-Sophia Antipolis in May 1994. These visits have had a
strong impact on the works [8] and [9] in section 3.3.5 below. David Walker has visited Pisa in
July 1994 to give a seminar and discuss research with CONFER partners.

3.3.4 Publications

1. Robin Milner, An action structure for synchronous π-calculus, Proc. FCT Conference,
Szeged, Hungary, LNCS, Vol 710, August 1993, 87–105.

2. Robin Milner, Action calculi, or concrete action structures, Proc. MFCS Conference,
Gdansk, Poland, LNCS, Vol 711, September 1993, 105–121.

3. Robin Milner, Higher-order action calculi, to appear in Proc. CSL conference, Swansea,
October 1993.

4. Pi-nets: a graphical form of pi-calculus, Proc. ESOP’94, LNCS Vol788, Springer-Verlag,
April 1994, 26–42.

5. Bisimulation is not finitely (first-order) equationally axiomatisable, in Proc. LICS ’94.

6. Martin Steffen and Benjamin Pierce, Higher-Order Subtyping, Proc. IFIP Working Con-
ference on Programming Concepts, Methods and Calculi (PROCOMET), S. Miniato,
Italy, June 94, to appear.

7. Davide Sangiorgi, Bisimulation in higher-order calculi, Proc. IFIP Working Conference
on Programming Concepts, Methods and Calculi (PROCOMET), S. Miniato, Italy, June
94, to appear.

8. Davide Sangiorgi, Locality and Non-interleaving Semantics in Calculi for Mobile Pro-
cesses, in Proc. International Symposium on Theoretical Aspects of Computer Science
(TACS ’94), LNCS 789, Springer Verlag.

9. David Walker, Algebraic proofs of properties of objects, Proc. 5th European Symposium
on Programming, Edinburgh, April 1994, D. Sannella (ed.), Springer-Verlag LNCS vol.
788, 501-516.

10. David Walker, On bisimulation in the pi-calculus, to appear in Proc. 5th International
Conference on Concurrency Theory, Uppsala, August 1994, Springer-Verlag LNCS.

3.3.5 Unpublished research reports

1. Robin Milner, Action calculi IV: molecular forms, November 1993.

2. Robin Milner, Action calculi V: reflexive molecular forms, June 1994. (with Appendix by
Ole Jensen)

3. Robin Milner, Action calculi VI: strong normalisation at higher-order, December 1993.

4. Robin Milner, Alex Mifsud and John Power Control Structures, June 1994.

3.3. UNIVERSITY OF EDINBURGH 15

5. Philippa Gardner, Closed Action Calculi, July 1994.

6. Benjamin Pierce, Didier Rémy and David N. Turner, A Typed Higher-Order Programming
Language Based on the Pi-Calculus, 1994.

7. Benjamin Pierce, Programming in the Pi-Calculus: An Experiment in Programming Lan-
guage Design, February 1994.

8. Michele Boreale and Davide Sangiorgi, A study of causality in the π-calculus, Submitted
for publication.

9. Davide Sangiorgi, On the bisimulation proof method, July 1994.

3.3.6 Software

1. Benjamin Pierce, Didier Rémy and David Turner, Pict: A typed, higher-order concurrent
programming language based on the π-calculus, 1994.

16 CHAPTER 3. MANAGEMENT

3.4 ECRC

The major research direction of the group at ECRC is the Facile programming language, its
semantics, implementation and its application in developing significant demonstrators of indus-
trial relevance.

In the 2nd Year of CONFER the group at ECRC has completed a first release of the
Facile programming language – the Facile Antigua Release. The Facile Antigua Release is an
industrial strength implementation of a distributed higher order concurrent functional program-
ming language based on the theoretical models (such as the λ-calculus, CCS, the π-calculus
and CHOCS) related to the CONFER action. The Facile Antigua Release is implemented by
modifying and extending the Standard ML of New Jersey implementation. The software is doc-
umented through a user guide (ECRC/M2/R1), as well as numerous papers on its semantics
and abstract implementations.

Since January 1994 the Facile Antigua Release has been in alpha test at sites in Europe and
the US. Feedback from the alpha test sites has led to minor debugging and has resulted in a
rather stable implementation.

Technology transfer to the ECRC share holder companies ICL, Bull and Siemens took place
in July 1994. The software is currently under evaluation in several departments.

In July 1994 the availability of Facile Antigua Release has been publicly announced to the
research community via the news network and announcements to all ESPRIT partners via
email.

The Calumet cooperative application for teleconferencing, demonstrated at the 1st Year
review at CWI, has been restructured and rendered more fault tolerant. A new user interface
programmed in C++ has been developed. The previous user interface was programmed in the
TUBE system which requires a LeLisp system. The LeLisp system comes under a license, which
has proved to be problematic for dissemination since not many sites have a LeLisp license. The
new user interface can display LaTeX style slides with graphics in TIFF format. The Calumet
system is now used frequently at ECRC for internal presentations and it has been demonstrated
on wide area networks at AT&T (Murray Hills, New-Jersey) and between ECRC, CWI (Ams-
terdam) and CMU (Pittsburgh). Jean-Pierre Talpin has produced two reports (ECRC/M2/R4,
ECRC/M2/R12) describing the aspects of the Calumet system and its implementation. The
report (ECRC/M2/R12) is considered a joint CONFER/CONCUR2 deliverable. Jean-Pierre
Talpin, Philippe Marchal and Klaus H. Ahlers have produced a user manual for the Calumet
system (ECRC/M2/R13).

Several theoretical developments have been achieved during the 2nd Year of CONFER.
Sanjiva Prasad has been studying a core language of communicating applicative processes from
a formulae-as-types, programs-as-proofs perspective. The idea is to view communicating ap-
plicative processes as concurrent interacting proof procedures, with interprocess communication
viewed as a form of proof normalisation. The logical framework proposed is a conservative ex-
tension of an intuitionistic logic with features to handle concurrency and communication. It is
presented as a “quasi-intuitionistic” sequent calculus within the framework of Girard’s unified
logic LU. Two technical reports (ECRC/M2/R5, ECRC/M2/R6) concern the consequences,
especially on the cut elimination result for LU, of adding to LU (1) a rule (Mingle), similar to
“Mix” of linear logic, and (2) a new encoding of implication — roughly as !(!A -o !B). A term as-
signment relates communicating applicative programs to deductions in that quasi-intuitionistic
fragment of LU. The novelty lies in relating communication primitives to the “classical” cut
rules of LU. The notion of permuting inference rules, with the help of structural rules, is used
to show that every sequent deducible in the fragment has a term assignment. The operational
semantics (both labelled and unlabelled reduction) is then shown to correspond to eliminating
cuts under a particular strategy. The program transformations induced by the permutation of

3.4. ECRC 17

rules also suggest a connection with concepts such as “structural equivalences”, “ionisation”
and “magical mixing” used in Chemical Abstract Machines and traditional (hitherto untyped)
process calculi (ECRC/M2/R11).

While visiting ECRC Roberto Amadio has studied various theoretical aspects of Facile
compilations, such as CPS transformations and transformation of synchronous to asynchronous
communication (ECRC/M2/R3, this report is also considered a deliverable for ENS). At ECRC
Roberto Amadio finalised some work on various notions of bisimulation for the π-calculus. This
work is reported in ECRC/M2/R2, also considered a deliverable for ENS. Roberto Amadio,
Lone Leth and Bent Thomsen have studied the connection between the concurrent functional
core of Facile and the π-calculus. This has been done through a series of transformations which
are shown to be adequate. The notion of barbed bisimulation developed by Davide Sangiorgi
and Robin Milner in the 1st Year of CONFER has been used to place the concurrent functional
core of Facile and the π-calculus on an equal semantic footing (ECRC/M2/R8, this report is
also considered a deliverable for ENS).

Roberto Amadio and Sanjiva Prasad have studied some aspects of the distributed comput-
ing model of Facile, e.g., locality of processes and channel allocation, and the effect of location
failure on program behaviour. They have presented an extension of the π-calculus with lo-
cated channels and actions, with location names as first-class data, and where locations may
fail. Locality is not observed directly and becomes apparent only on location failure as the
disappearance of certain interaction capabilities (this distinguishes the approach from previous
work, notably by the Sophia group, where distribution is directly observed). The behaviour of
programs is formalised using the notion of barbed bisimulation, developed by Milner and San-
giorgi (following Pnueli). The calculus is related to a simply-sorted π-calculus by a translation
where a protocol is used to represent the location dependencies of actions and channels. The
translation is shown to be adequate with respect to the barbed semantics (ECRC/M2/R10,
this report is also considered a deliverable for ENS).

The work by Lone Leth and Bent Thomsen on describing aspects of the Facile implementa-
tion using the CHAM framework has been extended to cover aspects of physical distribution.
Furthermore, more faithful models of channel management have been developed. These devel-
opments have been described in the paper: “Facile Chemistry Revised” (ECRC/M2/R9). This
paper is a revised version of the paper “Some Facile Chemistry” (ECRC/M1/R1).

3.4.1 Project level administration

At the administrative level ECRC has involvement in project management at the consortium
level assisting Jean-Jacques Lévy in the technical coordination of the action. A visible result
of this activity is the EATCS publication of the 1st Year report on the CONFER project
(ECRC/M2/R7).

The 4th CONFER workshop was arranged by Lone Leth and Bent Thomsen and held at
ECRC (April 18th-20th, 1994). The workshop had 37 participants with 21 presentations.. A
discussion session focusing on the question of: “What is mobility” took place.

3.4.2 Persons and exchanges

The following ECRC personnel has been engaged in the action in Year 2 of CONFER: Alessan-
dro Giacalone, Andre Kramer, Tsung-Min Kuo, Lone Leth, Sanjiva Prasad, Jean-Pierre Talpin
and Bent Thomsen.

Fritz Knabe (Ph. D. student), Klaus H. Ahlers, Pierre-Yves Chevalier (visitor), Philippe
Marchal and Chris Crampton have also contributed to the development of Facile and the
Calumet system.

18 CHAPTER 3. MANAGEMENT

Alessandro Giacalone and Sanjiva Prasad have left the project on 1st of September, 1994.
Members of the group have taken part in the two CONFER workshops (no. 3 and 4) held

in Year 2. Andre Kramer, Alessandro Giacalone, Jean-Pierre Talpin, Lone Leth and Bent
Thomsen took part in the 3rd workshop. Andre Kramer, Jean-Pierre Talpin, Lone Leth and
Bent Thomsen gave demonstrations of the Facile system during the workshop. Bent Thomsen
gave a talk on “Towards compositional reasoning about Facile programs” and Andre Kramer
gave a talk on “Distributing Facile”.

Jean-Pierre Talpin, Lone Leth and Bent Thomsen took part in the 1st Year review. Bent
Thomsen gave the area report on programming languages. Jean-Pierre Talpin and Andre
Kramer (sitting at ECRC) demonstrated the Calumet system at the 1st Year review.

Pierre-Yves Chevalier, Alessandro Giacalone, Andre Kramer, Fritz Knabe, Tsung-Min Kuo,
Lone Leth, Jean-Pierre Talpin and Bent Thomsen took part in the 4th workshop. Bent Thomsen
gave a talk on “An overview of Facile Antigua Release”. Jean-Pierre Talpin and Andre Kramer
demonstrated the Facile Antigua Release.

26th of June to 28th of June, 1994, Lone Leth and Bent Thomsen visited the CONFER
group at the university of Pisa.

20th of July to 22nd of July, 1994, Sanjiva Prasad visited the CONFER group at CNRS
and INRIA-Lorraine, Nancy, France.

Roberto Amadio from CNRS and INRIA-Lorraine, Nancy, France, was on an extended visit
to ECRC for six months from 6th of September, 1993, to February, 1994. He worked together
with Sanjiva Prasad, Lone Leth and Bent Thomsen on the formal foundation of Facile.

A two day meeting with Prof. U. Montanari, Dr. G. Ferrari, F. Gadducci and P. Quaglia
took place at ECRC (April 14th-15th).

3.4.3 Perspectives, work in progress

Research has progressed in all aspects of the groups involvement with CONFER.
Due to the changes in personnel and ECRC’s involvement in the LOMAPS 8130 action we

have decided to move further work on Sorts & Types to LOMAPS.
On Abstract Machines, Primitive Constructs we consider our investigation using the CHAM

framework completed. If time permits we may investigate the co-existence of multiple commu-
nication paradigms. The work on applications has pointed out that it will be beneficial to
look at other communication paradigms such as broadcasting and asynchronous point-to-point.
Currently these may be implemented on top of hand shake communication, as is the case
for the broadcast library used in the Calumet application. However, for efficiency reasons it
may be interesting to consider broadcasting a primitive and have it co-exist with hand shake
communication.

On Dynamic Behaviour it is expected that the semantic foundation of Facile will be further
investigated. In particular further studies of the constructs for distributed computing are
expected. A collaboration with the CONFER group at University of Pisa has been initiated on
this subject. More concretely this collaboration intends to apply the methodologies developed
by G. Ferrari, U. Montanari and P. Quaglia in Year 1 of CONFER to the Facile language.

The collaboration with SICS initiated last year on developing logics for reasoning about
concurrent functional programs has been extended to include the group at LIENS.

On Programming Languages we have plans for the further development of the Facile pro-
gramming language to include porting the software to other hardware platforms (such as Intel
x86 processors). Related to this is work in progress on interoperability between Facile systems
on different platforms. We currently use a system called the contract mechanism developed
by Chris Crampton for connecting systems written in Facile with systems written in different
languages. We expect to address questions such as interoperability with systems implemented

3.4. ECRC 19

in different programming languages (such as C, C++, prolog) via industrial standards (possibly
the emerging CORBA standard). This may replace the contract mechanism. Furthermore, we
hope to address issues related to mobile computing, in particular running Facile on portable
devices and interacting with Facile systems running on stationary networks.

Related to the question of running Facile on portable devices a new direction for applications
has just been initiated. The model of higher order mobile processes supported by Facile seems
a good candidate for structuring software which has to operate in a mobile environment. We
are currently conducting experiments to verify this hypothesis.

It is expected that the Calumet system will be released to the scientific community and that
technology transfer to the ECRC share holder companies will take place in the near future.

3.4.4 Publications, technical reports

A set of 13 reports has been produced as deliverables during Year 2 of CONFER:

ECRC/M2/R1: Thomsen, B., Leth, L., Prasad, S., Kuo, T.-S., Kramer, A., Knabe, F.,
Giacalone, A.: “Facile Antigua Release – Programming Guide”, Technical report ECRC-
93-20, 1993.

ECRC/M2/R2: Roberto M. Amadio and Otmane Ait-Mohamed. “An Analysis of π-calculus
Bisimulations”, Technical report ECRC-94-2, 1994.

ECRC/M2/R3: Roberto M. Amadio. “Translating Core Facile”, Technical report ECRC-94-
3, 1994.

ECRC/M2/R4: Jean-Pierre Talpin. “The Calumet Experiment - Part I: An Implementation
of Group-Communication Protocols in Facile”, Technical report ECRC-94-4, 1994.

ECRC/M2/R5: Sanjiva Prasad. “Cut Elimination for LU with Mingle”, Technical report
ECRC-94-10, 1994.

ECRC/M2/R6: Sanjiva Prasad. “The Positive Intuitionistic Fragment of LU”, Technical
report ECRC-94-11, 1994.

ECRC/M2/R7: Levy, J.-J., Thomsen, B., Leth, L., Giacalone, A.: “First Year Report for
Esprit Basic Research Action 6454-CONFER – CONcurrency and Functions: Evaluation
and Reduction”, Bulletin of EATCS, Number 52, 1994, pp. 164-174.

ECRC/M2/R8: Roberto M. Amadio, Lone Leth and Bent Thomsen: “From Concurrent
Functional Programs to Mobile Processes”, submitted for publication.

ECRC/M2/R9: Leth, L., Thomsen, B.: “Facile Chemistry Revised”, Technical report ECRC-
94-36, 1994.

ECRC/M2/R10: Roberto M. Amadio and Sanjiva Prasad: “Localities and Failures”, Tech-
nical report ECRC-94-18, 1994.
This paper has been accepted for FST&TCS’14 to be held in Madras, India, December
1994.

ECRC/M2/R11: Sanjiva Prasad: “Towards a Formulae-as-Types View of Communicating
Applicative Programs (Extended Summary)”, Technical report ECRC-94-32, 1994.

ECRC/M2/R12: Jean-Pierre Talpin: “The Calumet Experiment in Facile - A Model for
Group Communication and Interaction Control in Cooperative Applications”, Technical
report ECRC-94-26, 1994.

20 CHAPTER 3. MANAGEMENT

ECRC/M2/R13: Talpin, J.-P., Marchal, P., and Ahlers, K.: “Calumet - A Reference Man-
ual”, Technical report ECRC-94-30, 1994.

The papers ECRC/M2/R1, R4, R5, R6, R9, R10, R11, R12 and R13 have been placed at
the CONFER ftp site at Imperial College.

3.4.5 Software

The main thrust of work at ECRC during Year 2 of CONFER has been on completing the
software systems:

Facile The group at ECRC has completed a first release of the Facile programming language
– the Facile Antigua Release. Technology transfer to the ECRC share holder companies,
ICL, Bull and Siemens took place in July 1994. The software is currently under evaluation
in several departments, and exploitation plans are expected to be developed in the near
future. In July 1994 the availability of Facile Antigua Release has been publicly announced
to the research community via the news network and announcements to all ESPRIT
partners via email.

Calumet The Calumet system has been restructured and rendered more fault tolerant. It
is expected that the Calumet system will be released to the scientific community and
that technology transfer to the ECRC share holder companies will take place in the near
future.

We would like to point out that the above pieces of software are clearly not the results of
the work delivered by just 1.5 FTE ESPRIT funding. It is the result of the involvement of the
whole group at ECRC working on Facile and Calumet. It is our policy to make the results of
the entire group available whenever possible.

3.5. ENS 21

3.5 ENS

3.5.1 Outline

The group at LIENS together with the associated researchers from Marseille, Nancy and Paris
has produced significative contributions in the following research areas:

• Concurrent and Distributed Process Calculi.

• Optimal Reduction in the λ-calculus.

The group carries on mainly theoretical research in all areas of the CONFER project. This
year has been marked by an intense exchange with other CONFER sites which has resulted
in a number of joint papers. In particular, the work on calculi has been carried on in strict
collaboration with ECRC, INRIA-Sophia, and SICS. R. Amadio has visited ECRC during six
months (September 93-February 94) and SICS during one month (April 94). R. Amadio and
C. Lavatelli have had frequent exchanges with G. Boudol from INRIA-Sophia (G. Boudol is
directing Lavatelli’s thesis and he has served as a referee for Amadio’s habilitation). The work
on optimal reduction has been carried on by V. Danos and L. Regnier in strict collaboration
with A. Asperti (U. Bologna, previously INRIA-Rocquencourt) and C. Laneve (INRIA-Sophia).

3.5.2 Persons

The following researchers are engaged in the action: Roberto Amadio (CNRS-INRIA, Nancy),
Pierre-Louis Curien (CNRS, LIENS), Vincent Danos (CNRS, Paris VII), Carolina Lavatelli
(PhD Student, LIENS Paris), and Laurent Regnier (CNRS, Marseille). This year P.-L. Curien
has been on sabbatical at Beijing University, during this period R. Amadio and C. Lavatelli
have assured the site management.

3.5.3 Reports and Publications

A set of four reports has been produced as deliverables during Year 2 of CONFER:

1. R. Amadio and O. Ait-Mohamed. An analysis of π-calculus bisimulations. Technical
Report 94-2, European Computer-Industry Research Center, 1994.

2. R. Amadio. Translating core Facile. Technical Report 94-3, European Computer-Industry
Research Center, 1994.

3. R. Amadio and S. Prasad. Localities and failures. Technical Report 94-18, European
Computer-Industry Research Center, 1994.

4. A. Asperti, V. Danos, C. Laneve and L. Regnier, Paths in lambda-calculus. Proceedings
IEEE-LICS 94, Paris.

Deliverables 1, 2, and 3 relate to the Calculi area. Deliverable 4 relates to the Foundational
models and abstract machines area.

22 CHAPTER 3. MANAGEMENT

3.5.4 Description of Technical Contributions and Related Work

1. R. Amadio, in collaboration with L. Leth, S. Prasad, and B. Thomsen from ECRC, has
investigated the concurrent and distributed semantics of the Facile programming language
and its relatives: π-calculus, Chocs,...

In particular, the (dynamic) semantics of a “core Facile” language has been studied.
This should be taken as a basis for the definition of abstract machines, the transforma-
tion of programs, and the development of modal specification languages. Roughly, the
“core Facile” language is a call-by-value simply typed λ-calculus enriched with parallel
composition, dynamic channel generation, and input-output synchronous communication
primitives. We remark two main contributions. First, a new semantics based on the
notion of barbed bisimulation is introduced. It is argued that the derived equivalence
provides a more satisfying treatment of restriction, in particular by proving the adequacy
of a natural translation of Facile into π-calculus it is suggested that this approach is in
good harmony with previous research on the semantics of sub-calculi of Core Facile such
as Chocs and π-calculus. Second, various aspects of Facile compilation are analysed at
an abstract level. In particular, an “asynchronous” version of the Facile language is in-
troduced, say Fa, where asynchrony here means that a process terminates after having
performed an output action. It is shown that there is an adequate CPS (Continuation
Passing Style) translation from core Facile to Fa. Moreover, an abstract machine which
executes code of Fa programs is described. This machine is basically a multiset of en-
vironment machines for eager functional evaluation enriched with a mechanism for the
dynamic generation of channel names.

A second work, in collaboration with S. Prasad, concerns the formalisation and analysis of
the notion of locality and failure in the Facile distributed programming language. Towards
this end, a simple extension of the π-calculus with located actions and channels and with
location names as first-class data is presented The interaction between localities and
failures distinguishes our approach from previous ones (notably from the Sophia group)
where the notion of locality is considered in isolation. It is argued that the combination of
these two features leads, at least from the distributed programming viewpoint, to a more
natural semantics. A translation of this calculus into a standard simply-sorted π-calculus
is then presented and shown to be adequate with respect to a barbed bisimulation based
semantics. In the translation each location is represented by a special process which
interacts, by means of a simple protocol, with any process of the original program that
wants to access resources depending on that location.

Finally, a revised version of Amadio’s work on various notions of bisimulation for the
π-calculus has been made available. Of particular interest appears to be the introduction
of a refinement of the notion of “late” bisimulation called “uniform”. Roughly, the latter
corresponds to the idea of treating the formal parameter of an input prefix as a “logical”
variable. This notion, and the related notion of open bisimulation independently proposed
by D. Sangiorgi, have been recently given a unified treatment in the work developed by
the Pisa site.

2. V. Danos and L. Regnier in collaboration with C. Laneve and A. Asperti have shown the
equivalence of different notions of paths in the λ-calculus. This is the outcome of a series
of discussions between these researchers during the Sophia (January 93), Edinburgh (May
93) and Amsterdam (September 93) CONFER meetings.

This work unifies several notions arising in the theory of β-reduction, namely labelled
reductions, redex families, sharing reductions, geometry of interaction, and virtual reduc-

3.5. ENS 23

tions. All these notions relate to the problem of defining a “local” implementation of
β-reduction. Eventually, we expect that these ideas will lead to novel techniques for the
parallel execution of functional languages.

In the following we survey the three different notions of paths which have been shown
to coincide. Lévy took hold in 1978 of the difficult notion of two redexes being created
in the “same” way during a reduction (in which case they were said to belong to the
same “family”). Then he labelled terms and made β-reductions act on labels so that two
redexes were in the same family iff they had the same labels. Fifteen years later, labels
were again considered by Asperti and Laneve where they were identified with legal paths.
More precisely: 1) labels of redexes in any reduct N of M denote paths in M ; 2) those
paths are legal; 3) conversely, any legal path in M denotes a label of a redex to appear
somewhere in the set of reducts of M . Legality is a simple and effective condition that
intuitively asks for enough symmetry in the path so that the reduction may unfold it into
a redex.

In the meantime, people were seeking for a shared reduction faithfully implementing the
notion of families, i.e., a reduction where families could be said to be reduced in one
step. Such a reduction was discovered by Lamping and Kathail in 1990 (subsequent
simplifications were given by Gonthier et. al. and Asperti). The invariants used to prove
the correctness of Lamping’s implementation were consistent paths.

Finally Girard unveiled in 1988 an interpretation of the cut-elimination procedure for
linear logic. Again the alternative computation could be defined as the computation of
a particular set of paths on proofs, namely regular paths which were defined through
an algebraic and computational device the dynamic algebra (this was extended to the
λ-calculus in Danos and in Regnier PhD thesis).

We conclude by remarking that similar results could be formulated in the framework of
proof-nets: a syntax for linear logic where paths are easily defined and manipulated. This
point is important since, as shown in recent work by Danos et. al., other calculi can be
embedded in linear logic, e.g. the λµ-calculus of Parigot.

3. C. Lavatelli has proposed, in collaboration with G. Boudol (INRIA-Sophia), a domain
theoretic interpretation of the λr-calculus. This is a lambda calculus with resources,
proposed by G. Boudol, which is non-deterministic and allows explicit control of arguments
at the syntactic level. It has been shown (by Boudol and his collaborators) that this
calculus allows to clarify the relationships between the call-by-name λ-calculus and its
π-calculus interpretation.

The proposed domain theoretic interpretation relies on the following domain equation
involving a powerdomain construction which is needed for the interpretation of resources.

D = (M(D)→ D)⊥

The points ofM(D) are roughly multisets of points of D, and solutions of this equation are
meant to be found among the class of prime algebraic complete lattices. A filter domain is
defined which solves the equation; moreover, the related interpretation of terms is shown
to coincide with the set of types that can be assigned to the term in a type system with
intersection types à la Coppo. A previous result by Boudol shows that the “compact
version” of this system is adequate w.r.t. the operational semantics of λr. A report on
this work will appear soon.

24 CHAPTER 3. MANAGEMENT

3.5.5 Perspectives

R. Amadio has started a collaboration with M. Dam (SICS) on the specification and verification
of higher-order process calculi. We have proposed a specification language à la Hennessy-Milner
that is sufficiently expressive to capture a suitable notion of higher-order bisimulation and we
are currently investigating the possibility of developing sound and complete “compositional”
proof systems. Another (related) problem that he plans to study in collaboration with S. Prasad
(ECRC) concerns the investigation of a programs-as-proofs view of certain fragments of higher
order concurrent languages.

V. Danos and L. Regnier will pursue their work on optimal reduction. A new interesting
direction concerns the connections between the structures developed in Girard’s geometry of
interaction and certain game-theoretic structures that have been recently developed to provide
fully abstract models of PCF (notably in the work of Abramsky, Jagadeesan, and Malacaria at
Imperial College, and of Hyland and Ong at Cambridge).

Finally, C. Lavatelli plans to investigate the full abstraction of the filter model interpretation
of the λr-calculus described above.

3.6. IMPERIAL COLLEGE, LONDON 25

3.6 Imperial College, London

Research directions

Research done at Imperial College has covered three out of four areas of the CONFER project.
However, most of it has been concentrated on Logics for Concurrency and λ-calculus.

The main thrust has been on developing type systems for concurrency. By virtue of the
Curry-Howard isomorphism, there is a logic associated with these type theories and this allows
reasoning about typed terms. This approach provides a sound logical basis for our type systems.
There has been work on a wide variety of type systems for different concurrent paradigms
and for verification of concurrent programs. Most of these typed frameworks are based on
Interaction Categories. The work on Internal Language for Interaction Categories tightens the
correspondence between proofs and processes in the same spirit as the familiar correspondence
between λ-calculus, Intuitionistic Logic, and Cartesian Closed Categories. Some work has also
been done on generalising process constructs so that Interaction Categories arise as particular
instances of this generalisation.

In the λ-calculus or functional setting, here has been some important results extending
previous work on proof nets for Intuitionistic Linear Logic to include exponentials. The work
on Interaction Orders as Games can also be considered as a useful piece of research in this area,
linking algebraic lattices and games. Work is nearing completion in the area of the Geometry
of Interaction Machine which forms a basis for correct, efficient implementations of functional
programs.

Personnel and exchanges

Personnel involved in CONFER at this site are Samson Abramsky, Simon Gay, François
Lamarche, Ian Mackie, Pasquale Malacaria, Greg Meredith, Rajagopal Nagarajan and Duško
Pavlović. Michael Huth, who has recently left the college, participated in one of the workshops.
Samson Abramsky, Pasquale Malacaria, François Lamarche, and Duško Pavlović have partici-
pated in other projects as well — for the purposes of deliverables, we have made sure that we
separate out the work as much as possible.

Two PhDs are nearing completion — that of Simon Gay and Ian Mackie, both under the
supervision of Samson Abramsky.

Respective titles:

• Linear Types for Communicating Processes

• The Geometry of Implementation

Both these topics are closely connected to the aims of the CONFER project. Within the
last year Greg Meredith has started his PhD work under Abramsky’s supervision and his work
is also appropriate to the project.

Ian Mackie has made visits to Paris on several occasions and has had useful discussions
with Vincent Danos (CNRS, Paris VII) and Laurent Regnier (CNRS, Marseille) both of whom
are attached to the ENS site. Pasquale Malacaria has arrived at Imperial from Ecole Normale
Supérieure during the summer of last year.

We have had several discussions with researchers at the University of Edinburgh regarding
possible connections between the work on Interaction Categories and that on Action Structures.

Sanjiva Prasad from ECRC, Munich visited us on one occasion and we discussed possible
relationships between his work and ours.

26 CHAPTER 3. MANAGEMENT

Our site members have actively participated in the two CONFER workshops held in the last
year, giving several presentations, and have had useful exchange of ideas with other CONFER
participants.

Publications

The results obtained by the group have given rise to the following publications (note that here
we only list papers which are complete or for which acceptance notice has already arrived):

[1] S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction Categories and Typed Con-
current Programming. Deductive Program Design: Proceedings of the Marktoberdorf
International Summer School, 1994. NATO ASI Series F: Computer and Systems
Sciences, Springer Verlag. To appear.

[2] R. L. Crole, S. J. Gay, and R. Nagarajan. An Internal Language for Interaction
Categories. In C. L. Hankin, I. C. Mackie, and R. Nagarajan, editors, Theory and
Formal Methods 1994: Proceedings of the Second Imperial College Department of
Computing Workshop on Theory and Formal Methods, 1994. To appear.

[3] M. Huth. Interaction Orders as Games. In C. L. Hankin, I. C. Mackie, and R. Nagara-
jan, editors, Theory and Formal Methods 1994: Proceedings of the Second Imperial
College Department of Computing Workshop on Theory and Formal Methods, 1994.
To appear.

[4] F. Lamarche Hypercoherences are Chu Spaces. In C. L. Hankin, I. C. Mackie, and
R. Nagarajan, editors, Theory and Formal Methods 1994: Proceedings of the Second
Imperial College Department of Computing Workshop on Theory and Formal Methods,
1994. To appear.

[5] F. Lamarche. Proof Nets for Intuitionistic Linear Logic I: Essential nets. Report
available by anonymous ftp from theory.doc.ic.ac.uk.

[6] F. Lamarche. Dialectics: a model of linear logic and PCF. Report available by
anonymous ftp from theory.doc.ic.ac.uk.

[7] I. C. Mackie. The Geometry of Interaction Machine. In C. L. Hankin, I. C. Mackie,
and R. Nagarajan, editors, Theory and Formal Methods 1994: Proceedings of the
Second Imperial College Department of Computing Workshop on Theory and Formal
Methods, 1994. To appear.

[8] P. Malacaria. Studying equivalences of transition systems with algebraic tools. The-
oretical Computer Science To appear.

[9] D. Pavlović Categorical logic of concurrency and interaction, I: Synchronous processes.
In C. L. Hankin, I. C. Mackie, and R. Nagarajan, editors, Theory and Formal Methods
1994: Proceedings of the Second Imperial College Department of Computing Workshop
on Theory and Formal Methods, 1994. To appear.

3.7. INRIA-ROCQUENCOURT 27

3.7 INRIA-Rocquencourt

3.7.1 Research directions

INRIA Rocquencourt has worked in the following directions.

• Optimal reductions. This work started 2 years ago. It is continued with journal version
of two 1992-papers, which are very tedious to write. Asperti (with Laneve) pursued their
work on extending this work to interaction systems.

• Abstract reductions systems. It is a difficult game where axiomatisation of reductions in
the λ-calculus or in Klop’s combinatory systems, by only considering nesting of redexes
and their relation with binders. For the standardisation theorem, finite developments
have been treated thoroughly.

• Explicit substitutions. Melliès found a counter-example to the termination of simply
typed lambda-calculus with explicit substitutions. Thérèse Hardin with Gilles Dowek
and Claude Kirchner worked on higher-order unification via explicit substitutions.

3.7.2 Persons and exchanges

INRIA Rocquencourt participants are: Jean-Jacques Lévy, Damien Doligez, Eric Duquesne,
Georges Gonthier, Thérèse Hardin, Luc Maranget, Paul-André Melliès and Didier Rémy. Part
of the work is subcontracted to the University of Bologna: Andrea Asperti.

Benjamin Pierce has visited twice INRIA-Rocquencourt and worked with Didier Rémy of
issues related to the Pict implementation. Ian Mackie made a 1-month visit to INRIA.

3.7.3 Perspectives, work in progress

In June 1994, Damien Doligez and Georges Gonthier started a formal proof of the concurrent
garbage collector algorithm that they have presented at the CONFER workshop in Amsterdam
and at POPL’94 [7]. This proof is sufficiently complicated to require a mechanical treatment,
since already many bugs have already been found in a previous version of the algorithm with
a manual proof. This proof demands more logic than any finite domain analysis prover could
provide.

The proof uses TLA framework of Lamport on top of the TLP system of Guttag, Horning
and Engberg. TLP, although very weak from a functional point of view, provides an Emacs
interface and a preprocessor for the syntax of TLA. The proof is long, very combinatorial, and
heavily uses rewritings. It will be a good benchmark when recoded in HOL and/or the Calculus
of Constructions. At present, the invariants of memory layout already needs 600 lines and 400
rules of TLP. However, this proof is very risky, since such a long proof in TLP has not been
done before. (The work of Doligez and Gonthier has been reported in the first annual CONFER
report under the area programming languages).

In the area of abstract reduction systems, an axiomatic proof of strong normalisation still
has to be discovered. The normalisation proofs are extremely complicated in the λ-calculus.
It would be splendid to get an intuitive proof, making us able to understand not only strong
normalisation of the Curry simply typed calculus, but also of second order. It is a difficult game
where the fine structure of bound variables and binders still has to be discoverered. Work done
in optimal reductions for the λ-calculus and Interaction Systems should greatly help.

In Interaction systems, it is also necessary to finish the theory. For instance, are there
supersets of Interaction systems with the same nice properties?

28 CHAPTER 3. MANAGEMENT

3.7.4 Publications, technical reports

[1] A. Asperti. Linear logic, comonads, and Optimal Reductions. Fundamenta Informaticae,
Special Issue devoted to Categories in Computer Science (invited paper). V.22, n.1, 1994.

[2] A. Asperti and C. Laneve. Interaction systems I: The theory of optimal reductions. Math-
ematical Structures in Computer Science. To appear.

[3] A. Asperti and C. Laneve. Paths, computations and labels in the λ-calculus. Theoretical
Computer Science, Special Issue devoted to RTA ’93 (Montreal).

[4] A. Asperti and C. Laneve. The family relation in Interaction Systems. Proc. of the In-
ternational Symposium on Theoretical Aspects of Computer Science (TACS’94), Sendai,
Japan. April 1994.

[5] A. Asperti, V. Danos, C. Laneve, L. Régnier. Paths in the λ-calculus. Three years of
communications without understandings. Proc. of the International Symposium on Logic
in Computer Science (LICS’94), Paris, France. 1994.

[6] A. Asperti. δ◦!ε = 1. Internal Report of the Dipartimento di Matematica, Univeristà di
Bologna. 1994.

[7] Damien Doligez, Georges Gonthier, Portable, Unobtrusive Garbage Collection for Multi-
processor Systems, Twenty-First Annual ACM Symposium on Principles of Programming
Languages, Portland.

[8] Gilles Dowek, Thérèse Hardin, Claude Kirchner, Higher-order unification via explicit sub-
stitutions, INRIA report.

[9] Paul-André Melliès, Typed λ-calculi with explicit substitutions may not terminate, sub-
mitted to TLCA’95.

3.8. INRIA-SOPHIA 29

3.8 INRIA-Sophia

3.8.1 Research directions

The aim of the INRIA group at Sophia is to study and develop theoretical frameworks for
parallel computations. We have pursued the research in the areas of Calculi and Foundational
Models and Abstract Machines. We mainly focus our research on the lambda-calculus and
related systems, working in the following directions:

• optimal computations. Significative results have been obtained, concerning in particular
the equivalence of several notions of paths in the lambda-calculus. These results allow
one to prove the correctness of the implementation of optimal computations.

• lambda-calculus with multiplicities. This refinement of the lambda-calculus is a useful
tool to study the relationships between the pi-calculus and the lambda-calculus. We are
currently working on the denotational semantics of this calculus, and on the characteri-
sation of its discriminating power, with respect to various observation criteria.

• chemical abstract machines. We have applied this framework to the several particular
cases of parallel computations, and most notably to the weak lambda-calculus with shar-
ing, and the call-by-need evaluation.

3.8.2 Persons and exchanges

The following researchers are involved in the project at Sophia Antipolis: G. Berry (Research
Director, Ecole des Mines de Paris), G. Boudol (Research Director, INRIA), I. Castellani (Re-
searcher, INRIA), C. Laneve (HCM Fellowship), Ch. Retoré (post-doc, INRIA).

We have active collaborations with other sites in the CONFER Project, and especially
with the ENS group in Paris. G. Boudol made several visits there to work with C. Lavatelli.
C. Laneve visited CWI for one week. He produced joint work with V. Danos, L. Régnier
(ENS, Paris) and A. Asperti (INRIA, Rocquencourt). The group at Sophia also had visits of
D. Sangiorgi (University of Edinburgh), R. Amadio (ENS, Paris) and P.-A. Melliès (INRIA,
Rocquencourt).

3.8.3 Perspectives, work in progress

We are currently working on the lambda-calculus with multiplicities, in two directions: denota-
tional semantics and observational semantics. Regarding the denotational semantics, we use a
domain equation involving the construction of a domain of multisets over a given domain. This
is used to interpret the resources, which are multisets of terms of the calculus. We have to relate
this denotational semantics with the one given by Boudol using an adaptation of the intersec-
tion type discipline. Showing that they coincide would entail the adequacy of the denotational
semantics. We also plan to investigate the full-abstraction problem for this interpretation.

The lambda-calculus has been introduced as a means to study the relationships between
the pi-calculus and the lambda-calculus. We are currently investigating the question of charac-
terising the discriminating power of multiplicities over lambda-terms, with respect to various
observational semantics, involving different relations between proper termination, deadlock and
divergence. Our aim is to show, using Lévy-Longo trees, that as far as the lambda-calculus is
concerned, the pi-calculus and the lambda-calculus with multiplicities have the same discrimi-
nating power. We also plan to characterise some orderings on Lévy-Longo trees as observational
preorders induced by the lambda-calculus with multiplicities.

30 CHAPTER 3. MANAGEMENT

The general purpose of the two research directions just described is to understand the in-
terplay between functional and concurrent computations. Our goal is to show that functional
languages are more withstanding a concurrent environment than one could think. More specif-
ically, we aim at establishing that they are sensitive to the lack of resources, but not that much
to the non-determinism inherent to parallel computations.

3.8.4 Publications, technical reports

[INRIA/Sophia/M2/1] A. Asperti, C. Laneve, The family relation in interaction systems, TACS
Symposium, Sendai, April 1994.

[INRIA/Sophia/M2/2] A. Asperti, V. Danos, C. Laneve, L. Régnier, Paths in the lambda-
calculus, 9th LICS, Paris, July 1994.

[INRIA/Sophia/M2/3] A. Asperti, C. Laneve, Interaction Systems 1: The theory of optimal
reductions, to appear in Mathematical Structures in Computer Science.

[INRIA/Sophia/M2/4] A. Asperti, C. Laneve, Interaction Systems 2: The practice of optimal
reductions, full, revised version, submitted to Theoretical Computer Science.

[INRIA/Sophia/M2/5] G. Boudol, Some chemical abstract machines, in “A Decade of Concur-
rency, Reflections and Perspectives”, LNCS 803, 1994.

3.9. UNIVERSITÀ DI PISA 31

3.9 Università di Pisa

3.9.1 Research directions

The major line of research of the group at the Dipartimento di Informatica, Università di Pisa,
has been in the areas of Calculi and Foundational Models and Abstract Machines.

Studies have been carried out on the development of a uniform framework for the π-calculus:
a π-calculus with explicit substitution. It has been shown that the explicit handling of name
instantiation permits to reduce the π-calculus transitional semantics to a standard SOS frame-
work. In this perspective, an extension of the meta-theory of Structured Operational Semantics
(SOS) based on formats for the SOS inductive rules has been presented. This extension allows
a common treatment of SOS rules where labels of transitions do explicitly have a bit of struc-
ture and where also certain classes of predicates may occur. Besides the π-calculus, the main
example of application of this meta-theory has been the research on typed transition systems.
More precisely, a new paradigm, additive concurrency, where typed behaviours of concurrent
programs are described in terms of matrix calculi is proposed.

A non interleaving model (concurrent semantics) of the π-calculus has been also developed.
The concurrent semantics of the π-calculus is given in terms of graph rewriting and it is remi-
niscent of the definition of non interleaving CCS via Petri nets.

Finally, some efforts have been devoted to understand categorical models for terms rewriting
systems. Categorical models are proved to be expressive for defining concurrent semantics of
term rewriting systems in a clean algebraic way.

3.9.2 Persons and exchanges

The group at Pisa involved in the project consists of Ugo Montanari, Gianluigi Ferrari, Paola
Quaglia, Fabio Gadducci and Marco Pistore.

Just before the CONFER workshop in Munich, Montanari, Ferrari, Quaglia and Gadducci
visited ECRC. This visit was very useful for understanding some issues of the semantics of
higher order process calculi (e.g. Facile). Members of the ECRC group (Bent Thomsen and
Lone Leth) visited Pisa from 25 to 28 June. This visit was part of the cooperation which has
been initiated with ECRC. Finally, David Walker visited Pisa from 7 to 12 July.

3.9.3 Perspectives, work in progress

Future work includes investigating the π-calculus with explicit substitution to cover directly
some of the issues of higher order calculi. On this theme a collaboration with the group
at ECRC is just started. Moreover, we will complete the development of non interleaving
semantics of the π-calculus from the point of view of graph rewriting systems. Finally, further
studies are planned to analyze the relationships with Action Calculi.

3.9.4 Publications, technical reports

1. Ferrari, G., Montanari, U., Quaglia, P., A π-calculus with Explicit Substitution: the Late
Semantics, In Proc, MFCS’94, LNCS 841, 1994.

2. Ferrari, G., Montanari, U., Quaglia, P., A π-calculus with Explicit Substitution. Full
version submitted for publication, 1994.

3. Ferrari, G., Montanari, U., Typed Additive Concurrency, Submitted for Pubblication,
August 1994.

32 CHAPTER 3. MANAGEMENT

4. Ferrari, G., Montanari, U., Turning SOS Rules into Operations, August 1994.

5. Corradini, Gadducci F., Montanari, U., Prime event structures and categorical models of
term rewriting, August 1994.

6. Montanari, U., Pistore, M., Concurrent Semantics for the π-calculus, July 1994.

3.10. SICS 33

3.10 SICS

3.10.1 Research directions

During the second year of CONFER, work at SICS has mainly been conducted on Program-
ming Languages and on Calculi. In the former, Björn Lisper has done foundational work on
correctness criteria for unfolding nondeterministic constructs at compile-time. In the latter,
Björn Victor and Faron Moller have developed the Mobility Workbench to cater for the full
polyadic π-calculus and significantly improved the efficiency; in order to establish correctness
of the tool the theory of weak open bisimulations had to be developed. This work has resulted
in one Licentiat thesis (Björn Victor).

Within the areas Foundations and Calculi, Joachim Parrow and Mads Dam have updated
their contributions to the first year deliverable (on model checking, axiomatisations, and inter-
action diagrams) for journal publication.

SICS is also part of the related ESPRIT projects CONCUR2 and LOMAPS. Within CON-
CUR2 we are active in case studies, tool construction and algorithms for infinite state spaces.
The two first are relevant also for CONFER: one of the CONCUR2 case studies used the
polyadic π-calculus to analyse resource allocation protocol in high-speed networks, and the Mo-
bility Workbench is a joint deliverable of CONCUR2 and CONFER, applying the tool builder
expertise from CONCUR2 to the emerging theories from CONFER.

Within LOMAPS we have begun a more concentrated effort on temporal logics for the pi-
calculus and higher order processes. This work is relevant to CONFER and our work is to some
extent based on [D93]. Spin offs of this work under the LOMAPS operational semantics work
theme include a decidability result for late and early, strong and weak bisimulation equivalence
applied to finite control pi-calculus agents.

3.10.2 Persons and exchanges

During the second year at SICS, Mads Dam, Lars-Henrik Erikson, Björn Lisper, Faron Moller,
Joachim Parrow and Björn Victor have been active on CONFER. Mads Dam and Lars-Henrik
Erikson moved from CONFER to LOMAPS during fall 1993, so their deliverables will be
reported under that project. Faron Moller arrived from Edinburgh in March 1994, and presently
works on both CONCUR2 and CONFER.

The collaboration between Joachim Parrow and Davide Sangiorgi (Edinburgh) has continued
and resulted in an updated version of the work on axiomatisations.

We have participated in the CONFER workshops. Björn Victor has presented a CONFER
paper at CAV’94 in Stanford, California.

3.10.3 Perspectives, work in progress

Future work includes investigating the weak open bisimulation equivalence — its axiomatisa-
tion, and its relation to the weak late bisimulation equivalence; developing algorithms for find-
ing minimal distinctions and matchings for which two agents are open equivalent; developing
modal logics and model checking for the open bisimulation; investigating the open bisimulation
equivalence in the presence of a mismatch operator.

We will also investigate to what extent our results on unfoldings can be applied to other
reduction systems than such given by plain term rewriting systems. Here, interaction with
research in the other areas of the project could be helpful. Once it is understood how our results
can be extended, experiments should be undertaken with some real concurrent language.

34 CHAPTER 3. MANAGEMENT

3.10.4 Publications, technical reports

P93 J. Parrow. “Interaction Diagrams”. In de Bakker, de Roever and Rozenberg (Eds.):
A Decade of Concurrency, REX school/Symposium, The Netherlands June 1993, Pages
477–508.

PS93 J. Parrow and D. Sangiorgi: “Algebraic Theories for Name-Passing Calculi”. In de Bakker,
de Roever and Rozenberg (Eds.): A Decade of Concurrency, REX school/Symposium,
The Netherlands June 1993, Pages 509–529. Published as Springer Verlag LNCS 803
(1994). Extended version accepted for publication in Information and Computation.

D93 M. Dam. “Model Checking Mobile Processes”. In Best (Ed.): Proceedings of CON-
CUR’93, pages 22–36 Published as Springer Verlag LNCS 715 (1993). Extended version
accepted for publication in Information and Computation.

VM94 B. Victor and F. Moller. “The Mobility Workbench — A Tool for the π-Calculus”. In
Dill (Ed.): Proceedings of CAV’94, pages 428–440, Published as Springer Verlag LNCS
818 (1994).

V94 B. Victor. “A Verification Tool for the Polyadic π-Calculus”. Licentiat thesis, Department
of Computer Systems, Uppsala University, May 1994.

3.10.5 Software

The Mobility Workbench (MWB) is a tool for manipulating and analysing mobile concurrent
systems described in the π-calculus. The new version of the MWB supports the polyadic π-
calculus, and has vastly improved performance (for some examples with a factor more than
100) over the version reported in last year’s progress report.

Chapter 4

Deliverables

4.1 Workshop 3

At CWI in Amsterdam, with 35 participants.

Tuesday, September 28

09:30 coffee
10:00-10:15 Jean-Jacques Lévy

opening
10:15-11:00 Ugo Montanari

Process calculi as (concurrent) Term Rewriting Systems
11:00-12:00 Jan Bergstra

Process algebra with combinators
12:00-12:30 Georges Gonthier

Portable, unobstructive garbage collection for
multiprocessor systems

12:30-14:00 lunch
14:00-14:45 Bent Thomsen

Towards compositional reasoning about Facile programs
14:45-15:15 Andre Kramer

Calumet: a desk-top conferencing system
15:15-15:45 tea
15:45-16:45 Simon Gay

Categories for asynchronous processes
16:45-17:30 Jan Willem Klop

Modular term graph rewriting

35

36 CHAPTER 4. DELIVERABLES

Wednesday, September 29

09:00-09:30 coffee
09:30-10:30 Gérard Berry

Preemption in concurrent systems
10:30-11:00 coffee
11:00-12:00 Gérard Boudol

Lambda calculus with multiplicities
12:00-12:30 Paul-André Melliès

An abstract theorem of finite developments
12:30-14:00 lunch
14:00-14:30 Andrea Asperti

About the optimal implementation of lambda calculus
14:30-15:15 Cosimo Laneve

About paths in lambda terms
15:15 - 15:45 tea
15:45-16:45 Vincent Danos

A proof that Lambda* (Girard’s GOI algebra)
computes regular paths

16:45-17:30 Laurent Regnier
Connection between dynamic graphs and sharing graphs

19:00 dinner

Thursday, September 30

09:00-09:30 coffee
09:30-10:30 Raja Nagarajan

Types for concurrency
10:30 - 11:00 coffee
11:00-12:00 Samson Abramsky

Full abstraction for PCF
12:00 Bjorn Victor

demo
12:30-14:00 lunch
14:00-15:00 Davide Sangiorgi

Locality and true-concurrency in pi-calculus
15:00 - 15:30 tea
15:30-16:30 Robin Milner

Action Structures

Friday, October 1
REVIEW DAY

4.2. WORKSHOP 4 37

4.2 Workshop 4

At ECRC in Munich with 37 participants.

Monday, April 18

08.45-09.15 Registration
09.15-09.25 Welcome and Opening

Alessandro Giacalone
09.25-09.35 Introduction

Jean-Jacques Lévy
09.35-10.05 Actors and Interaction Categories: Preliminary Investigations

Greg Meredith
10.05-10.35 On bisimulation in the pi-calculus

David Walker
10.35-11.00 Coffee Break
11.00-11.45 Translating Core Facile

Roberto Amadio
11.45-12.15 A pi-calculus with logic variables and its application

to higher-order concurrent constraint programming
Gert Smolka

12.15-12.45 The Geometry of Interaction Machine
Ian Mackie

12.45-14.00 Lunch
14.00-15.00 Compositional Verification of Deadlock-freedom

Raja Nagarajan
15.00-15.30 Unfolding of Programs with Nondeterminism

Bjoern Lisper
15.30-15.50 Tea Break
15.50-16.50 A typed Calculus for Synchronous Processes

Simon Gay
16.50-17.05 Business meeting
17.05-17.30 System Demo

Gert Smolka

38 CHAPTER 4. DELIVERABLES

Tuesday, April 19

09.00-09.15 Typed explicit substitutions may not terminate
Paul-Andre Mellies

09.15-10.00 Higher Order Bisimulations and Axiomatisability
Peter Sewell

10.00-10.45 Interaction Orders as Games
Michael Huth

10.45-11.10 Coffee Break
11.10-11.55 Pomset Logic

Christian Retore
11.55-12.40 Localities and Failures

Roberto Amadio
12.40-14.00 Lunch
14.00-15.30 Discussion Session: “What is Mobility?”
15.30-15.50 Tea Break
15.50-16.50 A pi-calculus with explicit substitutions

Paola Quaglia
16.50-17.15 System Demo of Facile

Jean-Pierre Talpin & Andre Kramer

Wednesday, April 20

09.15-10.15 Control Structures
Robin Milner

10.15-11.00 Typed Additive Concurrency
GianLuigi Ferrari

11.00-11.20 Coffee Break
11.20-12.05 On control Structures

Alexander Mifsud
12.05-12.40 An overview of Facile Antigua Release

Bent Thomsen
12.50-14.00 Lunch
14.00-14.45 Process Algebra with iteration and nesting

Jan Bergstra
14.45-15.45 On the proof net problem for Intuitionistic Linear Logic

Francois Lamarche
15.45-16.00 Closing Remarks and Tea Break

4.3. SOFTWARE DELIVERABLES 39

4.3 Software deliverables

Several pieces of software have been constructed during the first and second year of CONFER.
Some of them have already been made available via the CONFER ftp site at Imperial College
while others are expected to be made available in the near future. Note that the software
deliverables are only planned for at Milestone 3, but some of the pieces of software were actually
shown at the first year review in Amsterdam. Since then most of the software has been further
improved and stabilised.

The following is a listing of constructed software during the first two years of CONFER:

• Facile programming language
ECRC — A. Giacalone, F. Knabe, A. Kramer, T.M. Kuo, L. Leth, S. Prasad, B. Thomsen.
Also with contributions of P. Cregut, P-Y. Chevalier, J.-P. Talpin and C. Crampton.

• Calumet
ECRC — A. Kramer, J.-P. Talpin. Also with contributions from K. Ahlers and P. Marchal.

• Prototype compiler for λ-calculus, based on graph reduction
INRIA — A. Asperti.

• Portable, unobtrusive garbage collection for multiprocessor systems
INRIA — D. Doligez, G. Gonthier, J.J. Lévy.

• Lilac: a prototype functional programming language based on Linear Logic
Imperial College — I. Mackie.

• Pict – Typed higher-order programming language based on π-calculus
University of Edinburgh — B. Pierce, D. Rémy, D. Turner.

• The Mobility Workbench (MBW) — a tool for manipulating and analyzing mobile con-
current systems described in the π-calculus
University of Edinburgh — Faron Moller, Davide Sangiorgi, SICS — Björn Victor.

Some of these pieces of software will be demonstrated at the CONFER workshop at Imperial
College in London and at the Annual review.

As mentioned software deliverables are only due at Milestone 3 at which point the descrip-
tions will be provided as stipulated in the technical annex.

40 CHAPTER 4. DELIVERABLES

Chapter 5

Progress

Reports are done along the 4 areas announced in page 4 of the technical annex.

5.1 Foundational models and abstract machines

This area is twofolded. Firstly, it studies the abstraction of interaction. This is largely covered
by Milner’s action structures. It is also work by Ferrari and Montanari. Secondly, it treats
calculi with bound variables in many ways. Very little is known in literature on these calculi,
much less than for standard algebraic rules. This second part corresponds to works on optimal
reductions, abstract reduction systems, explicit substitutions, CRS, cyclic CRS, and again
action structures.

5.1.1 Action Structures

There has been strong progress in action structures. The main contribution has been the
definition of action calculi, which are concrete action structures representing many familiar
calculi (Petri nets, π-calculus, λ-calculus) in a single framework. The foundations for this work
were laid in the preceding year, but many publications and new technical developments occurred
within the review period. Significant work has also been done in defining and analysing the
category of control structures, which is intended to accommodate the model theory of action
structures. An alternative presentation of action calculi in which names are less prominent,
and the connection between higher order action calculi and the lambda calculus have been
investigated.

1. Action calculi, or concrete action structures, by Robin Milner, Proc. MFCS Conference,
Gdansk, Poland, LNCS, Vol 711, September 1993, 105–121.

Abstract Action structures have previously been proposed as an algebra for both the
syntax and the semantics of interactive computation. Here a class of concrete action
structures called action calculi is identified, which can serve as a non-linear syntax
for a wide variety of models of interactive behaviour. They generalise a previously
defined action structure for the π-calculus. One action calculus differs from another
only in its generators, called controls.

Several action calculi are presented, giving essentially the same power as the π-
calculus. An action calculus is also outlined for PT nets – a class of Petri nets –
parametrized upon their places and transitions.

41

42 CHAPTER 5. PROGRESS

Finally, action calculi are characterized as the free algebras in a sub-variety of action

structures, namely those which satisfy certain additional axioms.

2. Higher-order action calculi, by Robin Milner, Proc. CSL conference, Swansea, October
1993.

Abstract Action calculi are a broad class of algebraic structures, including a formu-
lation of Petri nets as well as a formulation of the π-calculus. Each action calculus
HAC(K) is generated by a particular set K of operators called controls. The purpose of
this paper is to extend action calculi in a uniform manner to higher-order. A special
case is essentially the extension of the π-calculus to higher order by Sangiorgi. To
establish a link between the interactive and functional paradigms of computation, a
variety of the λ-calculus is obtained as the extension of the smallest action calculus
HAC(∅).

The dynamics of higher-order action calculi is presented, blending communication –for
example in process calculi– with reduction as in the λ-calculus. Strong normalisation
is obtained for reduction. A set of equational axioms is given for higher-order action
calculi. Taking the quotient of HAC(∅) by a single extra axiom η, a cartesian-closed
category is obtained.

An ultimate goal of the paper is to combine process calculi and functional calculi,

both in their formulation and in their semantics.

3. Pi-nets: a graphical form of pi-calculus, by Robin Milner, Proc. ESOP’94, LNCS Vol788,
Springer-Verlag, April 1994, 26–42.

Abstract An action calculus which closely corresponds to the π-calculus is presented

in graphical form, as so-called π-nets. First an elementary form of π-net, with no

sequential control, is presented. Then, using a construction by Honda and Tokoro, it

is shown informally that by adding a single control construction box to elementary

π-nets, the sequential control present in the π-calculus can be recovered. (Another

construction, rep, provides replication.) The graphical presentation suggests a few

interesting variants of this control regime, which are studied briefly. The main purpose

of the paper is to explore informally the power and utility of graphical forms of the

π-calculus, in the context of action calculi. It also suggests that graphical forms of

other action calculi should be explored.

4. Action calculi IV: molecular forms, by Robin Milner, November 1993.

Abstract Action calculi were introduced as a subclass of action structures comprising
a variety of computational calculi. Each action calculus AC(K) is determined by a set
K of control operators, together with their reaction rules.

The claim that action calculi provide a valuable framework rests upon a technical
result: that each AC(K) can be presented either as a term algebra subject to a few
simple equational axioms (independent of K), or as an algebra of molecular forms.
The latter play a dual role; thay act as normal forms for the term algebra under the
axioms (and hence play an important part in the theory of action calculi), and they
serve as a natural and modular mode of expression, even suitable for programming.

The technical result that these two presentations are isomorphic is proved in detail
here.

Higher-order action calculi have a richer algebraic theory than action calculi; one

axiom is strengthened and a further one is added. They also have a molecular presen-

tation. Again, the isomorphism of two presentations of higher-order action calculi is

proved here in detail.

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 43

5. Action calculi V: reflexive molecular forms, by Robin Milner (with Appendix by Ole
Jensen). June 1994.

Abstract The key property of action calculi is that each calculus AC(K) can be
presented in two ways: as the quotient of a term algebra by some simple axioms, and
as an algebra of molecular forms. in a previous paper the isomorphism between the
two presentations is proved in detail.

The present paper adapts that proof to admit reflexion into action calculi, in the

form of a unary reflexion operator ↑↑p for each prime arity p. This operator was first

studied axiomatically by Stefănescu in 1986. His work was in the context of Elgot’s

iterative theories; he called the operator “feedback”, and pointed out some of its

advantages compared with Elgot’s iteration operator. The work reported below was

done in ignorance of Stefănescu’s results, but the results are essentially the same. The

main difference is that the algebra of action calculi includes an abstraction operator,

so an additional axiom is needed to express how feedback relates to this operator.

6. Action calculi VI: strong normalisation at higher-order, by Robin Milner, December 1993.

Abstract This paper has a single purpose: to prove that β-reduction is strongly nor-

malising and confluent in higher-order action calculi. The proof adapts the standard

method for the simply-typed λ-calculi summarised by Barendregt in his book.

7. Control Structures, by Robin Milner, Alex Mifsud and John Power, June 1994.

Abstract Action calculi have been defined as a broad class of action structures
with added structure; they are syntactic in nature. Each action calculus AC(K) is
determined essentially by a set K of controls. Different concrete models of concurrent
computation such as Petri nets, the typed λ-calculus and the π-calculus, are obtained
by different choices of control set K. The aim of this work is to define a class (in
fact a category) of action structures with added structure which can be regarded as
possible semantic interpretations of the calculus AC(K); thus AC(K) is characterized
as the initial object in this category. The objects are called control structures over K.

The paper contains the technical formulation of the category of control structures and
their homomorphisms, and the proof that AC(K) is initial. Moreover, the category is
closed under factorisation by arbitrary congruences on control structures.

The paper concludes with an outline of work in progress to identify particular control

structures of interest, such as the quotient of an action calculus for the π-calculus

under a bisimulation congruence.

5.1.2 Structured Operational Semantics Revisited

Ferrari and Montanari address the problem of extending the SOS metatheory to handle actions
with structure. To this purpose they present a generalization of De Simone format called Alge-
braic De Simone Format, AdS for short, where labels of transitions form an algebra with several
operations called Observation Structure. The idea is that the observation structure specifies the
common structure of the experiments which are allowed in the concrete observational models of
process behaviours. In other words, the observation structure individuates a class of algebras
which can be regarded as the class of possible observational models. With a series of examples
they show how several observational models of process calculi are handled within this frame-
work simply by providing suitable concrete models of the observation structure. It is proved
that, for all models of the observation structure, bisimulation is always a congruence for all the
process combinators whose behaviour can be described within the AdS format. Moreover, the

44 CHAPTER 5. PROGRESS

strategy proposed by Aceto, Bloom and Vaandrager, which yields finite algebraic laws of bisim-
ulation congruence for any process calculus specified by structural rules in the GSOS format,
is generalized to the case of actions with structure. The main benefit of this generalization is
that it makes less ad hoc the use of auxiliary operators in the axiomatic characterization of
bisimulation semantics of static and mobile process calculi. Finally, a smooth generalization of
the notion of observation structure permits to deal with SOS semantics in which certain classes
of predicates may occur.

5.1.3 Optimal reductions

In 1992, the works of Lamping and Gonthier renewed this topic, which has already been de-
scribed in last year report. However, two very long papers by Mart́ın Abadi, Georges Gonthier
and Jean-Jacques Lévy on the λ-calculus and linear logic are still under rewriting for journal
versions.

Asperti and Laneve pursued the work on extending it to interaction systems. These are
higher order rewriting systems generalizing Lafont’s interaction nets, retaining the idea of binary
interaction between constructors and destructors through distinguished, complementary ports.
Interaction systems also form a sub-class of combinatory reduction systems of Klop, containing
the λ-calculus. The theoretical aspects of Interaction Systems are investigated in [2, 4]. A major
part of the research consisted in adapting and extending to interaction systems the notion of
optimal computations, as introduced by Lévy for the λ-calculus.

In particular, it has been shown that the Lamping-Gonthier optimal implementation of
the λ-calculus can be smoothly extended to interaction systems. A prototype compiler based
on this technique has been implemented by Asperti and Laneve. The compiler implements
Lamping-Gonthier’s reduction rules following a sort of “lazy” strategy (reacall however that a
whole family of redex is reduced at a time). Reduction is pursued up to the weak head normal
form of the term, by iterating the reduction of (the redex-family of) the leftmost outermost
redex in the term. The leftmost outermost redex is looked for by maintaining an auxiliary stack
for the main spine of the term (in a way similar to typical supercombinators implementations,
such as the G-machine).

Some students under the supervision of of Asperti are actually working to extend the original
system (regarding pure lambda calulus) with new features. In particular, Andrea Naletto
implemented the garbage collector, while Cecilia Giovannetti is adding primitive types (integers,
boolean etc.) and some additional control structure (if-then-else, recursion) in the spirit of
Interaction Systems. Asperti is moreover investigating new reduction rules for ”safe operators”
[1] that seems to drastically reduce the actual performance of the evaluation (partially solving
the well known problem of accumulation of control operators).

In the same theme, Asperti and Laneve have further studied Lévy’s notion of family of
redexes of a λ-term, characterizing this notion by means of paths in the term. The idea is that
redexes in the same family are created by contractions on a unique common path in a suitable
graphical representation of the initial term (where a bound variable refers to the corresponding
abstraction) [3]. This provides new evidence about the common nature of redexes of the same
family, and therefore also about the possibility of sharing their reduction. Their characterization
may be seen as an alternative viewpoint on graph reduction techniques of Lamping and Gonthier
implementing optimal reductions. This point, together with the relation with a different notion
of path inspired by Girard’s Geometry of Interaction, has been clarified in [5].

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 45

5.1.4 Higher-order rewriting

Roughly, this consists of term rewriting with bound variables. Various calculi featuring in the
project have this characteristic: lambda calculi, pi-calculi. In the past year, essential progress
has been made: Van Raamsdonk proved in cooperation with Vincent van Oostrom that also
weakly orthogonal higher-order rewrite systems are confluent, thereby extending the well-known
confluence for orthogonal systems. (A preliminary announcement of this result was already in
last year’s report.) The paradigm of a weakly orthogonal higher-order rewrite system is lambda
calculus with beta and eta rule; also the typed versions such as system F with beta and eta.
Also a useful modularity result was obtained: the disjoint union of left-linear confluent higher-
order rewrite systems is again confluent. Actually, a refined version of that theorem states that
confluence is also preserved in combinations of left-linear confluent higher-order rewrite systems
when trivial critical pairs are allowed, generated by rules from different systems. (Inside each
system separately there may be nontrivial critical pairs.)

Furthermore, Van Raamsdonk and Van Oostrom have worked out a general framework for
higher-order rewriting (HORSs, Higher Order Rewriting Systems), where there is the parameter
of the substitution calculus that is employed. For instance, Nipkow’s Higher-order Rewrite
Systems (HRSs) employ as substitution calculus the simply typed lambda calculus, while Klop’s
CRSs have underlined lambda calculus (as in Finite Developments) as substitution calculus. The
substitutions calculus is the underlying mechanism governing how actual rule instantiations are
formed. Much of this work is reported in Van Oostrom’s Ph.D. thesis, written under supervision
of J.W. Klop at the Free University Amsterdam; this work formally is not in the project, but
is influential for our work in the project.

5.1.5 Term Rewriting and Lambda Calculus with explicit recursion

The second major research direction of CWI continued the work initiated last year on term
graph rewriting and cyclic lambda graph rewriting. This work is done in cooperation with
Zena Ariola (University of Oregon). The origin of this work was in the former ESPRIT BRA
Semagraph, now a WG. The addition which makes it interesting in Confer, is the consideration
of bound variables in the form of recursion variables: a term graph can be described as a system
of recursive equations, in fact as a subclass of the well-known and much studied Recursive
Program Schemes. The issue of bound variables becomes prominent when nested systems of
such recursion systems are considered. Added to lambda calculus, we have in fact lambda
calculus with explicit recursion - somewhat in analogy with the lambda calculi with explicit
substitution or lambda sigma calculi that are also studied in our project. The objects of interest
are cyclic lambda graphs with a modular structure. Graphically, the modular structure (arising
from nesting of recursion systems) consists of boxes, possibly nested, around parts of the graph;
the inside of a box cannot be addressed directly, but only through its root. The β-rule gets in
this framework an extremely simple form:

(λα.M)N → 〈M | α = N〉

where the role change in the binding of alpha is remarkable: first bound by lambda, later by
the recursion construct. In functional programming these constructs are well-known as the let
and letrec; but as yet in our opinion the theory behind these constructs is not developed. It
turns out for instance that lambda calculus with letrec, or our lambda calculus with explicit
recursion, has a highly nontrivial confluence problem, consisting in first designing suitable
rewrite rules and second in proving it confluent. In fact, a naive but obvious version of defining
β-reduction on cyclic lambda terms turns out to be essentially non-confluent, unless one forbids
the presence of certain cycles in the graph. Another way out is the introduction of boxes as a

46 CHAPTER 5. PROGRESS

means of restricting all too liberal copying of parts of the graph. Interestingly, some of the rules
are similar to the rules for lambda sigma calculus; and our calculus may be seen as a lambda
calculus with explicit cyclic substitutions.

5.1.6 Abstract reductions systems

Paul-André Mellies is writing his Phd dissertation about Abstract Rewriting Systems. The
thesis contains axiomatic proofs of the finite development lemma, the standardisation theorem
(with critical pairs or not), and the strong normalisation theorem for simple types. He revisited
any of these subjects this year, and many parts of the work were improved. The standardisation
part was particularly studied, many axioms were weakened from the LICS’92 joint work with
Gonthier and Lévy. leading yet to stronger properties and structures.

He has also worked about the property of strong normalisation. The better understanding of
this property for simply typed systems gave him some insight about the termination of the typed
λσ-calculus. He showed that infinite computations are possible on a typed λσ-term. This gives
a counter-example to the general conjecture that typed λ-calculi with explicit substitutions do
strongly terminate. Similar examples exist in the Categorical Combinators calculus of Curien
and in the λσ⇑-calculus of Hardin and Lévy. He presented these examples during the CONFER
workshop in München (April 1994). Two new questions arise from this work: how should to
handle composition of substitutions to obtain both confluence on open terms and termination?
What are the terminating strategies inside existing typed λ-calculi with explicit substitutions?

5.1.7 Explicit substitutions

As just above mentioned, Paul-André Melliès found a counter-example to the termination of
simply typed lambda-calculus with explicit substitutions.

Thérèse Hardin with Gilles Dowek and Claude Kirchner worked on higher-order unification
via explicit substitutions. It is well-known that higher order unification consists in solving equa-
tions in some βη theory. Instead of creating artificial β-redexes (as in the resolution methods
defined by Huet in his dissertation), one can show that the explicit treatment of substitutions is
more natural, and leads to higher order unification in the equational theory of the λσ-calculus,
where with use of grafting one solves equations in a more first-order way. The natural outcoming
algorithms are expressed by transformations rules. In these algorithms, the distinction between
substitutions initiated by reduction and substitutions of unification variables permits to avoid
the encoding of the scoping constraints due to βη-reduction, which is one of the standard bur-
dens of previous algorithms. The resulting solving process decomposes Huet’s algorithm in
elementary steps that avoids unnecessary ones and are close to the implementation level.

5.1.8 Categorical Models of Term Rewriting Systems

In the latest years there has been a growing interest towards categorical models for term rewrit-
ing systems. Categorical models are obtained by interpreting rewriting steps as arrows of a
category or as 2-cells of a 2-category. These models can be used to naturally equip rewriting
systems with a concurrent semantics in a clear algebraic way.

Corradini, Gadducci and Montanari studied and compared some (concurrent) models previ-
ously proposed in the literature. It is showed that these models fail to capture a fully satisfactory
notion of concurrent semantics for rewriting systems. For instance, it turns out that the deriva-
tion space of Meseguer’s Concurrent Term Rewriting (i.e., the set of coinitial computations
ordered by prefix) associated to each term fails in general to form a prime event structure. In-

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 47

stead, the resulting derivation space in Stell’s model of Sesqui categories prime event structure,
but too few computations are identified, such that only disjoint concurrency can be expressed.

5.1.9 Interrelations between sites and to other areas. Future work

There is an active collaboration between INRIA-Rocquencourt, INRIA-Sophia, Imperial College
and ENS in the domain of optimal reductions (joint papers, visits, constant connexion). In CRS
and abstract reduction systems, CWI and INRIA-Rocquencourt cooperate (Melliès is on leave
to Amsterdam).

Future work is very promising in Actions Structures and Calculi and in theory of bound
variables. Right now, it is impossible to guess which setting will win. Some work has to be
done to connect various theories, especially with the axiomatics of Action Calculi.

5.1.10 Reports on foundational models

[1] A. Asperti. Linear logic, comonads, and Optimal Reductions. Fundamenta Informaticae,
Special Issue devoted to Categories in Computer Science (invited paper). V.22, n.1, 1994.

[2] A. Asperti and C. Laneve. Interaction systems I: The theory of optimal reductions. Math-
ematical Structures in Computer Science. To appear.

[3] A. Asperti and C. Laneve. Paths, computations and labels in the λ-calculus. Theoretical
Computer Science, Special Issue devoted to RTA ’93 (Montreal).

[4] A. Asperti and C. Laneve. The family relation in Interaction Systems. Proc. of the In-
ternational Symposium on Theoretical Aspects of Computer Science (TACS’94), Sendai,
Japan. April 1994.

[5] A. Asperti, V. Danos, C. Laneve, L. Régnier. Paths in the λ-calculus. Three years of
communications without understandings. Proc. of the International Symposium on Logic
in Computer Science (LICS’94), Paris, France. 1994.

[6] A. Asperti. δ◦!ε = 1. Internal Report of the Dipartimento di Matematica, Univeristà di
Bologna. 1994.

[7] Damien Doligez, Georges Gonthier, Portable, Unobtrusive Garbage Collection for Multi-
processor Systems, Twenty-First Annual ACM Symposium on Principles of Programming
Languages, Portland.

[8] Gilles Dowek, Thérèse Hardin, Claude Kirchner, Higher-order unification via explicit sub-
stitutions, INRIA report.

[9] Paul-André Melliès, Typed λ-calculi with explicit substitutions may not terminate, sub-
mitted to TLCA’95.

[10] Corradini, A., Gadducci F., Montanari, U., Prime event structures and categorical models
of term rewriting, August 1994.

[11] Ferrari, G., Montanari, U., Turning SOS Rules into Operations, August. 1994.

[12] An action structure for synchronous π-calculus, Robin Milner, Proc. FCT Conference,
Szeged, Hungary, LNCS, Vol 710, August 1993, 87–105.

[13] Action calculi, or concrete action structures”, Robin Milner, Proc. MFCS Conference,
Gdansk, Poland, LNCS, Vol 711, September 1993, 105–121.

48 CHAPTER 5. PROGRESS

[14] Higher-order action calculi, Robin Milner, to appear in Proc. CSL conference, Swansea,
October 1993.

[15] Pi-nets: a graphical form of pi-calculus, Proc. ESOP’94, LNCS Vol788, Springer-Verlag,
April 1994, 26–42.

[16] Action calculi IV: molecular forms, Robin Milner, November 1993.

[17] Action calculi V: reflexive molecular forms, Robin Milner, June 1994. (with Appendix by
Ole Jensen)

[18] Action calculi VI: strong normalisation at higher-order, Robin Milner, December 1993.

[19] Control Structures, Robin Milner, Alex Mifsud and John Power June 1994.

5.2. CALCULI 49

5.2 Calculi

This section reports on the work of the second year of CONFER in the area of Calculi. A
considerable effort from various sites has been made in this area, resulting in 18 reports and
publications. Although each of these papers contains original contributions, one should note
that they constitute a coherent corpus of research. This shows that various sites of CONFER
share common interest in some specific themes of the project. From this point of view, one
must especially mention the cooperation between R. Amadio from ENS-Paris and B. Thomsen,
L. Leth and S. Prasad from ECRC-Munich. They produced joint work which is on the boundary
of the areas of Calculi and Programming Languages.

The work done in the area of Calculi mainly deals with the semantics of the π-calculus and
other related formalisms. However, to organise the presentation of this work, it is convenient
to distinguish three main topics:

• bisimulations,

• non-interleaving semantics,

• relating calculi.

This division should not obliterate the connections between the various topics: for instance
some works on “non-interleaving semantics” show that the π-calculus is expressive enough to
encode these semantics within the standard bisimulation approach. The work on “relating
calculi” is also concerned with proofs of properties of processes, and this is the main subject of
the works presented in our first section.

5.2.1 Bisimulations

The well-known notion of bisimulation equivalence, due to Milner and Park, provides a semantics
for the class of calculi where the agents’ behaviour consists in performing actions along with state
transitions. Moreover, the notion of bisimulation provides a very powerful proof technique for
establishing properties of agents. This proof technique is implemented in software verification
tools that can be used to perform sophisticated verifications. As we shall see, all the works
presented below are concerned with this use of bisimulations as a basis for formal proofs.

It has been noted that for higher-order calculi of concurrent processes, the right notion of
bisimulation is not so easy to define, and that some variations are possible. This applies to
the π-calculus, where one passes names during a communication, and even more crucially to
calculi, like CHOCS or HOπ, where agents can be transmitted in a communication. There are
several difficulties. One, specific of the π-calculus, is due to the fact that there is some freedom
in the determination of the moment at which an actual value is substituted for a parameter
name. That is, the notion of action and resulting state is not as clear as in CCS for instance.
Another difficulty is to deal with the private names in an appropriate way.

Three papers – see the references below – address the problem of defining bisimulations for
the π-calculus. In [AmaAit94], the authors first give a characterisation of the original “early”
bisimulation of Milner, Parrow and Walker, by means of an equivalence where the output
actions are observed by means of contexts of the calculus. This is similar in spirit to the
“barbed congruence” of Milner and Sangiorgi, which was shown to coincide with the “early”
congruence. Then Amadio and Ait-Mohamed argue that, from the point of view of automated
verification, the “early” and “late” bisimulations are not very convenient. Then they propose
to treat an input name as a “logical variable”, subject to some constraints. This leads them to

50 CHAPTER 5. PROGRESS

the definition of the uniform bisimulation which is stronger than the previously known notions
of bisimulations.

A general framework to deal with the various notions of π-calculus bisimulations has been
set up by Montanari et al. The papers [FerMonQua94a, FerMonQua94b] develop the work
started in the first year of CONFER. The authors apply Curien and Lévy’s construct of ex-
plicit substitution to the π-calculus. In this unified framework one may retrieve the late and
early semantics by defining suitable instantiation strategies. The authors also introduce a lazy
semantics, similar to the “uniform” semantics of Amadio and Ait-Mohamed, and to the “open”
bisimulation of Sangiorgi (see last year’s report, [San93d]).

The third paper addressing π-calculus bisimulations is the one of Walker [Wal94a]. The
purpose of the paper is to characterise Sangiorgi’s “open” bisimulation, which is particularly well
suited for computer aided verification, as a “barbed congruence”. This amounts to introducing
a new operator to the π-calculus, by means of which the discriminating power of the contexts is
enhanced. Not surprisingly, this operator bears some resemblances to the explicit substitutions.

All these papers contribute to clarify the situation of the various possible definitions of π-
calculus bisimulations. One should notice that they are all motivated by the desire of having
a satisfactory semantic theory which is well suited for verification purposes. Although some
further studies will certainly emerge, one may think that this topic is rather well understood
by now. Regarding the point of defining bisimulations for higher-order calculi, there is a con-
tribution by Sangiorgi [San94a]. This work develops the idea of barbed congruence of Milner
and Sangiorgi, applying it to the case of agent passing calculi (in particular to HOπ), where
it seems to be the most appropriate notion – if not the only one. In higher-order calculi, one
cannot simply use the standard notion of bisimulation, because agents perform communication
actions that carry agents. Therefore one should at least regard two actions carrying equivalent
agents as identical. Sangiorgi convincingly argues that this is not enough in the presence of
private communication names. Then he proposes a very simple notion of equivalence which,
roughly speaking, identifies agents that have the same communication capabilities in every con-
text. Like Morris’ contextual equivalence, barbed congruence may be defined for any calculus
equipped with a notion of reduction and a convergence predicate. However, Sangiorgi observes
that this semantic equivalence is not very well suited, as it stands, for practical verifications,
because of the universal quantification over contexts it involves. He then shows that barbed
congruence has a direct characterisation: it coincides with the so-called normal bisimulation,
which provides a tool for proving agents to be barbed congruent.

Two other contributions are relevant to this section on bisimulations. Both are investigating
general questions about this kind of equivalence. The first, by Sewell [Sew94], addresses the
problem of finite axiomatisability of the bisimulation. He shows that even for a very simple
calculus of finite state processes, or more accurately a simple subset of HOπ, the bisimulation
is not first order finitely axiomatisable. This contrasts with previous results concerning the
algebra of finite state processes without the “nil” agent. In [San94b], Sangiorgi makes some
observations on the proof technique associated with bisimulation. A bisimulation is a binary
relation which is stable by transitions, and one may prove the equivalence of agents by exhibiting
a bisimulation that relates these agents. However, quite often the natural candidate relation
that one can think of is not stable. Therefore one is lead to consider functions over relations,
such that one progresses by transitions from a relation to a function of it. Sangiorgi gives
some non-trivial conditions on such functions to ensure that bisimulation is preserved. He then
applies these general conditions to the proof of some non-trivial properties in CCS and the
π-calculus.

5.2. CALCULI 51

References

[AmaAit94] R. Amadio and O. Ait-Mohamed: An Analysis of π-calculus Bisimulations, Tech-
nical Report ECRC-94-2, 1994.

[FerMonQua94a] G. Ferrari, U. Montanari and P. Quaglia: A π-calculus with Explicit Substi-
tution: the Late Semantics, to appear Proc. MFCS 94, LNCS, 1994.

[FerMonQua94b] G. Ferrari, U. Montanari and P. Quaglia: A π-calculus with Explicit Substi-
tution, submitted to TCS (Special Issue MFCS’94), 1994.

[San94a] D. Sangiorgi: Bisimulation in higher-order calculi, Proc. IFIP Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET), S. Miniato, Italy, June 94.

[San94b] D. Sangiorgi: On the bisimulation proof method, Tech. Rep. ECS–LFCS–94–299, Uni-
versity of Edinburgh.

[Sew94] P. Sewell: Bisimulation is not finitely (first-order) equationally axiomatisable, LICS
94, Paris, July 1994.

[Wal94a] D. Walker: On bisimulation in the pi-calculus, in Proc. 5th International Conference
on Concurrency Theory CONCUR’94, Uppsala, August 1994.

5.2.2 Non-interleaving semantics

The non-interleaving semantics was developed for CCS-like process algebras with the idea that
a semantics reducing parallel composition to sequential non-determinism is not entirely appro-
priate for dealing with distributed systems, that are supposed to run on decentralised systems.
On the other hand, a clear advantage of the standard approach is its nice mathematical theory,
allowing for rigorous proofs of properties of concurrent systems. An obvious direction of re-
search was then to investigate the meaning of non-interleaving semantics for higher order calculi.
One may distinguish two different approaches to the non-interleaving semantics: the causal ap-
proach, where concurrency is regarded as causal independence, and the spatial approach, where
concurrency is given by the distributed nature of a system.

Both these approaches have been applied to the π-calculus by Sangiorgi [San94c, BorSan94].
In the first paper, Sangiorgi uses Boudol et al’s formalisation of distributed bisimulation, namely
the location equivalence. In this setting, the standard bisimulation is refined by allowing the
observer to see whether two active components of a distributed system are located in the
same site or not. It is not difficult to adapt this to the π-calculus, thus obtaining a location
equivalence for it. Sangiorgi shows in [San94b] that one can exploit the naming facilities of the
π-calculus to encode the “located agents” as ordinary π-agents, so that two agents are location
equivalent iff their encoded versions are bisimilar. In a sense, this is another experiment with
the expressive power of the π-calculus, since this means that truly distributed processes can be
“implemented” using name passing. Moreover, this provides a proof technique, reducing the
proof of location equivalence to that of usual bisimilarity.

In [BorSan94], Boreale and Sangiorgi apply the causal approach to the π-calculus. This
involves some subtleties, because a new form of dependency arises in the π-calculus: an action
may be dependent on another one just because it is a communication on a private channel which
is “opened” by its transmission to another agent. As a matter of fact, this kind of dependency
is already taken into account by the standard interleaving semantics. Again, the main result
of [BorSan94] is that the causal semantics can be directly expressed within the “ordinary” π-
calculus, equipped with the standard bisimulation. The technique is the same as for locations:

52 CHAPTER 5. PROGRESS

the extra structure over processes that is needed to deal with the causal dependencies can be
encoded by means of π-calculus agents. The same conclusion can be drawn, that is one may
prove causal equivalences using the standard interleaving approach. Moreover, a comparison
can be made between the two non-interleaving approaches within the π-calculus.

The paper [MonPis94] by Montanari and Pistore also deals with a “truly concurrent” seman-
tics for the π-calculus. However, the methodology they use is quite different from the one found
in previous works and is reminiscent of the definition of non interleaving CCS via Petri nets.
Instead of refining the operational semantics of the calculus – for instance by decorating the
transitions with informations about localities or causal dependencies –, Montanari and Pistore
introduce a graph rewriting operational semantics for the π-calculus (it would be interesting to
compare this with other “graphical approaches” to the π-calculus, by Milner and Parrow for
instance). They note that the induced notion of causality is slightly more liberal than the one
in [BorSan94]. As usual, the “graphical” operational semantics serves as a basis for defining
various abstract semantics. This is done by varying the notion of observation. Montanari and
Pistore consider three different kinds of observations: interleaving, partial ordering and mixed
ordering. As expected, the equivalence induced by interleaving observations is the ordinary
early observational equivalence, and the mixed ordering equivalence is finer than both the in-
terleaving and partial order equivalences. On the other hand, a surprising fact is that the partial
order equivalence is not finer than the interleaving equivalence. The reason is that interleaving
observations implicitely assume a centralized name generator, while partial ordering observa-
tions do not. Thus, in addition to the usual examples where partial ordering observations are
more discriminating, it is possible to give examples where, due to certain symmetries of the
state, partial ordering observations are less discriminating than interleaving observations.

The work by Amadio and Prasad [AmaPra94] is also concerned with non-interleaving se-
mantics: it uses the notion of locality, addressing the question of how to reason about located
processes in the presence of node failure. To this end they extend the π-calculus, allowing both
agents and channels to be assigned to locations, which may fail. The behaviour of an agent
depends on the status of the locations of the channels on which it may communicate. This is in-
tended to provide a theoretical formalisation of some Facile’s implementation features. Amadio
and Prasad define a barbed congruence over this calculus, which does not take into account the
actual names of the locations (as in the location equivalence), yet is strictly more discriminating
than the usual interleaving semantics, due to the observation of the potential node failures. As
in the papers [San94c, BorSan94], Amadio and Prasad show that the calculus with localities and
failures can be directly encoded into the “standard” π-calculus. This amounts to implementing
each location as a π-agent managing the access to the resources depending on that location.
This is again an example of the expressive power of the π-calculus. The authors also discuss
the proof method induced by their result: as in the afore-mentioned works on non-interleaving
semantics, one may reduce the proof of equivalence of agents in the presence of nodes failures
to the proof of equivalence of their encoded version.

References

[AmaPra94] R. Amadio and Sanjiva Prasad: Localities and Failures, Technical Report ECRC-
94-18, 1994.

[MonPis94] U. Montanari and M. Pistore: Concurrent Semantics for the π-calculus, July 1994.

[San94c] D. Sangiorgi: Locality and Non-interleaving Semantics in Calculi for Mobile Pro-
cesses, in Proc. International Symposium on Theoretical Aspects of Computer
Science (TACS ’94), LNCS 789.

5.2. CALCULI 53

[BorSan94] M. Boreale and D. Sangiorgi: A Fully abstract semantics of causality in the π-
calculus, Tech. Rep. ECS–LFCS–94–297, University of Edinburgh.

5.2.3 Relating calculi

Various calculi for higher order communicating processes have been proposed so far, and an
obvious task was to investigate their relationships. As a matter of fact, this comparison should
also include sequential models of computation. Some results were obtained in the past few
years, notably by Milner and Sangiorgi, who showed that the π-calculus is expressive enough
to encode various reduction strategies in the λ-calculus, and to “implement” agent passing
in concurrent calculi. Also Walker started the task of studying object based programming
using the π-calculus. These works not only demonstrate the universality of name passing, as
advocated by Milner, but also could serve as a formal basis for reasoning about higher order
concurrency and other computational paradigms. We have seen in the previous section that
reasoning in various settings may often amount to using standard bisimulation techniques in
the π-calculus. Obviously translating some language into the π-calculus provides a similar proof
technique. The papers presented below do not all follow this “reductionist” approach, however.

The paper [Wal94b] by Walker is a development of his previous work on translating par-
allel object-oriented programming languages into the π-calculus – or more precisely into an
extension of the π-calculus, including some features of value-passing CCS, which provides a
good framework for understanding the behaviour of mobile systems. The translation is used as
the basis for an investigation of programs transformations. In particular, Walker proves some
new results concerning replicators, which he then uses to show the soundness of certain specific
transformations.

A similar study is undertaken by Amadio in [Ama94c] (see also [AmaLetTho94]) regarding
the language Facile, with the aims of providing a basis for the definition of abstract machines,
the transformations of programs, and the development of modal specification languages. As
a preliminary step, Amadio concentrates on Core Facile, which is, roughly speaking, a sim-
ply typed call-by-value λ-calculus, enriched with parallel composition, channel generation and
input-output synchronous communication. In particular, a channel is any expression of channel
type. It has to be evaluated before a communication can take place on this channel. The
language also includes a control operator (call/cc). Amadio shows how to define some Facile
features in the core language. Then he introduces a simplified version of the language, the
asynchronous version (where, as in the π-calculus, the output construct is restricted to be non-
blocking) and he shows that the synchronous Core Facile may be adequately translated into
the asynchronous one. Moreover, this language can be further simplified, using a continuation
passing transformation to eliminate the control operator. This reduces the problem of defining
an abstract machine for Core Facile. Indeed Amadio defines such a machine for the restricted
language. This is a “chemical solution” of call-by-value environment machines, enriched with
a mechanism for the dynamic generation of channel names. Finally Amadio shows that the
restricted language, asynchronous Core Facile without control operator, may be translated into
the (asynchronous) π-calculus (see also [AmaLetTho94]). Throughout his work, Amadio uses
the barbed congruence of Milner and Sangiorgi as a criterion for the adequacy of the various
translations.

The works reported on in the rest of this section present “direct” studies of process calculi,
not referring to the π-calculus or any other higher-order calculus. In [FerMon94], Ferrari and
Montanari propose a new paradigm, additive concurrency, where typed behaviours of concurrent
programs are described in terms of matrix calculi. In this setting, the operation of matrix
product is the fundamental primitive operation to compose typed behaviours. The authors
use “dynamic matrices”, which have extensible dimensions (rows and columns), allowing the

54 CHAPTER 5. PROGRESS

product to be always defined. In fact, dynamic matrices, beyond a principal type, have any
type larger than it. Ferrari and Montanari show that dynamic matrices can be used to describe
behaviours of concurrent programs which can change dynamically their amount of parallelism,
i.e. can fork and join. They prove that dynamic matrices are exactly the morphisms of a
suitable category with biproducts (categories where product and coproduct coincide). The main
consequence of this result is an axiomatic characterisation of dynamic matrices. The usefulness
of the proposed paradigm is demonstrated by showing that some interesting properties of process
calculi can be analysed in terms of dynamic matrices.

In the paper [BerBetPon94a] a typed combinatory process algebra is introduced, that com-
bines process algebra in the ACP framework with types and the classical combinators I, K, B,
C. These serve to eliminate recursion variables altogether, so that computations can be done
in an entirely equational way. As an extended example the simple Alternating Bit Protocol
is verified using only first-order equational logic. Another endeavour has been to eliminate
recursion variables in process specifications in favour of iteration using variants of Kleene star.
This is done in [BerBetPon94b] where axiomatisations have been given and different versions
compared. The paper [BerKli94] reports on a more practical work, studying the Toolbus, a
component interconnection architecture, using the frameworks of Process Algebra, and the
specification formalisms ASF and SDF.

References

[Ama94c] R. Amadio: Translating Core Facile, Technical Report ECRC-94-3, 1994.

[AmaLetTho94] R. Amadio, L. Leth and B. Thomsen: From Concurrent Functional Programs
to Mobile Processes, submitted for publication.

[BerBetPon94a] J.A. Bergstra, I. Bethke and A. Ponse: Process Algebra with Combinators, in
Proc. 7th Workshop CSL ’93 (Computer Science Logic), Swansea 1993, LNCS
832, 36–65.

[BerBetPon94b] J.A. Bergstra, I. Bethke and A. Ponse: Process algebra with iteration and
nesting, Technical Report P9314b, Programming Research Group, University
of Amsterdam, 1994.

[BerKli94] J.A. Bergstra and P. Klint: The Toolbus: a Component Interconnection Archi-
tecture, Technical Report P9408, March 1994, Programming Research Group,
University of Amsterdam.

[FerMon94] G. Ferrari and U. Montanari: Typed Additive Concurrency, August 1994, sub-
mitted for publication.

[Wal94b] D. Walker: Algebraic proofs of properties of objects, in Proc. 5th European
Symposium on Programming ESOP’94, Edinburgh, April 1994, D. Sannella
(ed.), Springer-Verlag LNCS vol. 788, 501–516.

5.2.4 Interrelations between sites and to other areas. Future work

We have already mentioned the relation between ECRC (B. Thomsen, L. Leth and S. Prasad)
and ENS (R. Amadio, who visited ECRC for six month). This collaboration resulted in joint
work on the mathematical foundations of the programming language Facile, developed and
implemented at ECRC. This work is also relevant to the area of Foundational Models and
Abstract Machines. A cooperation between ECRC, ENS and SICS also started this year,

5.2. CALCULI 55

aiming at developing logics for reasoning about concurrent functional programs. This topic
is relevant to the areas of Logics and Calculi, and related to the work done in the area of
Programming Languages.

The work by S. Prasad, studying a formulae-as-types/programs-as-proofs interpretation
of a fragment of Girard’s Unified Logic (LU), though primarily concerned with questions of
logic, is clearly relevant to the Calculi area too. In his work, S. Prasad develop a typed
calculus of “communicating applicative processes”. Moreover, his joint work with R. Amadio
on localities and failures shows a connection with previous work done at Sophia and Pisa. This
also holds regarding the work of D. Sangiorgi on non-interleaving semantics. More generally,
one may note from the report above that techniques developed within the project, concerning
bisimulations (e.g. barbed bisimulations) and translations in the π-calculus (initiated by Milner
and Sangiorgi), are widely used by most members.

The work on the λ-calculus with multiplicities is still a topic of active collaboration between
Sophia (G. Boudol and C. Laneve) and ENS (C. Lavatelli). Finally some works reported in the
area of Foundational Models, on the CHAM, and most notably on Action Calculi by R. Milner
are also strongly connected with what is done in the Calculi area.

It is expected that the work on semantics foundations of distributed programming, and
particularly of the Facile language, will be further developed. A collaboration between ECRC
and Pisa has been initiated on this subject, and the cooperation between ECRC and ENS
will be maintained. An emerging topic is the question of determinacy, or more accurately of
confluence: one would like to find some characterisations of subsets of various calculi where the
reduction relation does not involve conflicts. This is of clear importance for the programming
languages, since confluent programs should be easier to understand, to verify and to maintain.
Although no contribution on the λ-calculus with multiplicities was delivered this year, work is in
progress on this subject. We plan to characterise the discriminating power of this calculus, and
to compare it with the one of the π-calculus. This could also be used for studying translations
of other calculi into the π-calculus.

56 CHAPTER 5. PROGRESS

5.3 Logics for Concurrency and λ-calculus

5.3.1 Summary

Here we describe research carried out in the “Logics for Concurrency and λ-calculus” area.
Work has been carried out mainly at two sites: the Department of Computing, Imperial College,
London and ECRC, Munich. Work done can be divided into the following categories:

• Types for Concurrency (S. Abramsky, S. J. Gay, R. Nagarajan, G. Meredith)

• Logical Methods for Concurrency (S. Prasad, S. J. Gay, R. Nagarajan, D. Pavlović)

• Game Semantics, Linear Logic (F. Lamarche, M. Huth)

Significant advances have been made within the last year in this area — several of the points
mentioned as future work in last year’s report have been completed successfully.

We have been able to develop type systems for processes, based on principles derived from
the work on Interaction Categories, to address issues in synchronous and asynchronous con-
current computation, verification of concurrent systems and mobility. These are non-trivial
applications of the Interaction Category paradigm. There has been much work based on Linear
Logic, Girard’s LU and Categorical Logic as a basis for typed frameworks of processes. Game
Semantics and Linear Logic have been used to advance the state-of-the-art in the theory of
functional computation.

A summary of the work done appears below. A list of reports and publications appears at
the end of this document, along with other references.

5.3.2 Work Done

5.3.2.1 A Typed Calculus of Synchronous Processes

As part of the programme of developing applications of Abramsky’s interaction categories
[Abr94a, Abr93] we have investigated a typed process calculus based on the structure present
in a general interaction category. A pillar of the theory of sequential computation is the use
of the simply typed λ-calculus as a canonical functional programming language, and the def-
inition of its semantics in terms of cartesian closed categories. In this investigation, we have
aimed to extend this theory to concurrency; the main difference being that we have started
with the semantic categories rather than the calculus. Since interaction categories have a linear
type structure, the standard sequent presentation of classical linear logic also provides input to
the design of the calculus. Abramsky [Abr94b] has already described how classical linear logic
sequents can be used as process interface specifications, and the type system of our calculus
follows his proposal.

Specifically, we define a calculus of synchronous processes, with a syntax based on Abram-
sky’s linear realisability algebras but extended with constructions for prefixing, non-determinism
and recursion. The calculus has an operational semantics defined as a labelled transition sys-
tem, and a categorical semantics defined in terms of a collection of axioms for synchronous
interaction categories. One such category is Abramsky’s category SProc of synchronous pro-
cesses, but it is intended that the calculus can also be interpreted in other suitably-structured
categories. The choice of category affects the semantic interpretation of types; at the simplest
level, a type consists of a sort and a safety specification.

The operational semantics allows strong bisimulation to be defined as the natural equiva-
lence on processes; the categorical semantics yields a notion of denotational equality, and we
prove that this is sound with respect to strong bisimulation. The existence of types and an

5.3. LOGICS FOR CONCURRENCY AND λ-CALCULUS 57

operational semantics raises the question of subject reduction, i.e. preservation of types by
transitions. In our calculus, the presence of safety specifications in the categorical semantics,
and the corresponding properties of syntactic types, mean that the operational semantics does
not preserve types. However, there are two results which we call static and dynamic subject
reduction. Static subject reduction states that certain aspects of the type of a process (essen-
tially, the number of ports) are preserved by transitions. Dynamic subject reduction states the
relationship between the way in which transitions change types, and the syntactic form of the
prefix judgements which are used to introduce prefixing actions in the calculus.

Another aspect of the established theory of the simply typed λ-calculus is the very strong
connection between the calculus and cartesian closed categories, formed by the construction of
syntactic categories. The process calculus which we have defined offers the prospect of extend-
ing this theory to concurrency as well. Although we have not yet pursued this idea very far for
the full calculus, we have established the correspondence for a slightly restricted version of the
calculus and a suitably modified notion of interaction category. This work is described briefly
in a later section.

Associated Report: [Gay94]

5.3.2.2 Types for Asynchronous Deadlock-Freedom

Abramsky’s work on interaction categories [Abr94a, Abr93, Abr94a] has established a theory
of typed concurrency in which types can encode complex behavioural properties of processes.
The laws of typed process combination then become compositional proof rules for these proper-
ties. In the most elementary interaction categories such as SProc [Abr94a, Abr93] and ASProc
[Abr94a], only safety properties can be analysed; however, the idea of specification structures
[Abr94a] allows more complex properties to be systematically added to the types. One such
property is deadlock-freedom, which we take to mean non-termination. A specification structure
for deadlock-freedom of synchronous processes has already been described [Abr94a]; we have
now established a similar specification structure for asynchronous deadlock-freedom.

The fundamental operation on processes in an interaction category is restricted composition,
but it is easy to see that this operation does not preserve deadlock-freedom. Two processes may
each be able to run for ever in isolation, but if forced to communicate they can deadlock each
other by being unable to agree on which action should be performed next. Thus a type must
impose a greater constraint on a process than just requiring that it never terminates. Following
the approach used for synchronous processes, we use the idea of ready sets and ready pairs. A
ready set is a set of actions which a process is prepared to do next; a ready pair is a state
(represented as the sequence of actions which have been performed so far) and the ready set
corresponding to that state. A notion of orthogonality of ready pairs—for two ready pairs to be
orthogonal, their ready sets must intersect non-emptily when their traces are the same—allows
a condition to be formulated which ensures that composition does not introduce deadlocking
behaviours. A type contains a set of ready pairs, and a process satisfies a type only when its
ready pairs are all in the set specified by the type.

These types have a linear structure, in which negation comes from orthogonality, and so
can be fitted into the general interaction category scheme. In the synchronous case, the ideas
described above lead naturally to a category of deadlock-free processes. However, when dealing
with asynchronous processes there are a number of complications. The first is the possibility
of divergent behaviour. Two processes, when connected together, may be able to communicate
forever, but if they never do any actions outside the port on which they are communicating,
the result is an infinite sequence of unobservable actions. Under observation equivalence, this
is indistinguishable from deadlock. The solution is to introduce a notion of fairness, again by

58 CHAPTER 5. PROGRESS

augmenting the types with additional information. Adding a set of fair infinite behaviours to
each type, and making the type constructors combine these sets in appropriate ways, results
in a category (which we call FProc) in which every process behaves fairly between all of its
ports, in the sense that an infinite behaviour visits each port infinitely often. The specification
structure for deadlock-freedom is then constructed over FProc. The second problem is more
technical: the deadlock-free category does not have a full ∗-autonomous structure, since there
is no tensor unit. This is a potentially serious difficulty, as the ∗-autonomous structure of
interaction categories is used extensively when working with typed processes. The solution is
to use another type, with care, as a tensor unit; a port of this type is simply a place in which
time can be observed to pass.

We have applied these ideas to the analysis of two classic concurrency examples: the cyclic
scheduler [Mil89] and the dining philosophers [Hoa85]. Both of these examples rely crucially
on the ability to construct cyclic process configurations; however, such constructions are not
available in the deadlock-free category. In general, it is not possible to deduce deadlock-freedom
of cyclic processes just by considering the ready pairs of their components. The method of
working is to set up types which enable components to be assembled up to the point where
a cyclic connection is needed. Then, a traditional verification argument is used to show that
the cycle can be completed without introducing deadlocks. Once this has been done, the result
is a typed process which can then be connected to other typed processes without introducing
deadlocks. The extra verification step only has to be done once: after that, the types take over
again. It is to be expected that this methodology will also apply to the use of types which
capture different properties.

We conclude that Abramsky’s interaction category paradigm, via the concept of specification
structures, can effectively extend the use of types to cover interesting properties of concurrent
processes.

Associated Report: [Gay94]

5.3.2.3 An Internal Language for Interaction Categories

There is a well-established and elegant body of theory connecting the simply typed λ-calculus
and cartesian closed categories. A theory over the simply typed λ-calculus can be soundly
modelled in a cartesian closed category; furthermore, any λ-theory has a classifying category
(the smallest category in which it can be modelled), characterised by a universal property, and
this can be constructed from the syntax of the theory. Conversely, given a cartesian closed
category, a λ-theory can be extracted from it in such a way that the classifying category of
this theory is equivalent to the original category. This theory goes by the name of categorical
logic, and because of the close correspondence between syntax and semantics, the λ-calculus
is said to be an internal language for cartesian closed categories. Similar correspondences
exist for a number of kinds of λ-theory, ranging from the simply typed case described above
[LamSco86, Cro94] to the case of higher-order polymorphism [Cro94], and also for other theories
such as linear λ-calculi [MacRomAbr93].

In this paper we establish a similar theory for a variety of Abramsky’s interaction categories
[Abr94a, Abr93, Abr94a] and a suitable language. We take an interaction category to be a
∗-autonomous category with a ∗-autonomous endofunctor (denoted by ◦) such that ◦ has the
unique fixed point property [Abr94a]. The language we use is essentially a fragment of the
typed process calculus studied by Gay and Nagarajan [Gay94], without prefixing constructions.
In contrast to that calculus, our language does not make any commitment to synchronous or
asynchronous interaction categories. We define the notion of process theory and give a model
of a process theory in an interaction category. We then show how to construct the classifying

5.3. LOGICS FOR CONCURRENCY AND λ-CALCULUS 59

category of a process theory, by taking objects to be types and morphisms to be equivalence
classes of typed terms under provable equality. We also work in the other direction, extracting
a process theory from an interaction category and proving the appropriate correspondence the-
orem.

Associated Report: [CroGayNag94]

5.3.2.4 Categorical logic of concurrency and interaction

This work tries to explain in logical terms the basic operations arising from concurrency. A
better understanding of the unifying setting of Interaction Categories [AbrGayNag94a], should
result.

The starting point was a logical interpretation of Winskel and Nielsen’s account [WinNie] of
the basic models of concurrency. Upon the obtained logical structures, one can build a calculus
of relations which yields Abramsky’s interaction category of synchronous processes. This has
been worked out in [Pav94].

Furthermore, a dual setting yields the category of asynchronous processes. In the course
of the above logical analysis, we were led to some technical results about (bi)simulations. We
argue for a canonical representation of bisimilarity classes (both strong and weak) by irredun-
dant trees. The bisimilarity classes of simulations between them boil down to tree morphisms.
These results will be described in forthcoming papers.

Associated Report: [Pav94]

5.3.2.5 Toward a Model of the π-calculus

Following a suggestion by Abramsky, we apply the techniques developed in [PitSta93] [O’HeTen92]
to handle local variable declaration to develop a model of the π-calculus that accounts for re-
striction. The main idea is that expressions in the π-calculus denote natural transformations
between functors from the category of natural numbers and injective maps to various toposes.
There is a monad on the associated functor category which captures the notion of acquiring a
fresh name. Most of the work is focused on the category of non-well-founded sets as a suitable
target. While there is still work to be done, it appears that there is a very tight correspon-
dence between semantic equality and operational equality with respect to the commitment
style operational semantics described in [Mil91], and the associated notion of early bisimula-
tion for a replication free fragment of the calculus. Initial work has been done to investigate
whether replication can be modelled by replacing the target category with a suitable category
of domains.

The approach differs significantly in form from Hennessy’s acceptance tree model and has
none of the problems that model has with respect to restriction [Hen]. Additionally, the ap-
proach is relatively generic in the sense that it is parametric in the target category.

Following [O’HeTen92], we use a possible-world semantics to parameterise interpretations
to take account of local aspects of meanings. The possible worlds are represented as natural
numbers. Then for each world we associate a computational domain to each phrase type.
In the π-calculus there are only two phrase types: names and processes. For purposes of
discussion both types can be given meanings as (non-well-founded) sets. These associations
can be extended to functors.

More formally, then, the meaning of the phrase type of names is the functor E , defined by

E(n) = [N→ N] (5.1)

60 CHAPTER 5. PROGRESS

on objects and

E(f)(g) = f ◦ ()(g) (5.2)

where f : m→ n is an injective map and g : N→ N.
The meaning of the phrase type process can be given either as

ST (n) = ℘(℘(n)× ST (n)) (5.3)

or as

ST (n) = ℘(ST (w) + (w × ST (w)) + [w → ST (w)]) (5.4)

The former allows objects that are not denotable by the syntax, but makes connections with
PIC [Mil93]. The latter makes a cleaner semantics.

Normally, the meaning of a term will be a natural transformation between these two functors.
But, to take account of the restriction operator and its ability to generate fresh names we follow
[PitSta93] and utilise a monad over the functor category, defined by

T(F)(n) = qw∈NF(n+ w). (5.5)

Utilising the first definition of the ST functor, we can produce meanings of the form

dx.Ae(w)(e) = {({e(x)}, dAe(w)(e))} (5.6)

d(νx)Ae(w)(e) = dAe(w + 1)((e | x 7→ w)) (5.7)

d(λx)F e(w)(e) = {({n}, dF e(w + n)((e | x 7→ n))) | n ∈ N} (5.8)

d[x]Ce(w)(w) = {({e(x)}, dCe(w)(e))} (5.9)

dM +Ne(w)(e) = dMe(w)(e) ∪ dNewe (5.10)

dP | Qe(w)(e) = dP e(w)(e)‖dQe(w)(e) (5.11)

where

p‖q = {({}, p′‖q′) | ∃m,n.({m}, ({n}, p′)) ∈ p, ({−m}, ({n}, q′)) ∈ q}
∪{(r, (s, p′‖q)) | ∃r, s.(r, (s, p′)) ∈ p}
∪{(r, (s, p‖q′)) | ∃r, s.(r, (s, q′)) ∈ q}

A paper detailing the results is under construction.

Associated Report: [Mer94b]

5.3.2.6 The Positive Intuitionistic Fragment of LU

Girard’s Unified Logic LU provides a single sequent calculus common to classical, intuition-
istic and linear logic, in which these logics appear as fragments, i.e., as particular classes of
formulae and sequents. We present a fragment of LU based on the idea of staying within the
class of formulae of positive polarity. The positive intuitionistic fragment introduces two new
chimeric connectives: positive implication P → Q encoded as !(P −◦Q) and positive universal
quantification ∇xP encoded as !(

∧
xP), when P,Q are positive formulae.

5.3. LOGICS FOR CONCURRENCY AND λ-CALCULUS 61

Our main results are showing that the cut elimination result for LU may be extended to
cover the new chimerae, and that if a positive intuitionistic sequent is provable in LU, it is
provable within the fragment.

We also provide an informal discussion on the computational content of a subfragment of
the positive intuitionistic fragment of LU, by providing a “formulae-as-types” view that allows
us to see the correspondence between the subfragment and a simply-typed λ-calculus.

Associated Report: [Pra94a]

5.3.2.7 Cut Elimination for LU with Mingle

We extend Girard’s Unified Logic with a rule called (Mingle), which is the counterpart of the
(Mix) rule of linear logic. (Mingle) allows us to combine two independent deductions into a
single deduction. We show that LU+(Mingle) also enjoys cut elimination under minimal hy-
potheses. The main connection is to Vauzeilles’s cut elimination result, which we extend. This
is a technical note, to check that one can use a “mix”-like rule to represent concurrency (as
juxtaposition) in LU.

Associated Report: [Pra94b]

5.3.2.8 Towards a Formulae-as-Types View of Communicating Applicative Pro-
grams

We study a simple typed calculus of concurrent applicative processes from a “formulae as types”
perspective. The calculus extends a simply-typed λ-calculus with constructs for concurrency
and inter-process communication, and lies at the core of a class of typed, concurrent applicative
languages, e.g., Concurrent ML and Facile.

We present a formal system within the framework of Girard’s unified logic LU, a sequent
calculus common to classical, intuitionistic and linear logic. Our formal system is a small frag-
ment of LU extended with a new chimera for positive intuitionistic implication, an additional
assumption ⊥ = 1 and with the rule (Mingle), which corresponds to the (Mix) rule of linear
logic. We show that the formal system may be considered a closed quasi-intuitionistic fragment
of LU+(Mingle). This result relies on the fact that LU+(Mingle) enjoys cut elimination under
minimal hypotheses, which we show by adapting Vauzeilles’s proof for cut elimination in LU.

A term assignment shows how programs in the calculus may be thought of as deductions
of sequents in the formal system. The novelty of the treatment is in relating the sending and
receiving of typed values to the two symmetric “classical” cut rules of LU. Not all deductions
in the formal system correspond to programs, but we show that by commuting inference rules,
every deduction can be converted to one that has a term assignment. Of particular interest
are the transformations on terms induced by commuting inference rules. These seem closely
related to certain transformations of terms, such as “structural equivalences” and “reversible
ionisations”, employed in the chemical abstract machines.

We then show that the operational semantics of the calculus, presented both as a Plotkin-
style (unlabelled) reduction as well as a Milner-Plotkin style labelled transition system, preserve
types assigned by the static semantics (subject reduction). In fact, we show that the operational
semantics may be considered as a particular cut-elimination strategy, with communication cor-
responding to the elimination of the special kinds of cuts.

Associated Report: [Pra94b]

62 CHAPTER 5. PROGRESS

5.3.2.9 Proof nets for intuitionistic linear logic

Most of the year was spent in trying to solve the proof net problem for intuitionistic linear
logic. After many computations we had come to the conclusion that the logic that was natu-
rally expressed by games semantics was intuitionistic linear logic, with the connectives ⊗,−◦,&
and ! . It seemed to us that this was the fragment of LL that games semantics could teach us
something about, and that the interpretation of any proper extension of that fragment in games
semantics was an ad hoc contrivance, not true to the spirit of the semantics. We were aware
that the Danos-Régnier system of polarities allows for a presentation of intuitionistic linear
logic that uses one-sided sequents, just like classical LL, and that its interpretation of polarities
in the realm of games is “who plays first: Player or Opponent”. So, using games as a guide, we
tried to construct a theory of proof objects for the logic described above. We first got a result
for the multiplicative-additive fragment (presented at the CONFER Workshop in Edinburgh
in May 93), but the real breakthrough came in January 94, when we succeeded in adding the
exponentials. The paper is [Lam94a]. Therein it is shown how to translate every proof of a se-
quent in the fragment above into a proof net , a special kind of oriented graph which generalises
those presented in [Gir87]. The point is that this translation is reversible: there is a correctness
criterion on proof nets which singles out those that have been constructed from proofs. The
proof of this correctness theorem differs radically from all those that have been presented before
in Linear Logic. The reason is that the logic is intuitionistic, and this fact is used in an essential
way. In particular the Danos-Régnier polarities are an important invariant, and there is a new
notion of path, specially tailored for an intuitionistic context, which replaces the trips of [Gir87].

Associated Report: [Lam94a]

5.3.2.10 A denotational semantics based on Chu spaces

After this syntactical result was written up, we decided to see if it could be applied to semantics;
we now had a powerful tool that made computations much easier than before. In the original
denotational semantics of LL, that is, coherent domains, there is a natural notion of web; given
a coherent domain X its web |X| is a set such that every element of X is a subset of X. An
important property of webs is how they interact with the connectives; in particular we have
that

|X ⊗ Y | = |X| × |Y | = |X ℘ Y | ,
|X & Y | = |X|+ |Y | = |X + Y | ,

which is indeed how the additives and the multiplicatives got their names. Recently new mod-
els of linear logic have appeared that are also equipped with webs, these webs acting exactly
as above with respect to the additives and multiplicatives; for example Plotkin and Winskel’s
bidomains [PloWin93] and Ehrhard’s hypercoherences [Erh93]. It became natural to ask if the
notion of web were not directly definable from the syntax, and that maybe direct observation
of syntax would yield better models. Here it was obvious that syntax was full linear logic where
the multiplicative units are identified (thus we have the Mix rule), and also the additive units
are identical. After many computations using suitably modified proof nets, we came up with
an abstract definition of the web of a formula X, based on the interaction of the proofs of X
with those of X⊥ (because the terminal object is also the initial one, in this logic a formula has
both proofs and counterproofs). This web is in general a poset. This allowed us to construct
a new model of linear logic, based on Chu spaces [Bar79, Pra93], which has many interesting
properties. One of these interesting properties is that the Kleisli category for ! (in other words,
the intuitionistic category) is a well known one in denotational semantics: it is the category
of bifinite domains and continuous functions. This came as a surprise, since experience had

5.3. LOGICS FOR CONCURRENCY AND λ-CALCULUS 63

taught us that there seemed to be no model of full linear logic compatible with Scott continuity,
outside of the limited world of complete lattices.

Associated Report: [Lam94b]

5.3.2.11 Interaction Orders as Games

We enriched the ∗-autonomous category SUP of complete lattices and maps preserving all
suprema with the concept of approximation by specifying the greatest ∗-autonomous subcate-
gory LFS of linked bicontinuous lattices. In the algebraic case, we arrived at aLFS. Its objects
are those complete lattices A such that id

A
= t̂D for some directed set D of idempotent defla-

tions (idempotent functions d with finite image and d ≤ id
A

) in A−◦A; the space A−◦A is the
complete lattice of all functions f :A→ A preserving all suprema, ordered pointwise. We came
up with an order-theoretic description of these lattices via forbidden substructures à la Plotkin.
Further, we showed that the distributive lattices in LFS are exactly the completely distributive
lattices, which gives rise to two ∗-autonomous categories CD and aCD. In this paper we attempt
to reformulate aLFS (and aCD) as a category of information systems or games. Recall that
the information systems for Scott-domains are asymmetrical notions. A process (= function)
is gaining information using an inference mechanism and the environment has no active rôle in
all of this. The symmetry inherent in the definition of objects in aLFS strongly suggests that
process and environment should be explicitly mentioned and interchangeable in such a formal
setup. Therefore, it is suitable to consider every complete lattice as a two person game where
the poset of sup-, respectively inf-irreducible, elements is the set of moves. Algebraic linear FS-
lattices are those bialgebraic lattices where each component of the corresponding game forest is
finite. We represent all the type constructors of the ∗-autonomous category of algebraic linear
FS-lattices as compound games. The biproduct game models internal non-determinism. The
tensor product reflects the switching conditions in the work of Abramsky et al. but for certain
non-distributive lattices A or B when opponent, unlike player, has even more moves to choose
from.

Associated Report: [Hut94b]

5.3.3 Interrelations between sites and to other areas

We have already mentioned the work of Sanjiva Prasad, ECRC as basically in the same realm
as our research on types and logics for concurrency. Our investigations on typed concurrent
programming uses some of the techniques used in other areas such as Calculi and Foundational
Models; it is expected that our work can be successfully adapted to those settings as well. The
work on a model of the π-calculus is directly relevant to the Calculi area. Research on Linear
Logic and more pertinently, the Geometry of Implementation, is clearly connected with work
on Foundational Models and Abstract Machines, especially the work of the INRIA Rocquen-
court group. This work can be used as a basis for implementation issues in the Programming
Languages area.

5.3.4 Future Work

In the logics and types for concurrency area, future plans include:

• A fully-developed typed calculus for asynchronous processes similar to the one worked
out for synchronous processes.

64 CHAPTER 5. PROGRESS

• A typed calculus for deadlock-free processes.

• Addressing other verification issues, such as fairness and liveness.

• Categorical Logic of true concurrency: noninterleaving leads to some interesting exten-
sions of regular logic, bordering with the realm of Hopf algebras.

In the logics for functional computation topic, we plan to:

• Complete the work on “executable nets”, which are a version of proof nets that allows
for parallel execution; they give a procedure for parallel execution of the lambda-calculus
which is different from the ones that have been proposed so far.

• Find the best method of doing polymorphism with dialectics; find more about the rela-
tionship between Chu spaces and denotational semantics.

• Answer the question as to whether Linear Scott-domains are the greatest symmetric
monoidal closed category of Scott-domains where the linear function space is that of
maps preserving all existing suprema.

5.3.5 List of Reports

Imperial College, London

[AbrGayNag94a] S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction Categories and Foun-
dations of Typed Concurrent Programming. Deductive Program Design: Pro-
ceedings of the Marktoberdorf International Summer School, 1994. NATO ASI
Series F: Computer and Systems Sciences, Springer Verlag. To appear.

[AbrGayNag94b] S. Abramsky, S. J. Gay, and R. Nagarajan. A Specification Structure for
Deadlock-Free Processes. Abstract of talk given at the Tenth Workshop on
Mathematical Foundations of Programming Semantics, Manhattan, USA.

[AbrGayNag94c] S. Abramsky, S. J. Gay, and R. Nagarajan. Compositional Verification of
Deadlock-Freedom. Abstract of talk given at the CONFER Workshop, ECRC,
Munich, Germany, April 1994.

[CroGayNag94] R. L. Crole, S. J. Gay, and R. Nagarajan. An Internal Language for Inter-
action Categories. In C. L. Hankin, I. C. Mackie, and R. Nagarajan, editors,
Theory and Formal Methods 1994: Proceedings of the Second Imperial College
Department of Computing Workshop on Theory and Formal Methods, 1994.
To appear.

[Gay94] S. J. Gay. Linear Types for Communicating Processes. PhD thesis, University
of London, 1994. To appear.

[GayNag94a] S. J. Gay, and R. Nagarajan. A Typed Calculus of Synchronous Processes.
Abstract of talk given at the CONFER Workshop, ECRC, Munich, Germany,
April 1994.

[GayNag94b] S. J. Gay, and R. Nagarajan. A Typed Process Calculus. Abstract of talk
given at the Mini Workshop on Semantics and Topology, Tulane University,
New Orleans, USA, March 1994.

5.3. LOGICS FOR CONCURRENCY AND λ-CALCULUS 65

[Hut94a] M. Huth. Interaction Orders as Games. Abstract of talk given at the CONFER
Workshop, ECRC, Munich, Germany, April 1994.

[Hut94b] M. Huth. Interaction Orders as Games. In C. L. Hankin, I. C. Mackie, and
R. Nagarajan, editors, Theory and Formal Methods 1994: Proceedings of the
Second Imperial College Department of Computing Workshop on Theory and
Formal Methods, 1994. To appear.

[Lam94a] F. Lamarche. Proof Nets for Intuitionistic Linear Logic I: Essential nets.
Abstract of talk given at the CONFER Workshop, ECRC, Munich, Germany,
April 1994. Report available by anonymous ftp from theory.doc.ic.ac.uk.

[Lam94b] F. Lamarche. Dialectics: a model of linear logic and PCF. Report available
by anonymous ftp from theory.doc.ic.ac.uk.

[Lam94c] F. Lamarche Hypercoherences are Chu Spaces. In C. L. Hankin, I. C. Mackie,
and R. Nagarajan, editors, Theory and Formal Methods 1994: Proceedings of
the Second Imperial College Department of Computing Workshop on Theory
and Formal Methods, 1994. To appear.

[Mer94a] G. Meredith. Actors and Interaction Categories: Preliminary Investigations.
Abstract of talk given at the CONFER Workshop, ECRC, Munich, Germany,
April 1994.

[Mer94b] G. Meredith. Notes Toward a Model of the π-calculus. Paper in Preparation.

[Pav94] D. Pavlović Categorical logic of concurrency and interaction, I: Synchronous
processes. In C. L. Hankin, I. C. Mackie, and R. Nagarajan, editors, Theory
and Formal Methods 1994: Proceedings of the Second Imperial College De-
partment of Computing Workshop on Theory and Formal Methods, 1994. To
appear.

ECRC, Munich

[Pra94a] S. Prasad. The Positive Intuitionistic Fragment of LU. Technical report ECRC-94-11,
1994.

[Pra94b] S. Prasad. Cut Elimination for LU with Mingle. Technical report ECRC-94-10, 1994.

[Pra94b] S. Prasad. Towards a Formulae-as-Types View of Communicating Applicative Pro-
grams (Extended Summary). ECRC Technical report ECRC-94-32, 1994.

Other References

[Abr93] S. Abramsky. Interaction Categories (Extended Abstract). In G. L. Burn, Simon J.
Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993: Proceedings of
the First Imperial College Department of Computing Workshop on Theory and
Formal Methods, pages 57–70. Springer-Verlag Workshops in Computer Science,
1993.

[Abr94a] S. Abramsky. Interaction Categories and communicating sequential processes. In
A. W. Roscoe, editor, A Classical Mind: Essays in Honour of C. A. R. Hoare.
Prentice Hall International, 1994.

66 CHAPTER 5. PROGRESS

[Abr94a] S. Abramsky. Interaction Categories I: Synchronous processes. Paper in prepara-
tion, 1994.

[Abr94b] S. Abramsky. Proofs as processes. Theoretical Computer Science, 1994. To appear.

[Bar79] M. Barr. ∗-autonomous categories. Lecture Notes in Mathematics 752, Springer
Verlag, 1979.

[Cro94] R. L. Crole. Categories for Types. Cambridge University Press, 1994.

[Erh93] T. Ehrhard. Hypercoherences, a strongly stable model of linear logic. Math. Struc.
in Comp. Sci., 3(1993)365-385.

[Gir87] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987.

[O’HeTen92] P. O’Hearn and B. Tennent. Semantics of Local Variables. In M.P. Fourman,
P.T. Johnstone, and A.M. Pitts, editors, Applications of Categories in Computer
Science: Proceedings of the LMS Symposium, Durham 1991, pages 217–238. Cam-
bridge University Press London Mathematical Society Lecture Note Series 177,
Cambridge, 1992.

[Hen] M. Hennessy. A Model of the π-calculus. Announced on Concurrency mailing list
and available via anonymous ftp at University of Sussex site.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[LamSco86] Joachim Lambek and Philip J. Scott. Introduction to Higher Order Categorical
Logic. Cambridge Studies in Advanced Mathematics Vol. 7. Cambridge University
Press, 1986.

[MacRomAbr93] Ian Mackie, Leopoldo Román, and Samson Abramsky. An internal language
for autonomous categories. Journal of Applied Categorical Structures, 1(3):311–
343, 1993.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil93] R. Milner. Action Structures. Laboratory for Foundations of Computer Sci-
ence, Department of Computer Science, University of Edinburgh. Technical re-
port, number 92-249, 1993.

[Mil91] The Polyadic π-calculus: a Tutorial. Laboratory for Foundations of Computer
Science, Department of Computer Science, University of Edinburgh. Technical
report, number 91-180, 1991.

[PitSta93] A. M. Pitts and I. D. B. Stark. On the Observable Properties of Higher Order
Functions That Dynamically Create Local Names (Preliminary Report). In Work-
shop on State in Programming Languages, Copenhagen, 1993, pages 31–45. ACM
SIGPLAN Proceedings, 1993.

[PloWin93] G. Plotkin and G. Winskel. Bistructures, bidomains and linear logic. Extended
abstract , 1993.

[Pra93] V. Pratt. The second calculus of binary relations. Proceedings of MFCS 1993,
Gdansk.

5.3. LOGICS FOR CONCURRENCY AND λ-CALCULUS 67

[WinNie] G. Winskel and M. Nielsen. Models for Concurrency. In S. Abramsky and D. Gab-
bay and T. S. E. Maibaum, editors. Handbook of Logic in Computer Science.
Oxford University Press. To appear.

68 CHAPTER 5. PROGRESS

5.4 Programming Languages

This section provides a brief summary of the work pursued in the context of the CONFER BRA
in the area of programming language design, implementation and experience with applications.

In the second year of the action concrete results have started to emerge. There is now an
advanced implementation of Pict and some demonstration programs have been developed.

The semantic foundation of important techniques on compile time optimisations via unfold-
ing of programs has been studied. This work continues previous activities regarding termina-
tion properties of unfolding established last year. The latest results are expected to be mature
enough to be applied in prototype compilers.

A programme of research – the Geometry of Implementations – aimed at developing efficient
implementations of functional programs based on Girard’s Linear Logic and the Geometry of
Interaction semantics has been initiated. This work is derived from previous CONFER results
of Gonthier et. al. on optimal reduction implementations and the work of Danos and Regnier
on local and asynchronous β-reduction.

The Calumet demonstrator written in Facile presented at the first CONFER review has
been developed into a robust application running on wide area networks. Calumet is now used
frequently for presentations at ECRC.

The first release of Facile – the Facile Antigua Release – has been announced on the news net
and made available for research and educational purposes. Technology transfer to the ECRC
shareholders has also taken place 1.

The report includes short summaries of the following efforts:

• Facile programming language
ECRC — A. Giacalone, F. Knabe, A. Kramer, T.M. Kuo, L. Leth, S. Prasad, B. Thomsen.
Also with contributions of P. Cregut, P.-Y. Chevalier, J.P. Talpin and C. Crampton.

• Calumet
ECRC — A. Kramer, J.P. Talpin. Also with contributions of K. Ahlers, P. Marchal.

• Pict programming Language
University of Edinburgh — B. Pierce, D. Turner.

• Correct unfolding of nondeterministic expressions
SICS — B. Lisper.

• The Geometry of Implementation
Imperial College – Ian Mackie.

5.4.1 The Facile programming language

5.4.1.1 Summary

Facile is a higher-order, functional/concurrent programming language that supports the imple-
mentation of distributed applications.

Facile is conceived to support the development of systems exhibiting a high degree of mo-
bility, that is systems that may evolve dynamically in terms of structure, communication and
computation capabilities. Both processes and communication channels may be dynamically cre-
ated and are treated as first-class values in the same way as functions. In particular, they can be

1It should be noted that the Facile project was already in progress before the beginning of CONFER and
also that the dimensions and scope of the project are wider than what can be considered as strictly relevant to
the CONFER BRA.

5.4. PROGRAMMING LANGUAGES 69

communicated over channels, also between processes executing at different physical locations.
The notion of process in Facile is quite powerful, since each process has its own environment
and runs a full ML program. However, its implementation is very light-weight, so that large
numbers of processes can potentially be executed concurrently. Facile is well-suited for running
on loosely connected, physically distributed systems with distributed memory. It is possible to
execute Facile programs on both local area networks (LANs) and wide area networks (WANs).

In the 2nd Year of CONFER the group at ECRC has completed a first release of the Facile
programming language – the Facile Antigua Release. The Facile Antigua Release is an indus-
trial strength implementation of a distributed higher order concurrent functional programming
language based on the theoretical models (such as the λ-calculus, CCS, the π-calculus and
CHOCS) related to the CONFER action. The Facile Antigua Release is implemented by modi-
fying and extending the Standard ML of New Jersey implementation. Facile enriches Standard
ML with primitives for distribution, concurrency and communication over typed channels. The
additional data types provided in the language include node identifiers, process scripts and
communication channels. All of these are first-class values that can be manipulated in an ap-
plicative style and, in particular, be communicated. New nodes and channels can be created
dynamically and processes executing a given script can be spawned dynamically on a given
node. The software is documented through a user guide [TLPKKKG93], as well as numer-
ous papers on its semantics and abstract implementations. The current implementation allows
the development of applications that operate on a network of SPARC and Sun-4 workstations
running UNIX (SunOS or Solaris). Facile Antigua supports distributed programming on both
LANs and WANs.

Since January 1994 the Facile Antigua Release has been in alpha test at sites in Europe and
the US. Feedback from the alpha test sites has led to minor debugging and has resulted in a
rather stable implementation.

Technology transfer to the ECRC share holder companies ICL, Bull and Siemens took place
in July 1994. The software is currently under evaluation in several departments.

In July 1994 the availability of Facile Antigua Release has been publicly announced to the
research community via the news network and announcements to all ESPRIT partners via
email.

5.4.1.2 Work in progress

Future plans for the development of the Facile programming language include porting the
software to other hardware platforms (such as Intel x86 processors). Related to this is work
in progress on interoperability between Facile systems on different platforms. We currently
use a system called the contract mechanism for connecting systems written in Facile with
systems written in different languages. We expect to address questions such as interoperability
with systems implemented in different programming languages (such as C, C++, prolog) via
industrial standards (possibly the emerging CORBA standard). This may replace the contract
mechanism.

References

[TLPKKKG93] Thomsen, B., Leth, L., Prasad, S., Kuo, T.-S., Kramer, A., Knabe, F., Gi-
acalone, A.: “Facile Antigua Release – Programming Guide”, Technical report
ECRC-93-20, 1993.

70 CHAPTER 5. PROGRESS

5.4.1.3 Future work

We plan to address issues related to mobile computing, in particular running Facile on portable
devices and interacting with Facile systems running on stationary networks.

Related to the question of running Facile on portable devices a new direction for applications
has just been initiated. The model of higher order mobile processes supported by Facile seems
a good candidate for structuring software which has to operate in a mobile environment. We
are currently conducting experiments to verify this hypothesis.

5.4.2 Calumet

5.4.2.1 Summary

Calumet is a desktop conferencing tool that supports meetings based on a slide presentation
metaphor among users in different physical locations. The distributed part of the system, which
handles all communications, has been built entirely with Facile and consists of less than two
thousand lines of source code [TLPKKKG93, Tal94b].

The Calumet cooperative application for teleconferencing, demonstrated at the 1st Year
review at CWI, has been restructured and rendered more fault tolerant. A new user interface
programmed in C++ has been developed. The new user interface can display LaTeX style
slides with graphics in TIFF format. The Calumet system is now used frequently at ECRC for
internal presentations and it has been demonstrated on wide area networks at AT&T (Murray
Hills, New-Jersey) and between ECRC, CWI (Amsterdam) and CMU (Pittsburgh). A user
manual for the Calumet system can be found in [TalMarAhl94].

5.4.2.2 Work in progress

It is expected that the Calumet system will be released to the scientific community and that
technology transfer to the ECRC share holder companies will take place in the near future.

References

[Tal94a] Jean-Pierre Talpin. “The Calumet Experiment - Part I: An Implementation of
Group-Communication Protocols in Facile”, Technical report ECRC-94-4, 1994.

[Tal94b] Jean-Pierre Talpin: “The Calumet Experiment in Facile - A Model for Group
Communication and Interaction Control in Cooperative Applications”, Techni-
cal report ECRC-94-26, 1994.

[TalMarAhl94] Talpin, J.-P., Marchal, P., and Ahlers, K.: “Calumet - A Reference Manual”,
Technical report ECRC-94-30, 1994.

5.4.3 Pict Programming Language

5.4.3.1 Summary

Pict is an experimental concurrent programming language based on Milner’s pi-calculus. The
project began in 1992 with the following goals:

• To test the suitability of the pi-calculus as a foundation for practical programming.

• To investigate natural idioms arising in this context for programming with concurrent
objects.

5.4. PROGRAMMING LANGUAGES 71

By the end of August 1993, we had achieved a stable design for the core language, a prototype
implementation, and some small demonstration programs. Our work this year has proceeded
on all of these fronts.

• The largest change to the language has been the addition of a sophisticated static type
system based on a higher-order polymorphic lambda-calculus with subtyping [PieTur92]
with channel types based on earlier theoretical work by Pierce and Sangiorgi [PieSan92].

• This type system has been extended with a flexible notion of extensible record types,
which are heavily used for constructing and manipulating objects; their theoretical study
is underway.

• The current Pict implementation also provides a powerful partial type inference algorithm
that allows most type information to be omitted from Pict programs; formal underpin-
nings for this algorithm are being investigated by Dilip Sequeira as part of his thesis work
(co-supervised by Pierce).

• The old byte-code interpreter has been replaced by a back-end that compiles Pict programs
directly to C. We can now run sizeable interactive graphics applications written entirely
in Pict with acceptable performance.

• Our largest programming project in Pict has been a graphical widget toolkit. Our runtime
system provides access to the low-level Xlib facilities; on top of this, we have designed
a concurrent, object-based library providing a variety of useful widgets (text, buttons,
horizontal and vertical stacks of widgets, etc.) maintaining a fairly sophisticated internal
protocol for redrawing, resizing, and event handling.

• Several demonstration programs have been written on top of this toolkit, including a
“minesweeper” game, a graphical anthill simulation, and a color bitmap editor.

We have been concentrating on design and implementation this year rather than writing,
but a few papers have already appeared. Pierce and Sangiorgi finished and submitted a journal
version of [PieSan92]; Steffen and Pierce made a careful theoretical study of type checking
algorithms for higher-order subtyping [StePie94].

Pierce presented Pict in a week-long tutorial in Erlangen, Germany in September 1993, and
in a postgraduate course at the LFCS, Edinburgh, in Winter, 1994. A number of research
seminars on Pict and related topics were given at various sites.

5.4.3.2 Future work

Our principal goals for the coming year are:

• Polishing the implementation and bringing the documentation and programming tutorial
up to date for a first public release of the system.

• Writing one or more retrospective papers concerning the language design, implementation,
and theoretical underpinnings.

• Continuing the investigation of programming styles based on concurrent objects via one
or more new major applications, perhaps involving remote communication over a network.

72 CHAPTER 5. PROGRESS

References

[PieSan92] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
In 1993 IEEE Symposium on Logic in Computer Science, June 1993.

[PieTur92] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for
object-oriented programming. Journal of Functional Programming, 4(2):207–247,
April 1994. A preliminary version appeared in Principles of Programming Lan-
guages, 1993, and as University of Edinburgh technical report ECS-LFCS-92-225,
under the title “Object-Oriented Programming Without Recursive Types”.

[StePie94] Martin Steffen and Benjamin Pierce. Higher-order subtyping. In IFIP Working
Conference on Programming Concepts, Methods and Calculi (PROCOMET), June
1994. An earlier version appeared as University of Edinburgh technical report ECS-
LFCS-94-280 and Universität Erlangen-Nürnberg Interner Bericht IMMD7-01/94,
January 1994.

5.4.4 Correct unfolding of nondeterministic expressions

5.4.4.1 Summary

This work is related to the work on various reduction systems in the area “Foundational mod-
els and abstract machines”, but its direction towards practical issues like optimising program
transformations motivates its placement in “Programming languages”. It continues the previous
activities regarding termination properties of unfolding.

Symbolic unfolding and compile-time execution of programs are important techniques for
improving the performance of programs. They are best understood for pure functional languages
but are also being employed for sequential programs with destructive assignments. When it
comes to concurrent languages, however, the techniques are hardly being used, even though
their benefits certainly would be desirable also in this context. A major reason is that the
nondeterminism of concurrent language constructs can cause the unfolded program to have a
different semantics than the original one. Basically, executing a nondeterministic construct
at compile-time means that a possible outcome is discarded and will never occur at runtime.
This change in semantics can be acceptable, if the nondeterminism simply specifies a number
of acceptable outcomes. But very often nondeterminism is used to model an unpredictable
environment in which the program executes (like, say, a communication channel where sev-
eral processes can write). Then, such a change in semantics violates the description of the
environment.

For pure functional languages, correctness of symbolic execution follows more or less directly
from confluence. Thus, one may think that it is semantically correct to restrict symbolic
execution of nondeterministic programs to a purely functional subset. But this is sometimes
not enough. Consider, for instance, a simple language with nondeterministic choice “+” and
“parallel if”, defined by the following TRS: x+ y → x, x+ y → y, if(x, y, y)→ y. Here, the last
rule taken by itself defines a confluent sub-TRS (i.e. “purely functional subset”): yet, symbolic
execution of the term if(x, y+z, y+z) w.r.t. this rule yields y+z and in the process the normal
forms if(x, y, z) and if(x, z, y) are lost. A conclusion is that more refined criteria are needed
to ensure correctness of symbolic execution w.r.t. some sublanguage. Some steps towards such
criteria are reviewed here.

5.4. PROGRAMMING LANGUAGES 73

5.4.4.2 Work in progress

Computations can be modeled by reduction sequences in abstract reduction systems. If the
mapping s from an ARS 〈A,→〉 to a cpo 〈C,v〉 is monotone w.r.t. “→” and v”, then any
reduction sequence a0 → · · · → ai → · · · yields a l.u.b.

⊔∞
i=0 s(ai) in C. As “normal form

semantics” for a ∈ A we can then take the minimal set S(a) ⊆ C such that (1) any s in S(a)
is a l.u.b. resulting from some reduction sequence starting in a, and (2) s, s′ ∈ S(a) =⇒ s 6<
s′ ∧ s′ 6< s. One can now prove the following:

Theorem 5.4.1 if a →∗ a′, and if for any reduction sequence {ai}∞i=0 starting in a there is a
reduction sequence {a′i}∞i=0 starting in a′ such that

⊔∞
i=0 s(ai) v

⊔∞
i=0 s(a

′
i), then S(a′) = S(a).

If a →∗ a′ is seen as a symbolic computation of a into a′, then this result gives an abstract
criterion that ensures that the semantics is preserved.

Of particular interest are computations over terms since these can be seen directly as sym-
bolic executions of programs. As semantic domain can be taken the cpo of (finite and infinite)
“partial” terms t, where possibly t/p = ⊥ for some positions p, with the obvious partial order-
ing. For terms a ∈ A, we define s(a)/p = a/p iff a′/p = a/p for all a′ such that a →∗ a′, and
s(a)/p = ⊥ otherwise. In some special cases, Th. 5.4.1 above can now be directly applied:

• If→ is strongly normalising, then any element in S(a) will be a finite, total term. If→ can
be factored as →D ∪→N where →D is confluent and →D, →N commute, then Th. 5.4.1
is applicable whenever a →∗D a′. A case where →D and →N commute is when they are
given by TRS:es D and N , respectively, which are orthogonal to each other (left-linear
and mutually non-overlapping). (In the counterexample above, the rule if(x, y, y)→ y is
not left-linear, which destroys commutation.)

• This result can be extended to the case when→ is ω-converging in the sense of Dershowitz,
Kaplan and Plaisted [DerKapPla91]. Then, all elements in S(a) are total (but possibly
infinite) terms. If→D,→N “semi-ω-commute” (cf. semi-ω-confluence in [DerKapPla91]),
then the result again holds whenever a →∗D a′. Semi-ω-commutation follows when →D

and →N are given by TRS:es which are orthogonal to each other.

5.4.4.3 Extensions and future work

It should be investigated in more detail to what extent Th. 5.4.1 can be applied to other reduc-
tion systems than such given by plain TRS:es. There are several reasons for this: for instance,
realistic evaluation strategies for nondeterministic programs are not adequately described by
such. Neither can constructs for concurrency be described in a pure TRS setting. Here, inter-
action with research in the other areas of the project could be helpful. Once it is understood
how Th. 5.4.1 applies to concurrent languages, experiments should be undertaken with some
real concurrent language.

[DerKapPla91] Nachum Dershowitz and Stéphane Kaplan and David A. Plaisted: Rewrite,
Rewrite, Rewrite, Rewrite, Rewrite,. . . , Theoret. Comput. Sci vol 83, no 1, pp. 71–96, 1991.

5.4.5 The Geometry of Implementation

5.4.5.1 Summary

The Geometry of Implementation [Mac94] is a programme of research aimed at developing
efficient, correct implementation of functional programs based on a foundation of Girard’s
Linear Logic and the Geometry of Interaction semantics.

74 CHAPTER 5. PROGRESS

There are a number of established implementation techniques for functional programming
languages. Broadly speaking these are based on graph rewriting; stack manipulation, for exam-
ple the SECD machine; and buffered data-flow. The first step in our program is the geometry of
interaction machine—a completely new implementation technique for a simple functional pro-
gramming language (PCF) based on sequential data-flow, without buffering. The significant
features of this work include:

• Sound semantic foundation arising from linear logic and the geometry of interaction.

• A direct compilation of functional programs into assembly language, thus giving a com-
putational interpretation of Girard’s geometry of interaction.

• Finally, it requires only a very small run-time system in which functional programs can
be executed.

Although incredibly simple, this compilation scheme leads to quite an inefficient implemen-
tation. Starting from this basic machine, we analyse properties of the semantics which give rise
to a sequence of optimisations which again can be very simply implemented.

The first substantial optimisation is the question and answer discipline for PCF programs.
This leads to reducing the computation by half as the expense of increased space usage.

A second optimisation has arisen using ideas from memoisation from standard functional
programming technology.

5.4.5.2 Work in progress

Further work in this programme include the investigation of a notion of optimal reduction for
this kind of implementation.

These implementation techniques are reported in [Mac94].
This work is derived from previous CONFER research of Gonthier et al on optimal reduction

implementations and Danos and Regnier’s work on local and asynchronous β-reduction.

Presentation

‘The Geometry of Interaction Machine’ was presented at the CONFER workshop held at ECRC
Munich in April 1994. The geometry of implementation will be presented at the Second Theory
and Formal Methods workshop, to be held in Cambridge, UK in September 1994, and is the
core of Ian Mackie’s PhD thesis [Mac94].

[Mac94] Ian Mackie The Geometry of Implementation (Applications of the Geometry of
Interaction to language implementation). PhD thesis, University of London, 1994.
To appear.

5.4.6 Interrelations between sites and other areas

Work on the Facile programming language continues to use results produced in the areas of
Calculi, Foundational Models and Abstract Machines as well as Logics for the λ-calculus and
Concurrency.

A collaboration between ECRC (B. Thomsen, L. Leth and S. Prasad) and ENS (R. Amadio,
who visited ECRC for six months) has resulted in joint work on the mathematical foundations
of the Facile programming language. This work is also relevant to the area of Foundational
Models and Abstract Machines, as is the work on Chemical Abstract Machines for Facile.

5.4. PROGRAMMING LANGUAGES 75

Constructs found in the Facile programming language have stimulated interesting research
from a more theoretical point of view. Here it is worth mentioning the joint work of S. Prasad
and R. Amadio on localities and failures which shows a connection with previous work done
at Sophia and Pisa. It is expected that the work on semantic foundations of distributed pro-
gramming in the Facile language will be further developed. A collaboration between ECRC
and Pisa has been initiated on this subject, and the cooperation between ECRC and ENS will
be maintained.

A major aspect of this year’s work on Pict has been the design, implementation, and theo-
retical study of the type system, extending earlier work by Pierce and Sangiorgi on type systems
for the pi-calculus. The Pict group at Edinburgh (Pierce/Turner) have continued discussions
with Didier Remy at INRIA-Roquencourt on the Pict language design, particularly the design
of the typing system for extensible records.

We have begun discussions with the group at SICS (Parrow/Lisper) on an interface between
Pict and the Mobility Workbench.

Sangiorgi, Amadio, and the group in Amsterdam (Klop, van Raamsdonk and van Oostrum)
have been valuable sources of expertise in an ongoing investigation of the semantic foundations
of Pict by Uwe Nestmann (a student at the Univ. of Erlangen) in collaboration with Pierce.

An implementation, called GOI-Tools, has been developed at Imperial College. This is a
collection of tools to investigate the possibility of using the geometry of interaction to implement
programming languages and obtain global intuitions about this semantic paradigm. This work
is strongly related to the theoretical work on Logics for Concurrency and the λ–calculus. Part
of the work for the Geometry of Implementation was done jointly with Vincent Danos (Paris
VII) whilst Ian Mackie was visiting INRIA October-November 1993. The work relates to the
works of Danos and Regnier, and Gonthier et al. which were reported under Foundational
Models in last years PPR.

76 CHAPTER 5. PROGRESS

Chapter 6

Appendices

Below is a list of reports and publications mentioned in this document.

77

78 CHAPTER 6. APPENDICES

CONFER-52 J.A. Bergstra The Toolbus: a Component Interconnection Architecture
P. Klint Technical Report P9408, March 1994, Programming Research Group

University of Amsterdam

CONFER-53 V. van Oostrom Confluence for Abstract and Higher-order Rewriting
Ph.D. thesis, March 1994,
Free University of Amsterdam

CONFER-54 J.W. Klop, Combinatory Reduction Systems: introduction and survey
V. van Oostrom TCS, Vol.121, Nrs.1-2, Dec. 1993,
F.van Raamsdonk guest eds. M. Dezani-Ciancaglini, S. Ronchi Della Rocca,

M. Venturini-Zilli, A Collection of Contributions
in Honour of Corrado Boehm on the Occasion of his 70th Birthday, p.279-
308

CONFER-55 J.A. Bergstra Process Algebra with Combinators
I. Bethke In: Proc. 7th Workshop CSL ’93 (Computer Science Logic),
A. Ponse Swansea 1993, eds.: E. Borger, Y. Gurevich, K. Meinke, Springer LNCS

832, pp.36-65.

CONFER-56 J.A. Bergstra Process algebra with iteration and nesting.
I. Bethke Technical Report P9314b, Programming Research Group,
A. Ponse University of Amsterdam, 1994.

CONFER-57 Z. Ariola Cyclic Lambda Graph Rewriting
J.W. Klop In: Proc. 9th Annual IEEE Symposium on Logic

in Computer Science (LICS ‘94), Paris, July 1993, pp. 416-425.

CONFER-58 V. van Oostrom Comparing Combinatory Reduction Systems and
F.van Raamsdonk Higher-order Rewrite Systems.

In: J. Heering, K. Meinke, B. Möller, T. Nipkow (Eds.)
Higher-Order Algebra, Logic and Term Rewriting (HOA ’93)
Lecture Notes in Computer Science, Vol. 816, pp. 276-304

CONFER-59 V. van Oostrom Weak Orthogonality Implies Confluence: The Higher-Order Case
F.van Raamsdonk In: A. Nerode, Yu.V. Matiyasevich (Eds.), Logical Foundations of

Computer Science (LFCS ’94), Lecture Notes in Computer Science,
Vol. 813. pp. 379-392

79

CONFER-60 Robin Milner An action structure for synchronous π-calculus,
Proc. FCT Conference, Szeged, Hungary, LNCS, Vol 710,
August 1993, 87–105.

CONFER-61 Robin Milner Action calculi, or concrete action structures,
Proc. MFCS Conference, Gdansk, Poland, LNCS, Vol 711,
September 1993, 105–121.

CONFER-62 Robin Milner Higher-order action calculi,
to appear in Proc. CSL conference, Swansea, October 1993.

CONFER-63 Robin Milner Pi-nets: a graphical form of pi-calculus,
Proc. ESOP’94, LNCS Vol788, Springer-Verlag,
April 1994, 26–42.

CONFER-64 Robin Milner Bisimulation is not finitely (first-order) equationally
axiomatisable, in Proc. LICS ’94.

CONFER-65 Martin Steffen Higher-Order Subtyping,
Benjamin Pierce Proc. IFIP Working Conference on Programming Concepts,

Methods and Calculi (PROCOMET), S. Miniato, Italy,
June 94, to appear.

CONFER-66 Davide Sangiorgi Bisimulation in higher-order calculi
Proc. IFIP Working Conference on Programming Concepts,
Methods and Calculi (PROCOMET), S. Miniato, Italy,
June 94, to appear.

CONFER-67 Davide Sangiorgi Locality and Non-interleaving Semantics in Calculi
for Mobile Processes,
in Proc. International Symposium on Theoretical Aspects
of Computer Science (TACS ’94), LNCS 789, Springer Verlag.

CONFER-68 David Walker Algebraic proofs of properties of objects,
Proc. 5th European Symposium on Programming,
Edinburgh, April 1994, D. Sannella (ed.),
Springer-Verlag LNCS vol. 788, 501-516.

CONFER-69 David Walker On bisimulation in the pi-calculus,
to appear in Proc. 5th International Conference on
Concurrency Theory, Uppsala, August 1994,
Springer-Verlag LNCS.

80 CHAPTER 6. APPENDICES

CONFER-70 Robin Milner Action calculi IV: molecular forms,
November 1993.

CONFER-71 Robin Milner Action calculi V: reflexive molecular forms,
June 1994. (with Appendix by Ole Jensen)

CONFER-72 Robin Milner Action calculi VI: strong normalisation at higher-order,
December 1993.

CONFER-73 Robin Milner Control Structures,
Alex Mifsud June 1994.
John Power

CONFER-74 Philippa Gardner Closed Action Calculi, July 1994.

CONFER-75 Benjamin Pierce A Typed Higher-Order Programming
Didier Rémy Language Based on the Pi-Calculus, 1994.
David N. Turner,

CONFER-76 Benjamin Pierce Programming in the Pi-Calculus: An Experiment
in Programming Language Design,
February 1994.

CONFER-77 Michele Boreale A study of causality in the π-calculus,
Davide Sangiorgi Submitted for publication.

CONFER-78 Davide Sangiorgi On the bisimulation proof method, July 1994.

CONFER-79 Benjamin Pierce Pict: A typed, higher-order concurrent
Didier Rémy programming language based on the π-calculus,
David Turner 1994.

81

CONFER-80 Thomsen, B. Facile Antigua Release – Programming Guide,
et al Technical report ECRC-93-20, 1993.

CONFER-81 Roberto Amadio An Analysis of π-calculus Bisimulations,
O. Ait-Mohamed Technical report ECRC-94-2, 1994.

CONFER-82 Roberto Amadio. Translating Core Facile,
Technical report ECRC-94-3, 1994.

CONFER-83 Jean-Pierre Talpin. The Calumet Experiment - Part I: An Implementation of Group-
Communication Protocols in Facile,
Technical report ECRC-94-4, 1994.

CONFER-84 Sanjiva Prasad. Cut Elimination for LU with Mingle,
Technical report ECRC-94-10, 1994.

CONFER-85 Sanjiva Prasad. The Positive Intuitionistic Fragment of LU,
Technical report ECRC-94-11, 1994.

CONFER-86 Roberto Amadio From Concurrent Functional Programs to Mobile Processes,
Lone Leth submitted for publication.
Bent Thomsen

CONFER-87 Leth, L. Facile Chemistry Revised,
Thomsen, B. Technical report ECRC-94-36, 1994.

CONFER-88 Roberto Amadio Localities and Failures,
Sanjiva Prasad Technical report ECRC-94-18, 1994.

FST&TCS’14 Madras, India, December 1994.

CONFER-89 Sanjiva Prasad Towards a Formulae-as-Types View of Communicating
Applicative Programs (Extended Summary),
Technical report ECRC-94-32, 1994.

CONFER-90 J.-P. Talpin The Calumet Experiment in Facile - A Model for Group
Communication and Interaction Control in Cooperative Applications,
Technical report ECRC-94-26, 1994.

CONFER-91 Talpin, J.-P. Calumet - A Reference Manual,
Marchal, P. Technical report ECRC-94-30, 1994.
Ahlers, K.

82 CHAPTER 6. APPENDICES

CONFER-92 R. Amadio An analysis of π-calculus bisimulations
O. Ait-Mohamed Technical Report 94-2, European Computer-Industry Research Center,

1994.

CONFER-93 R. Amadio Translating core Facile
Technical Report 94-3, European Computer-Industry Research Center,
1994.

CONFER-94 R. Amadio Localities and failures
S. Prasad Technical Report 94-18, European Computer-Industry Research Center,

1994.

CONFER-95 A. Asperti Paths in lambda-calculus
V. Danos Proceedings IEEE-LICS 94, Paris
C. Laneve
L. Regnier

83

CONFER-96 S. Abramsky Interaction Categories and Typed Concurrent Programming
S. J. Gay Deductive Program Design: Proceedings of the
R. Nagarajan. Marktoberdorf International Summer School, 1994.

NATO ASI Series F: Computer and Systems Sciences, Springer Verlag. To
appear.

CONFER-97 R. L. Crole An Internal Language for Interaction Categories
S. J. Gay In C. L. Hankin, I. C. Mackie, and R. Nagarajan, editors,
R. Nagarajan. Theory and Formal Methods 1994: Proceedings of the Second Imperial Col-

lege Department of Computing Workshop on Theory and Formal Methods,
1994. To appear.

CONFER-98 M. Huth. Interaction Orders as Games
In C. L. Hankin, I. C. Mackie, and R. Nagarajan, editors, Theory and For-
mal Methods 1994: Proceedings of the Second Imperial College Department
of Computing Workshop on Theory and Formal Methods, 1994. To appear.

CONFER-99 F. Lamarche Hypercoherences are Chu Spaces
In C. L. Hankin, I. C. Mackie, and R. Nagarajan, editors, Theory and For-
mal Methods 1994: Proceedings of the Second Imperial College Department
of Computing Workshop on Theory and Formal Methods, 1994. To appear.

CONFER-100 F. Lamarche. Proof Nets for Intuitionistic Linear Logic I: Essential nets, Report available
by anonymous ftp from theory.doc.ic.ac.uk.

CONFER-101 F. Lamarche. Dialectics: a model of linear logic and PCF, Report available by anonymous
ftp from theory.doc.ic.ac.uk.

CONFER-102 I. C. Mackie. The Geometry of Interaction Machine
In C. L. Hankin, I. C. Mackie, and R. Nagarajan, editors, Theory and For-
mal Methods 1994: Proceedings of the Second Imperial College Department
of Computing Workshop on Theory and Formal Methods, 1994. To appear.

CONFER-103 P. Malacaria. Studying equivalences of transition systems with algebraic tools
Theoretical Computer Science. To appear.

CONFER-104 D. Pavlović Categorical logic of concurrency and interaction, I: Synchronous processes.
In C. L. Hankin, I. C. Mackie, and R. Nagarajan, editors, Theory and For-
mal Methods 1994: Proceedings of the Second Imperial College Department
of Computing Workshop on Theory and Formal Methods, 1994. To appear.

84 CHAPTER 6. APPENDICES

CONFER-105 A. Asperti Linear logic, comonads, and Optimal Reductions
Fundamenta Informaticae, Special Issue devoted to
Categories in Computer Science (invited paper). V.22, n.1, 1994.

CONFER-106 A. Asperti Interaction systems I: The theory of optimal reductions
C. Laneve Mathematical Structures in Computer Science. To appear.

CONFER-107 A. Asperti Paths, computations and labels in the λ-calculus
C. Laneve Theoretical Computer Science, Special Issue devoted to RTA ’93 (Montreal)

CONFER-108 A. Asperti The family relation in Interaction Systems
C. Laneve Proc. of the International Symposium on Theoretical Aspects of Computer

Science (TACS’94), Sendai, Japan. April 1994.

CONFER-109 A. Asperti Paths in the λ-calculus. Three years
V. Danos of communications without understandings
C. Laneve Proc. of the International Symposium on
L. Régnier Logic in Computer Science (LICS’94), Paris, France. 1994.

CONFER-110 A. Asperti δ◦!ε = 1
Internal Report of the Dipartimento di Matematica, Univeristà di Bologna.
1994.

CONFER-111 Damien Doligez Portable, Unobtrusive Garbage Collection for
Georges Gonthier Multiprocessor Systems,

Twenty-First Annual ACM Symposium on Principles of Programming Lan-
guages, Portland.

CONFER-112 Gilles Dowek Higher-order unification via explicit substitutions
Thérèse Hardin INRIA report
Claude Kirchner

CONFER-113 P.-A. Melliès Typed λ-calculi with explicit substitutions
may not terminate. Submitted to TLCA’95.

85

CONFER-114 A. Asperti The family relation in interaction systems
C. Laneve TACS Symposium, Sendai, April 1994.

CONFER-115 A. Asperti Paths in the lambda-calculus
V. Danos 9th LICS, Paris, July 1994.
C. Laneve
L. Régnier

CONFER-116 A. Asperti Interaction Systems 1: The theory of optimal reductions
C. Laneve to appear in Mathematical Structures in Computer Science.

CONFER-117 A. Asperti Interaction Systems 2: The practice of optimal reductions
C. Laneve revised version, submitted to Theoretical Computer Science.

CONFER-118 G. Boudol, Some chemical abstract machines
in “A Decade of Concurrency, Reflections and Perspectives”,
LNCS 803, 1994.

CONFER-119 Ferrari, G. A π-calculus with Explicit Substitution: the Late Semantics
Montanari, U. In Proc, MFCS’94,
Quaglia, P. LNCS 841, 1994.

CONFER-120 Ferrari, G. A π-calculus with Explicit Substitution
Montanari, U. Full version submitted for publication, 1994.
Quaglia, P.

CONFER-121 Ferrari, G. Typed Additive Concurrency,
Montanari, U. Submitted for Pubblication, August 1994.

CONFER-122 Ferrari, G. Turning SOS Rules into Operations,
Montanari, U. August 1994.

CONFER-123 Corradini Prime event structures and categorical models of term rewriting,
Gadducci F. August 1994.
Montanari, U.

CONFER-124 Montanari, U. Concurrent Semantics for the π-calculus,
Pistore, M. July 1994.

86 CHAPTER 6. APPENDICES

CONFER-125 J. Parrow. Interaction Diagrams.
In de Bakker, de Roever and Rozenberg (Eds.): A Decade of Concurrency,
REX school/Symposium, The Netherlands June 1993, Pages 477–508.

CONFER-126 J. Parrow Algebraic Theories for Name-Passing Calculi
D. Sangiorgi In de Bakker, de Roever and Rozenberg (Eds.): A Decade of Concurrency,

REX school/Symposium, The Netherlands June 1993, Pages 509–529. Pub-
lished as Springer Verlag LNCS 803 (1994). Extended version accepted for
publication in Information and Computation.

CONFER-127 M. Dam. Model Checking Mobile Processes.
In Best (Ed.): Proceedings of CONCUR’93, pages 22–36, Published as
Springer Verlag LNCS 715 (1993). Extended version accepted for publi-
cation in Information and Computation.

CONFER-128 B. Victor The Mobility Workbench — A Tool for the π-Calculus.
F. Moller In Dill (Ed.): Proceedings of CAV’94, pages 428–440, Published as Springer

Verlag LNCS 818 (1994).

CONFER-129 B. Victor. A Verification Tool for the Polyadic π-Calculus.
Licentiat thesis, Department of Computer Systems, Uppsala University,
May 1994.

