
CONFER

CONcurrency and Functions:

Evaluation and Reduction

Basic Research Action

Project Number: 6454

?

?

?

?

?

?

?

?

?

?

?

?

Periodic Progress Report

October 1, 1993

Contents

1 Overview 3

2 Executive summary 5

3 Management 9

3.1 Consortium level : 9

3.2 CWI : 10

3.3 University of Edinburgh : 12

3.4 ECRC : 14

3.5 ENS : 18

3.6 Imperial College : 21

3.7 INRIA-Rocquencourt : 23

3.8 INRIA-Sophia : 25

3.9 Universit�a di Pisa : 26

3.10 SICS : 30

4 Deliverables 33

4.1 Workshop 1 : 33

4.2 Workshop 2 : 34

4.3 Software deliverables : 36

5 Progress 37

5.1 Foundational models and abstract machines : : : : : : : : : : : : : : : : 37

5.2 Calculi : 51

5.3 Logics for Concurrency and �-calculus : : : : : : : : : : : : : : : : : : : 66

5.4 Programming Languages : 79

6 Appendices 89

1

2 CONTENTS

Chapter 1

Overview

This report contains the First Periodic Progress Report for ESPRIT BRA Nr. 6454

(CONFER).

The report contains 4 main parts: management at consortium level and at each site,

deliverables (programs of each CONFER workshops 1 and 2, software deliverables),

a progress report describing the technical work achieved during the �rst year, and

appendices listing CONFER publications.

Further information may be requested from the coordinator:

Jean-Jacques L�evy

INRIA, Rocquencourt

bat.8, Domaine de Voluceau

78153{Le Chesnay, Cedex

France

tel: +33-1-39-63-56-89

fax: +33-1-39-63-53-30

e-mail: Jean-Jacques.L�evy@inria.fr

This document has been compiled from input from all of the partners in the CON-

FER project. Lone Leth and Bent Thomsen from ECRC greatly helped in the writing

and the assembly of the document. Alessandro Giacalone from ECRC prepared the

area report on Programming Languages and Simon Gay and Rajagopal Nagarajan

from Imperial College prepared the area report on Logics for Concurrency and the

�-calculus.

3

4 CHAPTER 1. OVERVIEW

Chapter 2

Executive summary

The overall objective of the CONFER action is to create both the theoretical founda-

tions and the technology for combining the expressive power of the functional and the

concurrent computational models. The action is organized around four main areas of

work:

� Foundational Models and Abstract Machines

� Calculi

� Logics for Concurrency and the �-calculus

� Programming Languages

The �rst year of CONFER has been very successful. The objectives set forth in the

work plan have been achieved, and signi�cant results have been obtained beyond these

objectives.

In the area of Foundational Models and Abstract Machines the state of the art in

basic calculi with bound variables, ranging from the �-calculus to higher-order com-

munication systems, has been advanced signi�cantly. Work in the area is often based

on the concept of Lafont's interaction nets. The area includes more general schemes

such as combinatory reduction systems and abstract reduction systems. The notion

of action structures developed by Milner gives an algebraic setting which covers many

of the known calculi of communication systems. It seems to allow connections with

the very atomic operations of the �-calculus. Many of the frameworks of this area of

CONFER are graph reduction systems; the most highly developed are for functional

calculi and provide insight into the optimality of computation strategies, but there are

also graphical treatments of the �-calculus.

In the calculi area, a great deal of work has focused on comparing new calculi

with existing ones. This has yielded a better understanding of the expressive power

of existing calculi. During just one year the area of calculi with name passing has

matured to a state where sound and complete axiomatisations for bisimulations exist.

Furthermore, a veri�cation tool has emerged. This is remarkable since in other areas of

concurrency theory these developments have taken considerably longer time to develop.

5

6 CHAPTER 2. EXECUTIVE SUMMARY

The notion of bisimulation has been extensively studied. Several approaches have been

compared, and some of them have been shown to lead to the same notion. Decisive steps

have been taken to advance the state of the art in calculi to account for phenomena

such as true concurrency and physical distribution, which are of paramount importance

for the programming language area.

In the area of Logics for Concurrency and the �-calculus, Interaction Categories

have been developed as a new foundation for semantics of sequential and concurrent

computation. A signi�cant number of studies showing this have been carried out.

Several sort and type systems have been developed. These are important for both

the correctness and the optimization of concurrent/functional programs. The work

on Linear Logic and Optimality transfers techniques from the �-calculus paradigm

to concurrency. The work done clearly reects the fruitful interplay between logic,

concurrency, and functional computation.

In the area of Programming Languages several prototypes have been developed:

Prototype compiler for �-calculus, based on graph reduction, Portable, unobtrusive

garbage collection for multiprocessor systems, Lilac: a prototype functional program-

ming language based on Linear Logic, Typed higher-order programming language based

on �-calculus, all deriving from the substantial work on calculi, foundational models

and logic. Important work results for compile time optimisations have been obtained

on Termination properties of unfolding extended to programs with non-determinism.

Clearly some of the above results and prototypes are necessarily of a rather preliminary

nature. More concrete results should be expected for the last phases of the BRA. One

exception is the Facile programming language, which is already being experimented

with in quite signi�cant applications. However, it should be noted that the Facile

project was already in progress before the beginning of CONFER and also that the

dimensions and scope of the project are wider than what can be considered as strictly

relevant to the CONFER BRA

Looking at the summaries of the work in chapter 5 on progress, it is evident that

related work done at other sites in the consortium is referenced often. Concrete col-

laboration between sites is taking place. This reects one of the essential ideas of the

CONFER project, namely crossfertilization of ideas among fellow researchers in the

consortium.

During Year 1 of CONFER two workshops have been held. The �rst was organised

by G�erard Boudol and took place in January 1993 at INRIA-Sophia Antipolis and

had 13 presentations and 40 participants. The second workshop was organised by

Davide Sangiorgi and took place in May 1993 at the University of Edinburgh with 15

presentations and 45 participants. The action has produced a large number of reports

and several of these have been published at conferences and international workshops.

Several Ph.D.'s are in preparation in the action.

We would like to point out that the results achieved so far is the result of the in-

volvement of a large research community at each site, involving not only the researchers

strictly supported by the CONFER funding. Furthermore, a number of researchers

outside the consortium are contributing to the e�ort and using or planning to use the

7

results coming out of the CONFER action. To this regard, it is worth mentioning

that the LOMAPS BRA project (which in part will focus on data ow analysis and

optimisations for concurrent functional languages) will use the results being produced

in the CONFER context.

8 CHAPTER 2. EXECUTIVE SUMMARY

Chapter 3

Management

3.1 Consortium level

The main management of the project is done at INRIA, Rocquencourt, and at ECRC,

Munich.

The following activities at the consortium level have taken place during the �rst

year of the CONFER project:

Two workshops have been held. The �rst took place in January 1993 at INRIA-

Sophia Antipolis and had 13 presentations and 40 participants. The second workshop

took place in May 1993 at the University of Edinburgh with 15 presentations and 45

participants.

At the second workshop a management meeting was held to plan for the �rst annual

review.

A third workshop will take place at the end of September at CWI, prior to the

annual review on October 1st, 1993. At the �rst workshop it was decided to create

a CONFER ftp site to facilitate easy dissemination of results within and outside the

consortium.

Imperial College volunteered to set up and maintain this service. It has been opera-

tional for several months (theory/CONFER at theory.doc.ic.ac.uk). It was also decided

to maintain a \friends of CONFER" mailing list, used for broadcasting relevant infor-

mation to researchers outside the consortium.

To further disseminate information the (technical) coordinators produced an overview

of the project at the beginning of the action. This report was published in the Bulletin

of EATCS, Number 45, October 1992, pp.158-185.

9

10 CHAPTER 3. MANAGEMENT

3.2 CWI

3.2.1 Research directions

The major line of research of CWI has been in the area of higher-order term rewriting,

especially with respect to its syntactic properties. A second line concerns an extension

of the process algebra ACP with combinators as in CL (Combinatory Logic) in order

to eliminate bound recursion variables in favour of a purely �rst-order equational style.

Higher-order rewriting was introduced to treat �rst-order rewriting and rewriting

with bound variables as in �-calculus, �-calculus in a uniform framework. Under the

restraint of (weak) orthogonality important properties such as conuence and unique-

ness of normal forms can be proved. As an application, �-calculus without matching

construct was shown to be a weakly orthogonal Combinatory Reduction System (CRS).

Several proposals for a uniform framework for higher-order rewriting have been

made in recent years. A study has been made to compare two of the main proposals:

Combinatory Reduction Systems (CRSs) and Higher-order Rewrite Systems (HRSs).

Although these two formats seem rather di�erent, CRSs being type-free (though able to

model typed systems) and HRSs employing simply typed �-calculus as meta-language,

they have been proved to be equally expressive and able to simulate each other in a

direct sense. An important di�erence between CRSs and HRSs is that in the �rst, there

is a distinction between variables and meta-variables. The latter may be instantiated

to terms; the former serve quite di�erent purposes, like for instance the names in �-

calculus.

A second line of research consisted in developing Process Algebra with Combinators.

This study seems very much in the centre of CONFER goals, combining concurrency

with function evaluation and reduction as in Combinatory Logic (CL). It is a quite

di�erent point of view than that of other calculi in CONFER and that of CRSs: here

bound variables are entirely eliminated (as CL does for �-calculus). The bound vari-

ables meant here are the recursion variables in a system of equations describing e.g.

a protocol. The veri�cation now becomes purely �rst-order equational, and does not

have to resort to conditional equations as usual.

3.2.2 Persons and exchanges

The group at CWI involved in the project consists of Jan Willem Klop, Femke van

Raamsdonk, Fer-Jan de Vries. Femke van Raamsdonk, Ph.D. student of Jan Willem

Klop, is working on higher-order term rewriting. Part of the work is subcontracted to

Jan Bergstra (University of Utrecht, University of Amsterdam); this work pertains to

combining process algebra with combinatory logic and a current study of local ports

in process algebra. There is a close cooperation by Jan Willem Klop and Femke van

Raamsdonk with Vincent van Oostrom, Ph.D.student at the Free University Amster-

dam, who has co-authored two CONFER deliverables and is writing a thesis under

supervision of Jan Willem Klop that is relevant to the project (provisory title: 'Con-

uence for abstract and higher-order rewriting').

3.2. CWI 11

The main connections with other sites concern �-calculus (as object of study in the

CRS framework) and the Interaction Systems of Andrea Asperti and Cosimo Laneve.

(Interaction Systems are a special case of CRSs.) Up to this date no personnel exchanges

have been made but a visit of Laneve to CWI has been arranged following the present

project meeting. Furthermore we intend to pro�t (regarding the topic of �-calculus)

from Davide Sangiorgi's stay at CWI in October 1993.

3.2.3 Perspectives, work in progress

\Conuence for weakly orthogonal CRSs", (V. van Oostrom, F. van Raamsdonk). The

authors recently found a simple proof for conuence of weakly orthogonal CRSs. This

is important because many interesting calculi are only weakly orthogonal, e.g. second

order typed lambda calculus with beta and eta rule. Also the CRS version of pi-calculus

has some (innocent) critical pairs, i.e. it is weakly orthogonal.

\Modular term graph rewriting and cyclic lambda graph rewriting", (J.W. Klop,

Z. Ariola). It remains to be seen whether this study �ts in CONFER; it originated

in ESPRIT BRA Semagraph, now terminated (but continued as Working Group). It

may �t in CONFER, in view of notions of bound variable, hiding of node names,

encapsulating boxes. Especially in cyclic �-graph rewriting there are some curious

phenomena regarding bound variables. The relevance for our project is that several

notions in this study 'resonate' with some that are present in calculi studied in the

project; and second that in due time, implementations of calculi in the project may

employ term graph rewriting.

3.2.4 Publications, technical reports

(1) Combinatory Reduction Systems: introduction and survey, J.W. Klop, V. van

Oostrom, F. van Raamsdonk. CWI Report CS-R93xx (to appear); to be published in

Theor. Comp. Sci.

(2) Comparing Combinatory Reduction Systems and Higher-order Rewrite Systems,

V. van Oostrom, F. van Raamsdonk. Report IR-333, Free University Amsterdam, Aug.

1993; to appear in Proceedings of HOA '93 (Intern. Workshop on Higher Order Algebra,

Logic and Term Rewriting, September 1993, Amsterdam).

(3) Process Algebra with Combinators, J.A. Bergstra, I. Bethke, A. Ponse, Report

University of Amsterdam (to appear Sept. 93)

12 CHAPTER 3. MANAGEMENT

3.3 University of Edinburgh

3.3.1 Research directions

The Edinburgh group has primarily conducted research in the areas of �-calculus and

action structures.

Action structures have been introduced as a mathematical structure which can un-

derlie concrete models of computations. Uniform ways of building a process calculus

from an action structure have been investigated. It has been shown that di�erent for-

malisms, like �-calculus, �-calculus, Petri Nets and certain higher-order calculi, can be

recovered in such a way. This, for instance, allows a common treatment of behavioural

equivalences.

Studies have been carried out on the development of the semantics of �-calculus,

the main focus being the notion of (interleaving) bisimulation, and on the comparison

of �-calculus with other formalisms, especially higher-order process calculi and the �-

calculus. The last item includes the study of the encoding of �-calculus evaluation

strategies and dialects into the �-calculus, and studies on the de�nability and the use

of types in process calculi.

The theoretical work developed has constituted the foundational basis for PIC,

an experimental programming language based on �-calculus, and on MWB, a tool to

reason about behavioural equivalences of �-calculus processes.

3.3.2 Person and exchanges

The Edinburgh group involved in the project comprises Robin Milner, Davide San-

giorgi, Benjamin Pierce, Yoram Hirsfeld, David Turner and Peter Sewell. David Walker

(Warwick) is an associated member. Davide Sangiorgi is full-time employed within the

project.

David Turner and Peter Sewell are PhD students, under the supervision of Robin

Milner whose theses are relevant to the CONFER project and are under completion

in this period (provisory titles \Types and polymorphism in the �-calculus" and \Ax-

iomatisation of higher-order �nite state processes", respectively).

The study of �-calculus bisimulations and the development of the software tool

MWB have been carried out in a collaboration with SICS. Benjamin Pierce has visited

INRIA-Rocquencourt in the period October 1992|April 1993. Davide Sangiorgi has

visited INRIA-Rocquencourt in the period October 1992|November 1992. These visits

have had a strong impact on the work on PIC and on works (P4), (P6) and (P7) listed

below. Davide Sangiorgi has visited Pisa in June 1993 to discuss the feasibility of the

development of causal-sensitive semantics in calculi for mobile processes.

3.3.3 Publications

The results obtained by the group have given rise to the following publications (note

that here we only list works for which the acceptance notice has already arrived):

3.3. UNIVERSITY OF EDINBURGH 13

P1.) An action structure for synchronous �-calculus, Milner, R. Proc. FCT Con-

ference, Szeged, Hungary, LNCS 710, 1993.

P2.) Action calculi, or concrete action structures, Milner, R. Proc. MFCS Confer-

ence, Gdansk, Poland, LNCS 711, 1993.

P3.) Algebraic Theories for Name-Passing Calculi, Parrow, J. and Sangiorgi, D.,

To appear in the Proc. REX Summer School 1993, LNCS, Springer Verlag.

P4.) Typing and Subtyping for Mobile Processes, Pierce, B. and Sangiorgi, D., Proc.

8th LICS Conference, IEEE Computer Society Press, 1993.

P5.) A Theory of Bisimulation for the �-calculus, Sangiorgi, D., Proc. CONCUR

'93, LNCS 715, Springer Verlag, 1993.

P6.) From �-calculus to Higher-Order �-calculus | and back, Sangiorgi, D., Proc.

TAPSOFT '93, LNCS 668, Springer Verlag, 1993.

P7.) An investigation into Functions as Processes, Sangiorgi, D., to appear in the

Proc. Ninth International Conference on the Mathematical Foundations of Program-

ming Semantics (MFPS'93).

The papers (P1-3) represent invited papers.

14 CHAPTER 3. MANAGEMENT

3.4 ECRC

3.4.1 Outline

At the scienti�c level ECRC's involvement in CONFER in the �rst year has been

centered around the development of the Facile language, its implementation, formal

foundation, and its usage for development of a medium/large scale application.

A distributed implementation of the Facile environment has been realised by mod-

ifying and extending the Standard ML environment implemented at AT&T Bell Labo-

ratories and Princeton University. The current implementation allows the development

of applications that operate on a network of SPARC and Sun-3 workstations running

UNIX and, to a limited extent, the Mach operating system.

A proposal for extending the formal foundation of Facile to cover the constructs for

distributed programming has been worked out. An analysis of some of the constructs

in Facile has been based on the notion of the CHemical Abstract Machine (CHAM),

and a new polymorphic type system based on the notion of e�ects has been proposed.

Furthermore, cooperation has been initiated with SICS on the issue of temporal logics

that incorporate higher-order process passing for specifying Facile programs.

The medium/large scale application we have developed is a desktop conferencing

tool (called Calumet) that supports meetings based on a slide presentation metaphor

among users in di�erent physical locations. The distributed part of the system, which

handles all communications, has been built entirely with Facile.

At the administrative level ECRC has involvement in project management at the

consortium level assisting Jean-Jacques L�evy in the technical coordination of the action.

A visible result of this activity is the EATCS publication giving an overview of the

CONFER project (R3).

3.4.2 Persons

The following ECRC personnel is engaged in the action: Alessandro Giacalone, Andre

Kramer, Tsung-Min Kuo, Lone Leth and Bent Thomsen. Francois Cosquer has worked

on the action until leaving ECRC at the end of 1992. Jean-Pierre Talpin has been

involved in the action since 1st of September 1993.

Pierre Cregut (visitor), Sanjiva Prasad, Fritz Knabe (Ph. D. student), Philippe

Marchal and Chris Crampton have also contributed to the development of Facile and

the Calumet system.

3.4.3 Reports and Publications

A set of four reports has been produced as deliverables during Year 1 of CONFER:

ECRC/M1/R1: \Some Facile Chemistry", Technical report ECRC-92-14, 1992, by

L. Leth and B. Thomsen. The �rst version of this technical report was �nished

before the o�cial start of CONFER. A Journal version has been prepared and

is currently under revision for publication. This version will be considered a

deliverable for CONFER.

3.4. ECRC 15

ECRC/M1/R2: \Some Issues in the Semantics of Facile Distributed Programming",

Technical report ECRC-92-32, 1992, by B. Thomsen, L. Leth and A. Giacalone.

The �rst version of this technical report was �nished before the o�cial start of

CONFER. The version appearing in proceedings of the 1992 REX Workshop on

\Semantics: Foundations and Applications", LNCS 666, Springer-Verlag, 1992

was prepared during the start of CONFER and will thus be considered a deliver-

able for CONFER.

ECRC/M1/R3: \Esprit Basic Research Action 6454-CONFER: CONcurrency and

Functions: Evaluation and Reduction", description of the CONFER project in

Bulletin of EATCS, Number 45, October 1992, pp.158-185, by J.-J. L�evy, B.

Thomsen, L. Leth and A. Giacalone.

ECRC/M1/R4: \Polymorphic Sorts and Types for Concurrent Functional Programs",

Technical report ECRC-93-10, 1993, by B. Thomsen.

The papers ECRC/M1/R1, ECRC/M1/R2 and ECRC/M1/R4 have been placed at

the CONFER ftp site at Imperial College.

3.4.4 Software

The main thrust of work at ECRC during Year 1 of CONFER has been on the con-

struction of two software systems:

Facile The implementation of Facile will be demonstrated at the �rst annual review,

October 1st, 1993, at CWI, Amsterdam. We hope to be able to make the �rst

release of Facile (Facile Antigua) freely available to the research community in

the very near future. J. Glauert, at University of East Anglia, and E. St. James,

at BULL, France, have received and installed earlier versions of Facile for testing.

Calumet We also hope to be able to demonstrate Calumet at the �rst CONFER

annual review, with a CWI/ECRC connection.

We would like to point out that the above pieces of software are clearly not the

results of the work delivered by just 1.5 FTE ESPRIT funding. It is the result of the

involvement of the whole group at ECRC working on Facile and Calumet. It is our

policy to make the results of the entire group available whenever possible.

3.4.5 CONFER exchanges

Members of the group have taken part in the two CONFER workshops held in Year

1. In the �rst workshop Alessandro Giacalone, Tsung-Min Kuo, Lone Leth and Bent

Thomsen took part. Tsung-Min Kuo gave a talk about his work on introducing a notion

of subtyping in Facile, and Bent Thomsen presented his work on a new polymorphic

type system for Facile based on e�ect systems. At the second workshop Lone Leth

and Bent Thomsen took part. Bent Thomsen gave an overview of the Facile Antigua

implementation and a short presentation of the Calumet system.

16 CHAPTER 3. MANAGEMENT

On the 21st of May Lone Leth and Bent Thomsen visited the CONFER group at

Imperial College and discussed the work on interaction categories.

Mads Dam from SICS visited ECRC from 5th to 9th of July, 1993. This visit was

part of the cooperation which has been initiated with SICS on the issue of temporal

logics that incorporate higher-order process passing for specifying Facile programs.

David Matthews a�liated with the Edinburgh CONFER group visited ECRC 13th

and 14th of July, 1993. During his visit potential collaboration was discussed.

Roberto Amadio from CNRS and INRIA-Lorraine, Nancy, France, joined the group

on the 6th of September, 1993, for a six month visit. He will be working on the formal

foundation of Facile.

3.4.6 Non-CONFER visitors and visits

The group has been visited by a number of people outside the CONFER project: Scott

Nettles, CMU/Fox project. Bernhard Ste�en, RWTH Aachen, Germany. Jean-Pierre

Talpin, ENS Paris. Mathias Felleisen, Rice University, USA. Jorge Cuellar, Siemens.

Hanne Riis and Flemming Nielson, Aarhus University. Greg Morisset, CMU/Fox

project, USA. Peter Lee, CMU/Fox project, USA. Dominique Bolignano, BULL. Jean-

nette Wing, CMU/Fox project, USA. Kohei Honda, Keio University, Japan.

Alessandro Giacalone, Andre Kramer and Bent Thomsen visited ANSA, Cambridge

on the 6th of May. Bent Thomsen and Lone Leth visited Andy Pitts and Luke Ong at

Cambridge University 19th and 20th of May, 1993. Two talks on Facile were given.

3.4.7 Perspective

Research progresses in all aspects of the groups involvement with CONFER. On Sorts

& Types we expect to develop and implement a new type inference algorithm for Facile

based on a polymorphic type system taking communications and other side e�ects into

account. This type system will also have a notion of subtyping needed for programming

in an object oriented style. done in the LOMAPS action.

On Abstract Machines, Primitive Constructs we expect to complete the work on

Chemical Abstract Machines for Facile covering aspects of the distributed implemen-

tation.

The work on applications has pointed out that it will be bene�cial to look at other

communication paradigms such as broadcasting and asynchronous point-to-point.

On Dynamic Behaviour important results have recently been obtained in support-

ing the dynamic but type safe connection between di�erent applications, which may

have been independently compiled and activated. The result is important because this

is going to be a rather frequent scenario in pervasively networked computing environ-

ments, and also because it appears to provide a solution to the more general question

of \posting" and accessing resources on a network in a exible and reliable fashion.

On Programming Languages we expect to �nish a report on programming in Facile

and a report on the de�nition of Facile Antigua release. A report describing the Calumet

system is also in preparation. We have started experiments using tools developed in

3.4. ECRC 17

the CONCUR/CONCUR2 actions for formal speci�cation and veri�cation of essential

parts of the Calumet system. In the area of distributed computing, continuing e�orts

are directed at making the implementation increasingly e�cient and at experimenting

with certain constructs needed to manage distributed applications (e.g. delay/time-

out operators, operators for controlling the physical locations of processes, exception

handling). An activity has recently begun to render communication between Facile

processes more reliable through the introduction of low-level protocols that increase

the tolerance of the system to partial hardware and software failures.

The CONFER work on Facile is (or will be) bringing results to the SEMAGRAPH

working group, the LOMAPS and the COORDINATION ESPRIT BRA projects. The

work in these projects is of a rather di�erent nature from the work in CONFER. In

the context of the SEMAGRAPH working group some results have been obtained in

translating Facile into a low-level process model. It has been demonstrated how this

relates to term-graph rewriting and results on execution in the graph rewriting language

Dactl have been obtained. This work has recently proved to have a large potential for

intersection with the work pursued at Edinburgh on programming with the �-calculus.

The group at ECRC involved in CONFER will also take part in the LOMAPS BRA

project. The focus of LOMAPS will be on data ow analysis and optimisations for

concurrent functional languages and will thus use the result being produced in the

CONFER context. A group at ECRC working on coordination systems is going to

be involved in the COORDINATION BRA project. This group will use Facile for

implementing the LO programming model.

18 CHAPTER 3. MANAGEMENT

3.5 ENS

3.5.1 Outline

The group at LIENS together with the associated researchers from Marseille, Nancy

and Paris has produced signi�cative contributions in the following research areas:

� Sequentiality and Game Semantics.

� Relationships among �-calculus, �-calculus and Chocs.

� Optimal Reduction in the �-calculus.

The group carries on mainly theoretical research in all areas of the CONFER project

and collaborates actively with the other sites. In particular the work on calculi is carried

on in strict collaboration with ECRC and INRIA-Sophia (Amadio is visiting ECRC for

six months starting from September 1993 and G. Boudol is directing Lavatelli's thesis).

The work on games is carried on in collaboration with Imperial College (Abramsky,

Jagadeesan, Lamarche (formerly at LIENS)) and the work on optimal reduction is

carried on in collaboration with INRIA-Rocquencourt (Asperti, Gonthier, L�evy) and

INRIA-Sophia (Laneve).

3.5.2 Persons

The following researchers are engaged in the action: Pierre Louis Curien (CNRS,

LIENS), Roberto Amadio (CNRS-INRIA, Nancy), Vincent Danos (CNRS, Paris VII),

Carolina Lavatelli (PhD Student, LIENS) and Laurent Regnier (CNRS, Marseille).

3.5.3 Reports and Publications

A set of four reports has been produced as deliverables during Year 1 of CONFER:

1. R. Amadio, On the Reduction of Chocs Bisimulation to �-calculus Bisimulation,

in Proc. CONCUR 93, E. Best (ed.), SLNCS 715. Also appeared as Research

Report Inria-Lorraine 1726.

2. P.-L. Curien, On the Symmetry of Sequentiality, presented at the Conference on

Mathematical Foundations of Program Semantics, to appear in the Proceedings

of the Conference.

3. V. Danos and L. Regnier, Local and Asynchronous Beta-Reduction, in Proc.

IEEE-LICS 93, Montreal.

4. C. Lavatelli, Non deterministic lazy �-calculus vs. �-calculus, Technical Report

LIENS 93-15, September 1993.

Deliverables 1 and 4 relate to the Calculi area. Deliverable 2 relates to the Logics

for concurrency and lambda calculus area. Deliverable 3 relates to the Foundational

models and abstract machines area.

3.5. ENS 19

3.5.4 Description of Technical Contributions and Related Work

1. Roberto Amadio has pursued the analysis of the relationship between Chocs and

�-calculus. These are two natural extensions of CCS where, respectively, pro-

cesses and channels are transmissible values. In previous work he had proposed

a formalization of the notion of bisimulation for Chocs. His new contribution is

a more e�ective way to reason about this notion by means of an embedding of

Chocs into a richer calculus endowed with a notion of `activation' channel which

is christened Chocs

t

. t is the name of a new internal action which is produced

by a synchronization on an activation channel, such a synchronization has the ef-

fect of forcing the execution of an idle process. In �rst approximation transitions

in Chocs

t

may be understood as sequences of synchronizations along activation

channels followed by an `observable' transition. There is a simple de�nition of

bisimulation for Chocs

t

which satis�es natural laws and congruence rules, more-

over the synchronization trees associated to Chocs

t

processes are �nitely branch-

ing. Chocs

t

is proposed as an intermediate step towards the de�nition of a tool

for the veri�cation of Chocs bisimulation.

Davide Sangiorgi from the University of Edinburgh has independently obtained

a reduction of a restricted form of Chocs where sums are `guarded' to the stan-

dard �-calculus (using weak bisimulation). Although these works share similar

motivations their technical approaches are quite distinct.

2. Pierre-Louis Curien has proposed a symmetric account of sequentiality, by means

of symmetric algorithms, which are pairs of sequential functions, mapping data to

data, and output exploration trees to input exploration trees, respectively. The

framework of sequential data structures is used, which is indeed a reformulation of

a class of Kahn-Plotkin's concrete data structures. Sequential data structures and

symmetric algorithms are the objects and morphisms of a symmetric monoidal

closed category, which is also cartesian, and is such that the unit is terminal.

The category obtained is a full subcategory of categories of games considered by

Lamarche, and by Abramsky-Jagadeesan, respectively. This work, while �nding

its roots in the study of sequentiality, presents striking correspondences with

game-theoretic concepts, introduced by Blass in the early seventies in a very

di�erent context.

3. Vincent Danos and Laurent Regnier have presented a new way of computing

lambda-terms. They have provided an embedding of lambda-terms into the so-

called virtual nets, which are graphs labelled by some coe�cients of the dynamic

algebra. In particular they have de�ned and studied a notion of virtual reduction

which is a graph reduction based on the labelling of the virtual net. A single

step of virtual reduction consists in composing two edges of the graph so that the

product of their labels is non null in the dynamic algebra. In some sense, virtual

reduction is the computation of the transitive closure of the virtual net. It is

shown to be conuent and preserving the execution formula of Girard. This last

property makes virtual reduction a good candidate for computing lambda-terms.

20 CHAPTER 3. MANAGEMENT

The notion of virtual reduction comes from Girard's program on the geometry of

interaction. It is strongly linked with the sharing reduction techniques and the

work of Abadi, Gonthier and L�evy on Lamping's sharing graphs. This relation is

at the moment under study in collaboration with Asperti and Laneve. In some

sense virtual reduction is another way, may be more abstract, to present the

sharing graphs.

4. Carolina Lavatelli has examined and compared various lambda calculi with par-

allel and convergence testing. The �

j

-calculus, a lazy calculus augmented with

a non-deterministic choice operator and a convergence testing combinator, has

emerged as a suitable language to be encoded into the �-calculus. The substitu-

tion process in �

j

is managed in a semi-explicit way via the use of closures for

variables and abstractions. The semantics associated to both �

j

and � are based

on contextual testing preorders. An encoding of �

j

into � is de�ned and it is

proved adequate with respect to those semantics. However, the encoding is not

fully-adequate. Standard examples show that � is still more discriminating than

�

j

.

This work builds on previous results by Milner, Sangiorgi and Thomsen, among

others, which analyse the expressive power of �-calculus. In these studies it was

observed that the standard translation of the lazy �-calculus into �-calculus is ad-

equate (but not fully adequate) w.r.t. to suitable notions of bisimulation. Later,

Sangiorgi showed that adding to the lazy �-calculus a non-deterministic operator

and providing it with a strong notion of testing equivalence (which behaves very

much like a bisimulation equivalence) is enough to get full adequacy. Lavatelli's

work shows that whenever the semantics is based on Morris' contextual testing

equivalence then non-determinancy is not the only extra-feature which distin-

guishes �-calculus from its �-calculus embedding.

3.5.5 Perspective

Roberto Amadio will collaborate with the group at ECRC on the formal de�nition of

the Facile semantics. In collaboration with a student (O. Ait-Mohamed) he has also

started to investigate the design of a veri�cation tool for mobile calculi based on the

HOL system. Pierre-Louis Curien will spend a sabbatical year at the University of

Beijing, starting from September 1993. There he will pursue his study on the relation-

ship between sequentiality and game semantics. The latter in particular has recently

provided a new perspective on the full abstraction problem for PCF. Vincent Danos

and Laurent Regnier will pursue the analysis of the pragmatic value of their notion of

local and asynchronous reduction. Carolina Lavatelli will continue to develop her PhD

thesis on the relationship between �-calculus and �-calculus from the point of view of

a testing semantics. This work is carried on under the direction of G. Boudol and P.L.

Curien.

3.6. IMPERIAL COLLEGE 21

3.6 Imperial College

3.6.1 Research directions

Research done at Imperial College has covered all four areas of the CONFER project,

but the main focus has been on Logics for Concurrency and �-calculus with the main

thread being the close correspondence between proofs and processes.

Interaction Categories have been proposed as a foundation for semantics of compu-

tation. The main examples of Interaction Categories are SProc and ASProc which

are categories for synchronous and asynchronous processes. Much work has been done

on investigating applications of these categories which has two bene�ts: to see how

useful the framework is for semantics; and to obtain feedback on what structures are

essential for the categories in the �rst place. Such application work is carried out in the

research e�ort on real-time synchronous languages such as LUSTRE, SIGNAL and

ESTEREL and on the development of a type system for concurrency.

Related to the work on types is the research on sort inference for the �-calculus

which uses a weaker notion but is able to handle the notion of mobility more directly

than it is currently possible in the Interaction Category framework. Also connected is

the work on the translation of the �-calculus into Interaction Nets. The true concur-

rency semantics developed for the �-calculus also �ts in nicely in this context.

On the functional side, there is the work on Linear Logic which discusses the notion

of a term calculus for Intuitionistic Linear Logic (ILL) and shows that the internal

language for autonomous categories corresponds to this term calculus. A prototype

functional programming language based on this term calculus, called LILAC, has been

implemented. Research has also been done on optimal reduction in the �-calculus using

interaction net implementations. There is additional work in this area | on proof nets

for the multiplicative fragment of ILL; and on non-determinism in a functional setting.

3.6.2 Person and exchanges

The group involved in the project who are attached to this site comprises Samson

Abramsky, Simon Gay, Fran�cois Lamarche, Ian Mackie, Luke Ong and Rajagopal Na-

garajan. Radhakrishan Jagadeesan, who has recently left the college, was also one of

the active participants.

Simon Gay, Rajagopal Nagarajan and Ian Mackie are PhD students, under the

supervision of Samson Abramsky. Their theses are directly relevant to the CONFER

project. Respective provisional titles:

� Linear Types for Communicating Processes

� Speci�cation and Veri�cation of Typed Concurrent Programs

� Linear Logic and Functional Programming

Ian Mackie is visiting Jean-Jacques L�evy and his associates at Ecole Polytechnique,

Paris and INRIA, Rocquencourt from September to December of this year to do collabo-

rative work. Fran�cois Lamarche has arrived at Imperial from Ecole Normale Sup�erieure

22 CHAPTER 3. MANAGEMENT

after the start of CONFER. He has inuenced and has been inuenced by the work at

ENS, especially that of Pierre-Louis Curien. Luke Ong has paid regular visits to Impe-

rial and has played an active rôle in the joint seminars between Imperial College and

University of Cambridge. The work on semantics of concurrency has strong connections

with research at the University of Edinburgh and we have had a fruitful exchange of

ideas. Our site has had a signi�cant representation in the CONFER workshops held so

far and this has resulted in active collaboration.

3.6.3 Publications

The results obtained by the group have given rise to the following publications (note

that here we only list works for which the acceptance notice has already arrived):

[1] S. Abramsky. Interaction Categories (Extended Abstract). In G. L. Burn, S. J.

Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993: Proceedings of

the First Imperial College Department of Computing Workshop on Theory and

Formal Methods. Springer-Verlag Workshops in Computer Science, 1993. To

appear.

[2] S. Abramsky. Interaction Categories and communicating sequential processes. In

A. W. Roscoe, editor, A Classical Mind: Essays in Honour of C. A. R. Hoare.

Prentice Hall International, 1994. To appear.

[3] S. J. Gay. A sort inference algorithm for the polyadic �-calculus. In POPL 93.

ACM Press, 1993.

[4] S. J. Gay and R. Nagarajan. Modelling Signal in Interaction Categories. In

G. L. Burn, S. J. Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993:

Proceedings of the First Imperial College Department of Computing Workshop on

Theory and Formal Methods. Springer-Verlag Workshops in Computer Science,

1993. To appear.

[5] I. Mackie. Lilac: A Functional Programming Language Based on Linear Logic.

To appear in the Journal of Functional Programming.

[6] I. C. Mackie, L. Rom�an and S. Abramsky. An Internal Language for Autonomous

Categories. Journal of Applied Categorical Structures 1993 (to appear)

[7] L. Ong. Non-determinism in a functional setting. In Proceedings of LICS 1993.

3.7. INRIA-ROCQUENCOURT 23

3.7 INRIA-Rocquencourt

3.7.1 Outline

The group at INRIA-Rocquencourt is involved in the study of syntactic properties of

various �-calculi. It had some results in the theory of optimal reductions, and is inter-

ested in abstracting properties of computing agents with bound variables (interaction

systems, abstract reduction systems).

Implementations of these computing models have also been considered through ��-

calculi and within ML (lazy or eager). A portable real-time realistic parallel garbage

collection for CAML-light has been proved correct.

3.7.2 Persons and exchanges

The group at Rocquencourt is formed by Andrea Asperti, Damien Doligez, Georges

Gonthier, Th�er�ese Hardin, Jean-Jacques L�evy, Luc Maranget, Paul-Andr�e Melli�es and

Didier R�emy. In CONFER, Jean-Jacques L�evy is the project coordinator.

Damien Doligez and Paul-Andr�e Melli�es are PhD students from Ecole Normale

Sup�erieure. Andrea Asperti is now professor at University of Bologna. Th�er�ese Hardin

is professor at University of Paris 6. Other researchers are full members of INRIA.

Georges Gonthier and Jean-Jacques L�evy have part-time teaching positions at Ecole

polytechnique.

Work on optimal reductions is by Andrea Asperti, Georges Gonthier, Jean-Jacques

L�evy and Luc Maranget; ��-calculus by Th�er�ese Hardin and Jean-Jacques L�evy and

Luc Maranget; implementation of lazy ML by Luc Maranget; implementation of optimal

reductions by Andrea Asperti; garbage collection by Damien Doligez (implementation

and proof) and Georges Gonthier (proof).

Visitors of INRIA Rocquencourt were Cosimo Laneve (3 months) from Pisa, Ben-

jamin Pierce (7 months) and Davide Sangiorgi (3 months) from Edinburgh, Ian Mackie

(2 months) from Imperial College. Zena Ariola, who is now working with Jan-Willem

Klop on a regular basis, spent 91 and 92 at INRIA Rocquencourt.

3.7.3 Publications

[INRIA/Rocq/M1/1] A. Asperti, Linear Logic, Comonads, and Optimal Reductions,

Fundamenta Informaticae, Special Issue devoted to \Categories in Computer Science",

Polish Academy of Sciences (invited paper). To appear.

[INRIA/Rocq/M1/2] A. Asperti, C. Laneve, Paths, Computations and Labels in

the �-calculus, Proc. of the 5th International Conference on Rewriting Techniques and

Applications, RTA'93, Montreal. June 1993.

[INRIA/Rocq/M1/3] A. Asperti, C. Laneve, Interaction Systems, HOA'93. Inter-

national Workshop on Higher-Order Algebra, Logic and Term Rewriting. Amsterdam,

September 1993.

24 CHAPTER 3. MANAGEMENT

[INRIA/Rocq/M1/4] A. Asperti, C. Laneve, Optimal Reductions in Interaction Sys-

tems, Proc. of the 4th Joint Conference on the Theory and Practice of Software De-

velopment, TAPSOFT'93, Orsay (France). April 1993.

[INRIA/Rocq/M1/5] A. Asperti, C. Laneve, Interaction Systems I: the theory of op-

timal reductions, Rapport Technique 1748, INRIA-Rocquencourt. Submitted to Math-

ematical Structures in Computer Science. 1992.

[INRIA/UB/M1/6] A. Asperti, C. Laneve, Interaction Systems II: the practice of

optimal reductions. Technical Report UBLCS-93-12, Laboratory for Computer Science,

University of Bologna. Submitted to Theoretical Computer Science. 1993.

[INRIA/Rocq/M1/7] P.-L. Curien, T. Hardin, A. Rios, Strong normalisation of

Substitutions, MFCS, Prague, 1992.

[INRIA/Rocq/M1/8] P.-L. Curien, T. Hardin, Yet yet a counterexample for �-

calculus+SP, Journal of functional Programming. to appear.

[INRIA/Rocq/M1/9] G. Gonthier, M. Abadi, J.-J. L�evy, Linear Logic without Boxes,

7th LICS, Santa Cruz, 1992.

[INRIA/Rocq/M1/10] G. Gonthier, M. Abadi, J.-J. L�evy, Linear Logic without

Boxes, Accepted for the special LICS issue of Information & Computation, to be sub-

mitted to this journal.

[INRIA/Rocq/M1/11] G. Gonthier, J.-J. L�evy, P.-A. Melli�es, An abstract standard-

isation theorem, 7th LICS, Santa Cruz, 1992.

[INRIA/Rocq/M1/12] T. Hardin, �-reduction for the languages of Explicit Substi-

tutions, Algebraic and Logic Programming Conference, Volterra, Italy, August 1992.

[INRIA/Rocq/M1/13] T. Hardin, From Categorical Combinators to ��-calculi: a

quest for conuence, INRIA Report 1777 - November 1992.

3.8. INRIA-SOPHIA 25

3.8 INRIA-Sophia

3.8.1 Outline

The INRIA group at Sophia Antipolis has done research mainly in the areas of Calculi

and Foundational Models and Abstract Machines. The common aim of the group is to

study and develop theoretical frameworks dealing with parallel computations. A special

emphasis has been put on the lambda-calculus and related systems. We have pursued

the work on optimal computations, obtaining a new characterization of the notion of

family of redexes, which allows us to prove the correctness of the implementation of

optimal computations. We also have introduced a re�nement of the lambda-calculus,

o�ering a sharp control on the process of substitution.

3.8.2 Persons

The following persons are involved in the project at Sophia Antipolis: G. Berry (Re-

search Director, Ecole des Mines de Paris), G. Boudol (Research Director, INRIA),

I. Castellani (Researcher, INRIA).

The group also includes C. Laneve, who has a post-doc position at INRIA from

January 1st, 1993, and Ch. Retore, who will have a similar position, starting from

October 1st, 1993. These positions are funded by the CONFER project.

3.8.3 Publications, Interactions

The INRIA group at Sophia Antipolis organized the �rst CONFER Meeting in January

1993. This was attended by 40 participants, mostly from the various sites of the project.

On this occasion, C. Laneve gave a talk on "Interaction systems". G. Boudol and

I. Castellani attended the second CONFER workshop in Edinburgh.

G. Boudol made two one-week visits in Paris, Ecole Normale Superieure, in March

and May, 1993. He is working there with a PhD student, C. Lavatelli, who is also a

member of the project. C. Laneve has written several joint papers with A. Asperti

(University of Bologna), and is currently working with him and L. R�egnier (LMD,

Marseille. R�egnier is formally associated with the ENS group in Paris).

G. Boudol has given an invited talk at the REX workshop, "A Decade of Concur-

rency" (Amsterdam, June 1993), on "The Chemical Abstract Machine", and an invited

talk at the CONCUR'93 Conference (Hildesheim, August 1993), on "The Lambda-

Calculus with Multiplicities". C. Laneve presented his work on "Optimal Reductions"

at the TAPSOFT'93 Conference (Orsay, April 1993), and he gave a talk on "Path, Com-

putations and Labels in the Lambda-Calculus" at the RTA'93 Conference (Montreal,

June 1993).

26 CHAPTER 3. MANAGEMENT

3.9 Universit�a di Pisa

3.9.0.1 Outline

The research activities of Pisa site in the �rst year of the project have been focussed

on the following subjects:

� Concurrency and Optimality,

� Mobility in the cc Paradigm,

� Explicit Substitution for Mobile Processes,

� History Dependent Behaviours.

Studies have been carried out on the analysis of the relationships between strategies

for optimal reduction and concurrency. A complete axiomatization of permutation

equivalence has been provided.

It has been shown that cc-languages get higher order power even with a very poor

underlying constraint system. This includes the study of the encoding of �-calculus

evaluation strategies into the cc framework.

An alternative but equivalent formulation of the �-calculus has been introduced. In

this formulation name instantiation is handled explicitly. It is proved that �-calculus

behavioural equivalences are retrieved and axiomatized by giving the description of the

corresponding strategies for name instantiation.

Finally, it has been shown that many interesting issues of process calculi can be

captured and explained by exploiting the history dependent paradigm.

3.9.0.2 Perspective

The alternative formulation of the �-calculus where name instantiation is handled

explicitly provides the basis to understand and design abstract machines for the �-

calculus. This work can constitute the theoretical basis to develop semantic-based

veri�cation tools for the �-calculus. Moreover, the issue of de�ning non interleaving

semantics for the �-calculus can take advantage of the explicit handling of name in-

stantiation. Further works are planned on these subjects.

Finally, the CHARM (Concurrency and Hiding in Abstract Rewriting Machine)

framework presents some similarities with the Action Structures framework. We plan

to investigate the relationships between CHARM and Action Structures.

3.9.0.3 Pisa CONFER Members

Ugo Montanari, GianLuigi Ferrari, Cosimo Laneve, Paola Quaglia.

3.9. UNIVERSIT

�

A DI PISA 27

3.9.0.4 Personnel Changes and Visitors

Cosimo Laneve originally from Pisa is now in Sophia Antipolis (INRIA) for one year.

Paola Quaglia joined the PhD program of the Dipartimento di Informatica, Universit�a

degli Studi di Pisa (Supervisor: Prof. Ugo Montanari). Dr. J. Meseguer visited Pisa

for one week in June.

3.9.0.5 Interactions with other CONFER Sites

Besides the partecipation to the CONFER workshops, Montanari, Ferrari and Quaglia

visited Edinburgh in May 93 (before the second CONFER workshop). This visit has

been found very useful for understanding and comparing the relative approaches. Da-

vide Sangiorgi (Edinburgh) has been invited and visited Pisa in December 92, and June

93. Roberto Amadio (INRIA) visited Pisa in December 92.

3.9.0.6 PhD Thesis

Cosimo Laneve discussed his PhD thesis (Supervisor Prof. Ugo Montanari). The thesis

studies the problems of optimality and concurrency in a class of higher order rewriting

systems called Interaction Systems.

3.9.1 List of Reports

[D/Pisa/M1/1] Ferrari, G., Montanari, U., Quaglia, P., The �-calculus with Explicit

Substitutions, Submitted for publication, 1993.

[D/Pisa/M1/2] Ferrari, G., Montanari, U., Observing Time-Complexity of Concurrent

Programs, 1993.

[D/Pisa/M1/3] Laneve, C. Distributive Evaluations of �-calculus, To appear in Acta

Informaticae.

[D/Pisa/M1/4] Laneve, C., Optimality and Concurrency in Interaction Systems, PhD

Thesis TD-8/93, Dipartimento di Informatica, Universit�a di Pisa, 1993.

[D/Pisa/M1/5] Laneve, C., Montanari, U., Mobility in the cc Paradigm. Preliminary

version in MFCS'92, LNCS 629, 1992.

[D/Pisa/M1/6] Laneve, C., Montanari, U., Axiomatizing Permutation Equivalence,

Submitted for publication 1993. Preliminary version in ALP'92, LNCS 632, 1992.

3.9.2 Short Abstracts of Reports

[D/Pisa/M1/1] Ferrari, G., Montanari, U., Quaglia, P., The �-calculus with Explicit

Substitutions.

A new formulation of the �-calculus, where name instantiation is handled explicitly,

is presented. Behavioural equivalences originally developed for the �-calculus are re-

trieved by giving the description of the corresponding strategies for name instantiation,

and, in each case, fully abstract semantics, with respect to the appropriate notion of

observation of process behaviours, are obtained. The explicit handling of name in-

stantiation allows us to take advantage of the SOS meta-theory developed for \static"

28 CHAPTER 3. MANAGEMENT

process calculi. Thus, axiomatic characterizations of behavioural equivalences can be

automatically derived by analyzing the syntactic structure of the SOS inference rules.

This paper makes a �rst step towards the design of abstract machines for concurrent

programming languages based on the �-calculus. Here, we deal with the �-calculus,

however the techniques we develop can be applied to value passing process calculi as

well.

[D/Pisa/M1/2] Ferrari, G., Montanari, U., Observing Time-Complexity of Concurrent

Programs.

We develop a semantic framework to describe and reason about the time-complexity

of concurrent programs. To this purpose, we introduce a modular approach to the

semantics of concurrent languages where the functional part of programs is handled

together with the complexity part. We show that the time-complexity analysis of

concurrent programs can be naturally dealt with a specialized matrix calculus.

[D/Pisa/M1/3] Laneve, C. Distributive Evaluations of �-calculus.

In this paper we address the problem of encoding evaluation strategies for the �-calculus

into prime event structures. In order for this to be possible the derivation spaces

yielded by the evaluation mechanism must be prime algebraic cpo's. This requirement

is not met by permutation equivalence, the standard concurrent semantics with which

�-calculus is equipped. We solve this problem by taking the coarsest congruence con-

tained in permutation equivalence such that permutations of disjoint reductions are

equated and the downward closure of every derivation is a distributive lattice. This

equivalence, called distributive permutation equivalence, is characterized directly by re-

stricting permutations of redexes to those sets U which are distributive, i.e. for every

u 2 U , the development of every V � (U nfug) does not duplicate or delete u. A simple

consequence of our results is that the derivation spaces of the call-by-value �-calculus

are distributive lattices. Finally, we show that a sequential evaluation mechanism can

not, in general, be e�ectively transformed into a maximally distributive one.

[D/Pisa/M1/4] Laneve, C., Optimality and Concurrency in Interaction Systems.

The thesis studies the problems of optimality and concurrency in a class of higher order

rewriting systems: the Interaction Systems. On one side these systems provide the

intuitionistic generalization of Lafont's Interaction Nets (that are linear), by keeping the

idea of binary interaction and the syntactical bipartition of operators into constructors

and destructors. On the other side, Interaction Systems are a suitable subclass of Klop's

Combinatory Reduction Systems where the Curry-Howard analogy \still makes sense".

Namely, it is possible to consider constructors and destructors of Interaction Systems

respectively as right and left introduction rules of intuitionistic systems, interactions as

instances of cut-rules and computations as eliminations of cut-rules. In the �rst part of

the thesis, we generalize the standard theory of optimality to Interaction Systems. In

particular we de�ne the notion of optimal sharing by means of two di�erent approaches

and prove their equivalence. Then we provide an implementation extending Lamping's

graph reduction technique for the �-calculus and ful�lling the optimality criteria. In

the second part of the thesis, we study permutation equivalence in the framework of

3.9. UNIVERSIT

�

A DI PISA 29

Interaction Systems. This equivalence formalizes the notion of parallel reduction, which

is essential in the theory of optimality. Foremost we provide a complete axiomatization

of permutation equivalence. Then, by taking �-calculus as running example, we study

the issues of implementing permutation equivalence on Winskel's Event Structures, a

mathematical model of distributed systems.

[D/Pisa/M1/5] Laneve, C., Montanari, U., Mobility in the cc Paradigm.

We prove that cc-languages get higher order power even with a very poor underlying

system of constraints (the signature consists of a constant and a concatenation op-

eration). The turning point is to observe that the phenomenon of mobility is already

present in the cc-paradigm as mobility of variables. Therefore, by simulating �-calculus

channels in terms of streams, it is possible to rephrase Milner's encodings of lazy and

call-by-value �-calculus into the �-calculus. Our encodings distinguish between chan-

nels that are used once, just for book-keeping reasons, and those representing variables

in Milners's encodings, thus yielding a clearer distinction between resources.

[D/Pisa/M1/6] Laneve, C., Montanari, U., Axiomatizing Permutation Equivalence.

We axiomatize permutation equivalence in term rewriting systems and Klop's orthogo-

nal left-normal Combinatory Reduction Systems. The axioms for the former ones are

provided by the general approach proposed by Meseguer. The latters need extra axioms

modelling the interplay between reductions and the operation of substitution.

30 CHAPTER 3. MANAGEMENT

3.10 SICS

3.10.1 Outline

The group at SICS has conducted research in all four main areas of the CONFER

project. We have studied axiomatisations of name-passing calculi, primitives of inter-

action, tableau-based model checking for a temporal logic adapted to the �-calculus,

decision procedures for bisimulation equivalences in the �-calculus, program unfolding

in a concurrent setting, and software veri�cation tools for the �-calculus.

The overall aim of the group is to develop practically useful theories and tools for

the speci�cation and veri�cation of communicating systems. Of particular relevance to

the CONFER project are systems that involve elements of mobility, access control, or

dynamic recon�guration capabilities. Associated groups at SICS are involved in case-

studies, using speci�cation languages based on ideas from the �-calculus to model and

verify slot allocation protocols for high-speed optical networks.

3.10.2 Personnel

The following SICS personnel is engaged in the action: Joachim Parrow, Mads Dam,

Bj�orn Lisper, Bj�orn Victor. The group has been joined from July 1, 1993, by Lars-

Henrik Eriksson. Up the the end of June 1993 the group had devoted 1.507 hours to

the project.

3.10.3 Di�usion and Exchanges

The results of the group have been presented at several occasions: An invited tuto-

rial at the REX'93 workshop and summer school (J. Parrow), an accepted paper at

CONCUR'93 (M. Dam), and presentations at the 1st and 2nd CONFER workshops

(M. Dam, B. Lisper, J. Parrow).

An extensive collaboration between Joachim Parrow and Davide Sangiorgi (Edin-

burgh) has been conducted through electronic mail. As part of the action M. Dam

visited ECRC from July 5 to July 9 1993, and B. Victor visited Edinburgh from July

8 to August 28.

3.10.4 Publications, Reports

[L93A] B. Lisper. \Total unfolding: theory and applications". Accepted for publication

in Journal of Functional Programming.

[P93] J. Parrow. \Interaction Diagrams". Draft paper, presented at REX'93 work-

shop and summer school.

[PS93] J. Parrow and D. Sangiorgi: \Algebraic Theories for Name-Passing Calculi",

SICS Research Report R93:04, 1993.

[D93] M. Dam. \Model Checking Mobile Processes". In Proc. CONCUR'93, LNCS

715, pp. 22-36.

[L93B] B. Lisper. \Unfolding of Programs with Nondeterminism and Processes

(tentative title)". In preparation (should be available in time for review).

3.10. SICS 31

3.10.5 Software

In cooperation with Faron Moller and Davide Sangiorgi, Bj�orn Victor has begun the de-

velopment of the Mobility Workbench (MBW)| a tool for manipulating and analyzing

mobile concurrent systems described in the �-calculus [MPW92].

3.10.5.1 Perspective

Important research directions include the following areas: Primitives of interaction

need to be investigated both from the points of view of theoretical expressiveness and

of usefulness in practical applications. Temporal logics based proof systems and model

checkers need to be extended and adapted to higher-level communication and pro-

gramming primitives. Decidability, axiomatisation, and program transformation issues

will be further addressed, and software speci�cation and veri�cation tools embody-

ing progress in these areas are under ongoing development and need to be exposed to

practical applications.

32 CHAPTER 3. MANAGEMENT

Chapter 4

Deliverables

4.1 Workshop 1

The workshop was organised by G�erard Boudol at INRIA Sophia-Antipolis. (40 par-

ticipants)

Tuesday, January 19

9.00-10.00 Registration

10.00-10.30 Opening : J-J L�evy

10.30-11.00 Co�ee Break

11.00-12.00 R. Amadio

- A Uniform Presentation of CHOCS and Pi-Calculus

- Environment Machines and Pi-Calculus

12.00-13.00 G. Ferrari - U. Montanari

Nonincremental Observation Algebras for Time-Complexity

13.00-14.30 Lunch

14.30-15.30 R. Milner

Action Structures and the Pi-Calculus

15.30-16.00 Co�ee Break

16.00-17.00 D. Sangiorgi

On the Representation of Functions as Processes

17.00-17.30 B. Pierce - D. Sangiorgi

Typing and Subtyping for Mobile Processes

17.30-18.00 D.N. Turner

Sorts and Polymorphism in the lambda-calculus

33

34 CHAPTER 4. DELIVERABLES

Wednesday, January 20

9.00-10.00 S. Abramsky

Interaction Categories

10.00-10.30 R. Jagadeesan

Game Semantics

10.30-11.00 Co�ee Break

11.00-12.00 S. Gay - R. Nagarajan

Working With Interaction Categories

12.00-13.00 G. Gonthier

Linear Logic - without Boxes

13.00-14.15 Lunch

14.15-14.45 I. Mackie

Linear Logic and Optimal Reductions in the lambda-calculus

14.45-15.30 L. Ong

Non-Determinism in a Functional Setting

15.30-16.00 Co�ee Break

16.00-16.45 L. Regnier

A Local and Asynchronous Reduction of lambda-calculus

16.45-17.30 A. Asperti - C. Laneve

Paths, Computations and Labels in the Lambda-Calculus

Thursday, January 21

9.00-9.45 B. Thomsen

Polymorphic Sorts and Types for Concurrent Functional Programs

9.45-10.30 C. Laneve - A. Asperti

Optimal Reductions in Interaction Systems

10.30-11.00 Co�ee Break

11.00-12.00 M. Dam

A temporal Logic for the Lambda-Calculus

12.00-13.00 T.M. Kuo

A Simple Subtype System for FACILE

13.00-14.00 Lunch

14.15-15.00 B. Lisper

Termination Properties of Program Rewriting

15.00 End of the Workshop

4.2 Workshop 2

The workshop was organised by Davide Sangiorgi at University of Edinburgh. (36

participants).

4.2. WORKSHOP 2 35

Monday May 24

9.30-10.00 Opening

10.00-10.45 D. Walker [Warwick,UK]

(Higher-Order pi-calculus and object-oriented languages)

10.45-11.15 Break

11.15-12.00 J.W. Klop [CWI,Holland]

(Pi-calculus as a Combinatory Reduction System)

12.00-12.30 R. Jagadeesan [Imperial College,UK]

(Processes as \Sets of Functions")

12.30-13.00 I. Mackie [Imperial College,UK]

(An Internal Language for Autonomous Categories)

13.00-14.15 Lunch

14.15-15.00 S. Abramsky, S. Gay, R. Nagarajan [Imperial College,UK]

(Interaction Categories: Illustrative Examples)

15.00-15.45 Lamarche [Imperial College,UK]

(On the Proof Net Problem for Additives in Linear Logic

15.45-16.15 Break

16.15-17.00 L. Ong [Cambridge,UK]

Fair games are fully complete for multiplicative

linear logic without the MIX-rule

17.00-17.45 P.-L. Curien [CNRS,Paris]

(On the symmetry of sequentiality)

17.15-18.15 L. Regnier [CNRS,France]

(Virtual reduction: a mechanization)

Tuesday May 25

9.30-10.15 B. Pierce [Edinburgh,UK]

(programming in the pi-calculus)

10.15-11.00 L. Leth, B. Thomsen [ECRC, Germany]

(implementation of FACILE)

11.00-11.30 Break

11.30-13.00 Discussion on implementation issues

13.00-14.15 Lunch

14.15-17:00

Planning for the future of CONFER,

chaired by J.-J. L�evy [INRIA-Rocquencourt, France]

(half an hour break at 15.30 or so for the co�ee)

36 CHAPTER 4. DELIVERABLES

Wednesday May 26

9.30-10.00 Y. Hirshfeld [Edinburgh,UK] (Concrete action structures)

10.00-10.45 J. Parrow [SICS, Sweden]

(Algebraic theories for name passing calculi)

10.45-11.15 Break

11.15-12.00 U. Montanari [Pisa, Italy]

(Late Bisimulation as History Dependent Bisimulation)

12.00-12.30 D. Sangiorgi [Edinburgh,UK]

(A theory of bisimulation for pi-calculus)

12.30-13.00 possibly, some closing remarks or others things..

13.00-14.15 Lunch and closure of the meeting

4.3 Software deliverables

Several pieces of software have been constructed during the �rst year of CONFER.

Some of them have already been made available via the CONFER ftp site at Imperial

College while others are expected to be made available in the near future. This is

rather impressive since software deliverables are only planned for at Milestone 3. The

following is a listing of constructed software.

� Facile programming language

ECRC | A. Giacalone, F. Cosquer, F. Knabe, A. Kramer, T.M. Kuo, L. Leth,

S. Prasad, B. Thomsen. Also with contributions of P. Cregut, J.P. Talpin and C.

Crampton.

� Prototype compiler for �-calculus, based on graph reduction

INRIA | A. Asperti.

� Portable, unobtrusive garbage collection for multiprocessor systems

INRIA | D. Doligez, G. Gonthier, J.J. L�evy.

� Lilac: a prototype functional programming language based on Linear Logic

Imperial College | I. Mackie.

� Typed higher-order programming language based on �-calculus

University of Edinburgh | B. Pierce, D. R�emy, D. Turner.

� The Mobility Workbench (MBW)| a tool for manipulating and analyzing mobile

concurrent systems described in the �-calculus

University of Edinburgh | Faron Moller, Davide Sangiorgi, SICS | Bj�orn Victor.

Some of these pieces of software will be demonstrated at the CONFER workshop

at CWI in Amsterdam and at the Annual review.

As mentioned software deliverables are only due at Milestone 3 at which point the

descriptions will be provided as stipulated in the technical annex.

Chapter 5

Progress

Reports are done along the 4 areas announced in page 4 of the technical annex.

5.1 Foundational models and abstract machines

The area covers properties of basic calculi with bound variables from the �-calculus

to higher-order communication systems. Work in the area is often based on Lafont's

concept of interaction net. The area includes more general schemes such as combinatory

reduction systems, action structures and abstract reduction systems. The area report

includes short summaries of the following e�orts:

� Explicit substitutions

T. Hardin, INRIA Rocquencourt

� Sharing in Linear Logic and the �-calculus

A. Asperti, G. Gonthier, J.-J. L�evy, INRIA Rocquencourt

I. Mackie, Imperial College

C. Laneve, University of Pisa, INRIA Sophia,

V. Danos and L. R�egnier, ENS

� Interaction systems

A. Asperti, INRIA Rocquencourt (University of Bologna),

C. Laneve, University of Pisa, INRIA Sophia,

� Interaction diagrams

J. Parrow, SICS

� �-calculus and interaction nets

S. J. Gay, Imperial College

� Chemical Abstract Machines

L. Leth, B. Thomsen, ECRC

37

38 CHAPTER 5. PROGRESS

� Action Structures

R. Milner, University of Edinburgh

� Combinatory Reduction Systems

J. W. Klop, F. van Raamsdonk, F. de Vries

� Abstract reduction systems

G. Gonthier, J.-J. L�evy, P.-A. Melli�es, INRIA Rocquencourt

5.1.1 Lambda sigma calculus

This work was initialised by Curien (1983) and Hardin (1986) with categorical combi-

nators. Some side-e�ect of this work was the formal de�nition of the abstract machine

of the INRIA implementation of ML (CAML). In 1990, an alternative framework, ex-

plicit substitutions, was proposed by Abadi et al. Basically it is the same except that

expressions are two sorted (terms and environments). It is still di�cult and compli-

cated to prove conuence and termination. But these proofs are more natural. Explicit

substitutions are a very traditional implementation model of beta conversion, since

functional languages are usually implemented with stacks and environments. In his

thesis, Maranget [35] gave full proofs of the correctness and the optimality of imple-

mentations of weak lazy �-calculus, by using explicit substitutions.

Hardin treats the case of connections with the previous calculus of categorical com-

binators [13], the extensionality rule [29]. Curien and Hardin [25] have a easier coun-

terexample to the well-known surjective pairing conuence problem, �rst discovered by

Klop. A great part of the work has been done before the o�cial start of the project.

We have developed two works published during CONFER:

5.1.1.1 From Categorical Combinators to ��-calculi: a quest for conuence

This is work presented by Hardin [13]. The �-calculus is known to be the theoretical

base of functional programming languages. But the substitution, which describes the

replacement of procedure parameters, belongs only to the meta-language and this is

a major drawback when dealing with compilation. Therefore, extensions of the �-

calculus, able to manipulate explicitly substitutions, and still conuent, are required.

The categorical Combinatory Logic, introduced in 1983, and the ��-calculi, presented

in 1988 and 1989, answers to this question. We give here a survey of these theories,

explaining their evolution from a conuence point of view. This report does not contain

new results and remains rather informal, avoiding too technical details.

5.1.1.2 Strong normalisation of Substitutions

This is work presented at MFCS'92 [7]. The strong normalization of the �-calculus, the

subcalculus which computes substitutions, may be inferred from the strong normaliza-

tion of a subcalculus of CCL [30]. One presents in this paper an independent proof of

the termination of the �-calculus. We hope that the method developed for this new

proof may help to obtain the strong normalisation of the typed ��-calculus.

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 39

As future works, the �-reduction permit to look at higher-order uni�cation in order

to use e�ciently methods such as narrowing. Is it possible to use partial substitution for

this uni�cation? This work is currently studied with C. Kirchner. Another interesting

problem is to solve the strong normalisation in the case of the �rst-order typed calculus.

5.1.2 Sharing in Linear Logic and the �-calculus

This work is a basis for exploring the intrinsic parallelism inside the �-calculus, since

�-rule is split in more atomic operations.

The problem is to minimise the number of steps when reducing lambda expressions.

Lamping [34] and Kathail [33] recently gave new and very complicated algorithms. By

connecting this problem and the geometry of interaction given by Girard, Gonthier[9]

was able to develop much simpler sharing methods in the �-calculus. Linear Logic deals

with the explicit duplication of logical formulae, and it is the corresponding problem

which arises with duplication of subterms in the �-calculus. Gonthier[10, 11] developed

the full theory of sharing in linear logic without additives.

There are two possible translations of the �-calculus into linear logic since types

may be D = (!D) �� D or D = !(D �� D). Gonthier [9] considered the second one,

Asperti[1] gave a category theoretic version of the �rst one.

Mackie considered the trade-o� between book-keeping operations and beta conver-

sions, and tries to reduce the former. With a linear logic viewpoint, he considered

�-abstractions as boxes, but implemented �-binders with a pointer to the list of oc-

currences of its bound variable. Global operations are made on boxes, except when a

copy is to be done, in which case a normal form is computed on any path from the

binder to its bound variables. Copying is done by interaction net rules. For instance,

when M = �((�xy:xy)I), where � = �x:xx and I = �x:x, then M reduces to normal

form in 13 interactions (4 beta steps) instead of 54 in Gonthier's. Mackie's reduction

strategy is not optimal in some cases, but is better than Wadsworth's old method.

Asperti and Laneve developed a new computational framework, the interaction

systems. These are higher order rewriting systems generalizing Lafont's interaction

nets, retaining the idea of binary interaction between constructors and destructors

through distinguished, complementary ports. The interaction systems also form a sub-

class of combinatory reduction systems of Klop, containing the �-calculus. A major part

of the research consisted in adapting and extending to interaction systems the notion

of optimal computations, as introduced by L�evy for the �-calculus. In particular, it

has been shown that the Lamping-Gonthier optimal implementation of the �-calculus

can be smoothly extended to interaction systems.

In the same theme, they have further studied L�evy's notion of family of redexes of

a �-term, characterizing this notion by means of paths in the term. The idea is that

redexes in the same family are created by contractions on a unique common path in a

suitable graphical representation of the initial term (where a bound variable refers to

the corresponding abstraction). This provides new evidence about the common nature

of redexes of the same family, and therefore also about the possibility of sharing their

reduction. Then our characterization may be seen as an alternative viewpoint on graph

40 CHAPTER 5. PROGRESS

reduction techniques of Lamping and Gonthier implementing optimal reductions.

5.1.2.1 Linear Logic without Boxes

This is work by Gonthier [10, 11]. The �-calculus is not entirely explicit about the

operations of erasing and duplicating arguments. These operations are important both

in the theory of the �-calculus and in its implementations, yet they are typically treated

somewhat informally, implicitly. The proof nets of Linear Logic [27] provide a re�ne-

ment of the �-calculus where these operations become explicit; they are even reected

in the type system for proof nets (that is, in Linear Logic). Abramsky, Wadler, and

others have suggested that this new expressiveness makes Linear Logic a good basis for

principled and useful improvements in functional-programming systems.

In some sense, however, Linear Logic could go further. The usual formulation of

proof nets involves boxes. The box is the unit for discarding and copying fragments

of proof nets. It works as a synchronization mark. The disappearance, reproduction,

opening, and movement of boxes remain global operations; full boxes are handled at

once, not incrementally, so for example it is not possible to copy a box gradually, in

little pieces. As Girard points out, boxes are a bridle to parallelism. They are also an

obstacle to sharing: the box formalism does not support some sophisticated mechanisms

for \partial sharing" of common subexpressions available in �-calculus implementations

such as Lamping's and Kathail's. These sharing mechanisms are essential for optimality

in reductions, and we believe that they can be of practical value. Moreover, boxes

complicate the proof theory of Linear Logic; with boxes, Linear Logic falls short of

giving a fully local account of computation.

In this work one describes a translation of proof nets into a system of sharing graphs.

Proof-net reduction is simulated with graph rewriting. Sharing graphs are interaction

nets, in the sense of Lafont; hence rewriting is obviously Church-Rosser, and a naive

implementation is straightforward. Everything in the graph system is entirely local. In

particular, there are no boxes. Instead, brackets are included as nodes in the system,

and they represent the boundaries of boxes. These brackets can propagate and interact

with other nodes independently of one another, so boxes can disintegrate. Partial

copying and partial sharing become possible.

After translation of LL proof nets into sharing graphs, 12 graph-reduction rules

permit calculations on these graphs. It is even possible to reduce this set to 6 rules

with a bus notation (as for hardware). Soundness of these rules is proved by the

introduction of the so-called context semantics. Contexts (not to confuse with the

ones of the �-calculus) are values given to arcs of the sharing graphs, and the context

semantics is the input-output relation between conclusions of the sharing graphs. The

exact relation between contexts and Girard's Geometry fo Interaction is studied.

A �rst correctness proof is done through the de�nition of a read-back procedure

from sharing graphs into nets. Each graph reduction step correspond to several (maybe

none) proof nets cut steps. Another proof considers only normal forms of proof nets

and show correctness with respect to normal forms. This method uses isomorphisms

of context semantics and accessibility.

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 41

The optimality part is sketched in the LICS version, and is rather simple. In general,

proofs of this work are very technical and rather di�cult.

5.1.2.2 Linear Logic, Comonads, and Optimal Reductions

This is work by Asperti [1]. The paper discusses, in a categorical perspective, some

recent works on optimal-graph reduction techniques for the �-calculus. In particular,

some of the control operators used in the implementation are nicely related to the

two operations associated with the comonad \!" of Linear Logic. The rewriting rules

can be then understood as a \local implementation" of naturality laws, that is as the

broadcasting of some information from the output to the inputs of a term, following its

connected structure.

... The presentation is intended to be informal, but the main points are

discussed in an intuitively appealing way. Hence the paper contains not

only improvements on the treatment of Gonthier, Abadi and L�evy, but also

a much more accessible presentation ... (textually borrowed from the referee

report).

5.1.2.3 Paths, Computations and Labels in the �-calculus

This is work by Asperti and Laneve [2]. It provides a new characterization of L�evy's

redex-families in the �-calculus as suitable paths in the initial term of the derivation.

The idea is that redexes in a same family are created by \contraction" (via �-reduction)

of a unique common path in the initial term. This fact provides new evidence about

the \common nature" of redexes in a same family, and about the possibility of sharing

their reduction. From this point of view, our characterization underlies all recent

works on optimal graph reduction techniques for the �-calculus, providing an original

and intuitive understanding of optimal implementations.

As a simple by-product, we prove that neither overlining nor underlining are re-

quired in L�evy's labelling.

5.1.2.4 Local and Asynchronous Beta-Reduction

Vincent Danos and Laurent R�egnier [8] have presented a new way of computing �-

terms. They have provided an embedding of �-terms into the so-called virtual nets,

which are graphs labelled by some coe�cients of the dynamic algebra. In particular

they have de�ned and studied a notion of virtual reduction which is a graph reduction

based on the labelling of the virtual net. A single step of virtual reduction consists in

composing two edges of the graph so that the product of their labels is non null in the

dynamic algebra. In some sense, virtual reduction is the computation of the transitive

closure of the virtual net. It is shown to be conuent and preserving the execution

formula of Girard. This last property makes virtual reduction a good candidate for

computing �-terms.

42 CHAPTER 5. PROGRESS

The notion of virtual reduction comes from Girard's program on the geometry of

interaction. It is strongly linked with the sharing reduction techniques and the work of

Abadi, Gonthier and L�evy on Lamping's sharing graphs. This relation is at the moment

under study in collaboration with Asperti and Laneve. In some sense virtual reduction

is another way, may be more abstract, to present the sharing graphs.

5.1.2.5 A lambda evaluator based on Interaction Nets

This work [16] in concerned with implementing the theory of optimal reduction in

the �-calculus. More speci�cally the work is oriented towards �nding Interaction Net

implementations of the �-calculus (and hence functional programming languages) where

we try to share as much as possible. This work is strongly related to the work of

Gonthier, Abadi and L�evy [10] and also Asperti and Leneve [4], where a proven correct

and optimal implementation is given.

A little analysis of the extant algorithms for implementing optimal reduction indi-

cates a trade-o�: optimality vs. book-keeping. Indeed the cost of maintaining such a

complicated data-structure outweighs the gains from optimality. The global aim of our

work is to �nd a middle ground: as much sharing as possible with as little book-keeping

as possible.

Several algorithms have been developed and extended to handle features from real

programming languages, for example recursion, data-structures and references. It is

hoped that these algorithms will be implemented, (to assess the performance in com-

parison with \standard" implementation techniques), during the remaining part of the

CONFER project.

Further related work is underway to use Linear Logic in a more direct way by

exploring the dynamic semantics|the Geometry of Interaction|as an implementation

technique. The basic notion considered here is that of data-ow. More speci�cally,

pushing a single token around a �xed network:

� the network is a Linear Logic proof structure; and

� the token is a data-structure which records the history of the path (modulo cuts).

The path taken by the token is deterministic, i.e. at each choice point the token

always has the information on which way to go next. It is hoped that very e�cient

implementation of the �-calculus can be generated using such techniques.

This work is related to the work of Danos and R�egnier [8] where a notion of \virtual

reduction" is introduced.

5.1.3 Interaction Systems

This is work by Asperti and Laneve [3]. A new class of higher order rewriting systems,

called Interaction Systems, is introduced, and their relation with intuitionistic logic is

discussed. Interaction Systems provide a nice integration of the functional paradigm

with a rich class of data structures (all inductive types), and basic control ow con-

structs such as conditionals and (primitive or general) recursion.

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 43

More speci�cally, Interaction Systems are the intuitionistic generalization of La-

font's Interaction Nets, from which they borrow the logical setting, the bipartition

of operator into constructors and destructors, and the principle of binary interaction.

From a di�erent point of view, Interaction Systems (IS's) can be also regarded as the

subclass of Klop's Combinatory Reduction Systems where the Curry-Howard (Proofs

as Proposition) analogy still \makes sense". This means that we may associate every

IS with a suitable \intuitionistic" system: constructors and destructors respectively

correspond to right and left introduction rules, interaction is cut and computation is

cut-elimination.

Optimal reductions in Interaction Systems [4] generalize the ones of �-calculus and

linear logic. Lamping's optimal graph reduction technique for the �-calculus is gen-

eralized to a new class of higher order rewriting systems, called Interaction-Systems.

This provides a uniform description, in Lamping's style, of other basic computational

constructs such as conditionals and recursion.

The paper by Asperti and Laneve [4] mainly deals with the theoretical aspects of

optimal reduction in Interaction Systems (family relation, labeling, extraction, and so

on). This is the �rst signi�cant generalization of the theory of optimal reduction in a

supersystem of the �-calculus. Full versions of the article are in [5, 6].

5.1.4 Interaction Diagrams

Interaction diagrams in [21] are graphic representations of concurrent processes with

evolving access capabilities; in particular they illustrate the points of access and rela-

tions between them. The basic step of computation is the migration of an access point

between processes. This paper explains interaction diagrams through a sequence of ex-

amples. Diagrams can be regarded as graphic counterparts of terms in the �-calculus

and illuminate some interesting points on its construction.

5.1.5 �-Calculus and Interaction Nets

This work was presented at the Linear Logic Workshop held at Cornell University in

June 1993 [9]; a paper is in preparation.

Milner's �-calculus [36] is a notation for communicating processes, intended to play a

role in concurrency analogous to that of the lambda calculus in sequential programming.

Processes communicate by sending or receiving names along channels; an essential

feature is that channels are identi�ed by names of the same nature as those that can

be passed along them. It is thus a generalisation of CCS, of considerable power since

the name-passing feature allows many of the e�ects of transmitting processes from one

place to another to be achieved|instead of sending a process, one sends a name which

gives access to that process.

Interaction Nets is a programming language developed by Lafont [32]. It is based

on, but is a generalisation of, the proof nets of Classical Linear Logic. One programs

by de�ning new connectives, and rules for rewriting cuts between them. Thus it is

natural to view programs as proofs (in some logic de�ned by the connectives used

44 CHAPTER 5. PROGRESS

in the program) and execution as cut elimination. More concretely, an Interaction

Net program consists of a set of nodes, a graph built from the nodes, and rewriting

rules which replace adjacent pairs of nodes by new graphs. The rewriting rules have

a restricted form owing to the logical basis: each node has a distinguished \principal

port", and it is only when two nodes are connected by an edge between their principal

ports that a rewrite can take place.

In the area of types for concurrency, one aim is to view processes as proofs in

a logic associated with the type system; this view would extend the Propositions as

Types paradigm from sequential (functional) programming to concurrent programming.

A translation of a fragment of the �-calculus into Interaction Nets has been developed,

as a step towards a representation of processes as proofs. The fragment includes the

name-passing feature of the �-calculus, and allows interesting processes to be de�ned.

Under the translation, parallel composition of processes becomes connection between

graphs; the subsequent communication between the processes becomes a graph rewrite.

Work is in progress to develop connections between sorts (types) in the �-calculus and

the structure of types (propositions) in Interaction Nets.

5.1.6 Some Facile Chemistry

In the paper [15], we use the CHemical Abstract Machine (CHAM) framework for

discussing various semantics for the Facile programming language and for formalising

(parts of) its implementations. We use these formal descriptions to argue (informally)

about implementability and cost of implementation in terms of low level machinery

needed to implement the given semantics.

We take the Facile language as source for discussion, but the results also apply to

several new languages such as CML and Poly/ML. Characteristic for all these languages

is that they combine ideas from the �-calculus and process algebra, such as CCS, to

support high level constructs for programming concurrent, parallel and/or distributed

systems.

The paper may also be seen as a case study in comparing semantic descriptions using

structural operational semantics and the CHemical Abstract Machine framework.

5.1.7 Action Structures

Actions structures were introduced by Milner [37], to provide a general framework for

models of concurrent computation and of communicating systems. The motivation

is that, although such models often di�er in many details, they all share the notions

of information ow, independence (or parallelism) and parametrisation. An action

structure is a monoidal category with extra structure, and the three concepts mentioned

are represented respectively by composition, tensor product and (part of the added

structure) an indexed family of functors called abstractors . The arrows (morphisms)

of an action structure are the actions, and may be elementary or complex; the second

extra structural ingredient in an action structure is a pre-order over the arrows known

as the reaction relation, which represents dynamics.

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 45

Action structures may be concrete or abstract. Within the period of CONFER,

considerable progress has been made in the form of a class of concrete action structures

known as action calculi [17]. These calculi are inspired partly by the Chemical Ab-

stract Machine of Berry and Boudol; they di�er mainly in the emphasis upon algebraic

structure. Action calculi represent the mechanics of concurrency; for example there is

a hierarchy of action calculi for di�erent strengths of the �-calculus, and at least one

interesting action calculus for Petri nets. Those for the �-calculus [18, 19] have thrown

a useful new light upon the �-calculus, since they can be presented in graphical form;

this graphical representation is known as �-nets . These nets elucidate several dynamic

properties of �-calculus rather more clearly than a formal system. For example, they

clarify the power of the pre�xing or guarding operation which �-calculus inherits from

CCS. There is a strong correspondence with Parrow's interaction diagrams [21]; this

link will be followed up in CONFER.

In recent (unpublished) work, Sangiorgi's de�nition of the Higher-Order �-calculus

[22] has been generalised by Milner to allow an arbitrary action calculus to be lifted to

higher-order. In fact, this step opens up several future lines of research within CON-

FER. For it turns out that the simplest action calculus of all, when lifted to higher-order,

becomes the typed �-calculus; moreover, this is embedded in every other higher-order

action structure. Therefore phenomena of reduction in �-calculus can now be studied

alongside the dynamics of any action calculus {for example, Petri nets. In particular,

the \lifting" proceeds via a mechanism which is essentially explicit substitution in the

sense of the ��-calculus [13]; thus, the question of strong normalisation for the typed

version of this calculus { an apparently di�cult open problem { now gains wider im-

portance. Furthermore, since the action calculus for �-calculus has a graphical form,

its higher-order version should also have a graphical form; an important task is to see

how this relates to the various graphical presentations of �-calculus which are cited in

this report.

More practically, action calculi have a molecular representation which strongly sug-

gests the notion of a program module; this opens the way for experimental language

design based upon action calculi, once they are better understood.

5.1.8 Combinatory Reduction systems

CRSs combine �rst-order term rewriting with bound variables. The paper [14] gives a

detailed introduction with several examples such as second order typed �-calculus. A

short proof of conuence is given, and the notion of superdevelopments is discussed.

The conuence proof uses the method of P. Aczel, who �rst introduced the basic idea

of CRSs. It is close to the well-known proof by Tait and Martin-Loef for �-calculus,

but uses another notion of parallel reduction. Whereas Tait and Martin Loef's parallel

reduction corresponds to the classical notion of developments, Aczel's parallel reduction

corresponds to what we call superdevelopments, a more liberal notion of reduction. Like

developments, also superdevelopments are always terminating.

A detailed comparison is made between CRSs and Nipkow's HRSs. The two formats

turn out to be roughly co-extensive, which is somewhat surprising since HRSs employ

46 CHAPTER 5. PROGRESS

a type discipline whereas CRSs are type-free. Every CRS can be simulated by a HRS

and vice versa; the di�erence is in some cases that the simulating CRS performs several

rewrite step against one step in the simulated HRS. In the HRS framework typed

�-calculus is used as a meta-language to de�ne substitutions and rewrite steps; the

advantage is that typed �-calculus is well-understood and is conuent and terminating,

ensuring at once the well-de�nedness of several operations in a HRS. On the other

hand, CRSs employ basically the Finite Developments property to de�ne substitutions.

5.1.9 Abstract reductions systems

This is work by Melli�es on standardisation and �nite developments. Gonthier, Mel-

li�es, L�evy [12] gave an abstract version of the classical standardisation theorem of the

�-calculus. The critical notion was to de�ne what is a standard reduction by only

considering nesting of redexes and the residual relation between redexes. The proof

of Klop for the �-calculus was extended by only considering 3 axioms between nesting

and residuals. The uniqueness of the standard reduction inside a \permutation class"

(for instance only one to get the normal form) was recovered by introducing an axiom

for stability in Berry's sense.

However the �nite development theorem, which states that the order of contracting

a given set of redexes is not relevant, was assumed as built-in inside the previous

abstract reductions systems. Melli�es has now an axiomatic version of this theorem,

giving a very natural proof of the �nite developments theorem inside the �-calculus.

5.1.10 Interrelations between sites and to other areas

Lambda sigma calculus has been studied in ENS and Rocquencourt, and during fre-

quent visits of Hardin to CWI.

Optimal reductions is a work shared by Bologna, ENS, Imperial College, INRIA-

Rocquencourt and INRIA Sophia. Asperti and Laneve have worked together during 3

months at Rocquencourt. Mackie is also 3 month at Ecole polytechnique and INRIA

Rocquencourt. Exchanges exist between Marseille(R�egnier) and ENS. Part of the work

has also been done at DEC System Research Center (Palo Alto).

Combinatory systems is a theme shared by Bologna, CWI, INRIA Sophia, INRIA

Rocquencourt. It relates to work on processes in Edinburgh. Some of the future work

was started by Ariola, who stayed 12 months at Rocquencourt.

Interaction Diagrams is resulting of a strong connection between Edinburgh and

SICS.

Work by Gay is related to Area 3, since it is concerned with types for concurrency

as well as being a study of the connection between two existing calculi.

Abstract reduction systems is now more particular to Rocquencourt, but there are

potential exchanges with CWI and Bologna.

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 47

5.1.11 Future Work

As a general goal, this area of CONFER has to make the bridge between the �-calculus

and of the �-calculus at a very syntactical level. Many of the problems come from the

absence of a standard setting for the treatment of bound variables. It begins to appear

that action structures may provide such a setting, particularly the higher-order action

calculi.

There will be a full paper with Abadi on sharing in the �-calculus. It would be

interesting to develop the theory with �-rules, in a more general setting than Interaction

Systems. Practical output of such evaluators has to be studied. This might be done

by using ��-calculi.

With abstract reduction systems, it would be interesting to understand the basic

properties which make strong normalisation (rather than termination of �nite develop-

ments). An abstract theory of redexes families would also be of interest. This should

also contribute to the understanding of higher-order action calculi.

The work on action structures is strongly related to Area 2, on Calculi; it was

initiated partly to gain a better understanding of �-calculus, and in particular the

general treatment of higher order action calculi is an enrichment of Sangiorgi's higher

order �-calculus. The two will be studied together.

Graphical representations of �-calculus have been given by both J. Parrow and

R. Milner. They are strongly related, but their di�erences are important and must be

studied. If a graphical form of higher-order �-calculus cxan be found, this must be

compared to graphical forms of reduction in �-calculus, such as the interaction systems

of A. Asperti and C. Laneve.

J.A. Bergstra and J.W. Klop study �-calculus as a Combinatory Reduction Systems.

In a talk at the Edinburgh CONFER workshop it was shown how a subset of �-calculus

can be modeled as an orthogonal CRS. Writing a note on this was suspended in favour

of other developments.

V. van Oostrom, F. van Raamsdonk currently work on conuence for weakly or-

thogonal CRSs. The authors recently found a simple proof for conuence of weakly

orthogonal CRSs. This is important because many interesting calculi are only weakly

orthogonal, e.g. second order typed lambda calculus with beta and eta rule. Also the

CRS version of �-calculus has some (innocent) critical pairs, i.e. it is weakly orthogonal.

J.W. Klop, Z. Ariola work on modular term graph rewriting and cyclic lambda graph

rewriting. It remains to be seen whether this study �ts in CONFER; it originated in

ESPRIT BRA Semagraph, now terminated (but continued as Working Group). It

may �t in CONFER, in view of notions of bound variable, hiding of node names,

encapsulating boxes. Especially in cyclic lambda graph rewriting there are some curious

phenomena regarding bound variables.

Simon Gay aims at bringing the Interaction Nets representation of �-calculus closer

to the Proof Nets of Classical Linear Logic. It is known that Proof Nets can be imple-

mented in Interaction Nets by means of a small set of basic nodes [24]. A representation

of the nodes used in the �-calculus translation in terms of these basic nodes would be

a step in the right direction.

48 CHAPTER 5. PROGRESS

5.1.12 List of Reports

There are two lists; �rst, the papers written as part of CONFER, then (below the

asterisks) a list of previous work cited.

[1] A. Asperti, Linear Logic, Comonads, and Optimal Reductions, Fundamenta

informaticae, Special Issue devoted to \Categories in Computer Science",

Polish Academy of Sciences (invited paper). To appear.

[2] A. Asperti, C. Laneve, Paths, Computations and Labels in the �-calculus,

Proc. of the 5th International Conference on Rewriting Techniques and

Applications, RTA'93, Montreal. June 1993.

[3] A. Asperti, C. Laneve, Interaction Systems, HOA'93. International Work-

shop on Higher-Order Algebra, Logic and Term Rewriting. Amsterdam,

September 1993.

[4] A. Asperti, C. Laneve, Optimal Reductions in Interaction Systems, Proc.

of the 4th Joint Conference on the Theory and Practice of Software Devel-

opment, TAPSOFT'93, Orsay (France). April 1993.

[5] A. Asperti, C. Laneve, Interaction Systems I: the theory of optimal re-

ductions, Rapport Technique 1748, INRIA-Rocquencourt. Submitted to

Mathematical Structures in Computer Science. 1992.

[6] A. Asperti, C. Laneve, Interaction Systems II: the practice of optimal reduc-

tions. Technical Report UBLCS-93-12, Laboratory for Computer Science,

University of Bologna. Submitted to Theoretical Computer Science. 1993.

[7] P.-L. Curien, T. Hardin, A. Rios, Strong normalisation of Substitutions,

MFCS, Prague, 1992.

[8] V. Danos, L. R�egnier, Local and Asynchronous Beta-Reduction 8th LICS,

Montreal, 1993.

[9] S. J. Gay. �-Calculus and Interaction Nets. Talk given at the Linear Logic

Workshop, Cornell University, June 1993.

[10] G. Gonthier, M. Abadi, J.-J. L�evy, Linear Logic without Boxes, 7th LICS,

Santa Cruz, 1992.

[11] G. Gonthier, M. Abadi, J.-J. L�evy, Linear Logic without Boxes, Accepted

for the special LICS issue of Information & Computation, to be submitted

to this journal.

[12] G. Gonthier, J.-J. L�evy, P.-A. Melli�es, An abstract standardisation theorem,

7th LICS, Santa Cruz, 1992.

5.1. FOUNDATIONAL MODELS AND ABSTRACT MACHINES 49

[13] T. Hardin, From Categorical Combinators to ��-calculi: a quest for con-

uence, INRIA Report 1777 - November 1992.

[14] J.W. Klop, V. van Oostrom, F. van Raamsdonk, Combinatory Reduction

Systems: introduction and survey, CWI Report CS-R93xx (to appear); to

be published in Theor. Comp. Sci.

[15] L. Leth and B. Thomsen, Some Facile Chemistry, Technical report ECRC-

92-14, 1992, The �rst version of this technical report was �nished before

the o�cial start of CONFER. A Journal version has been prepared and is

currently under revision for publication. This version will be considered a

deliverable for CONFER.

[16] I. Mackie, A lambda evaluator based on Interaction Nets Paper in prepa-

ration. (missing pictures)

[17] R. Milner. Action calculi, or concrete action structures, Proc. MFCS Con-

ference, Gdansk, Poland, 1993.

[18] R. Milner. Action structures for the �-Calculus, Report ECS-LFCS-93-264,

Computer Science Dept, University of Edinburgh, 1993 (35 pages).

[19] R. Milner. An action structure for synchronous �-calculus, Proc. FCT

Conference, Szeged, Hungary, 1993.

[20] V. van Oostrom, F. van Raamsdonk. Comparing Combinatory Reduction

Systems and Higher-order Rewrite Systems, Report IR-333, Free University

Amsterdam, Aug. 1993; to appear in Proceedings of HOA '93 (Intern.

Workshop on Higher Order Algebra, Logic and Term Rewriting, September

1993, Amsterdam).

[21] J. Parrow. Interaction Diagrams, Rex lecture 1993, Draft version.

[22] D. Sangiorgi. From �-calculus to Higher-Order �-calculus | and back,

Proc. TAPSOFT'93, Lecture Notes in Computer Science, Springer-Verlag,

volume 668, pp. 151{166, 1993.

THE FOLLOWING REFER TO PREVIOUS WORK:

[23] M. Abadi, L. Cardelli, P.-L. Curien, J.-J. L�evy, Explicit Substitutions, ACM

Conference on Principles of Programming Languages, San Francisco, 1990.

[24] M. Abadi and G. Gonthier. Linear Logic Without Boxes Talk given at the

Linear Logic Workshop, Cornell University, June 1993.

50 CHAPTER 5. PROGRESS

[25] P.-L. Curien, T. Hardin, Yet yet a counterexample for �-calculus+SP, Jour-

nal of functional Programming. to appear.

[26] P.-L. Curien, T. Hardin, J.-J. L�evy, Conuence Properties of Weak and

Strong Calculi of Explicit Substitutions, submitted to JACM.

[27] J.-Y. Girard. Linear Logic, Theoretical Computer Science, 50, 1987, pp.

1{102

[28] G. Gonthier, M. Abadi, J.J. L�evy. The geometry of optimal lambda re-

duction. Proc. of the 19th Symposium on Principles of Programming Lan-

guages (POPL 92). 1992.

[29] T. Hardin, �-reduction for the languages of Explicit Substitutions, Algebraic

and Logic Programming Conference, Volterra, Italy, August 1992.

[30] T. Hardin and A. Laville, Proof of Termination of The Rewriting System

Subst on C.C.L. Theoretical Computer Sc., 46, pp 305{312, 1986.

[31] T. Hardin, J.-J. L�evy, A Conuent Calculus of Substitutions, France-Japan

Arti�cial Intelligence and Computer Science Symposium, Izu, 1989.

[32] Y. Lafont. Interaction Nets. In POPL'90 Proceedings, ACM Press.

[33] V. Kathail. Optimal interpreters for lambda-calculus based functional lan-

guages, PhD, MIT, 1990.

[34] J. Lamping, An algorithm for optimal lambda calculus reduction 7th POPL,

1990.

[35] L. Maranget. La strat�egie paresseuse PhD, Universit�e de Paris 7, July 6,

1992.

[36] R. Milner. The Polyadic �-Calculus: A Tutorial, in Logic and Algebra of

Speci�cation, ed. F.L. Bauer, W. Brauer and H. Schwichtenberg, Springer

Verlag, 1993.

[37] R. Milner. Action structures, Research Report LFCS{92{249, Laboratory

for Foundations of Computer Science, Computer Science Department, Ed-

inburgh University, 1992.

5.2. CALCULI 51

5.2 Calculi

This section gives a short summary of the work pursued in the context of the CONFER

BRA in the area of Calculi. During the �rst year of the CONFER BRA a large e�ort

has been put into the area of Calculi. This is reected by the impressive number

of 14 reports/publications documenting the e�ort so far. Looking at the summaries

of the work it is evident that related work done at other sites in the consortium is

referenced often. It is also worth mentioning that concrete collaboration between sites

is taking place. This reects one of the essential ideas of the CONFER project, namely

crossfertilization of ideas among fellow researchers in the consortium.

Since the area of Calculi is rather large we have divided it into three subareas:

� Comparing name passing with agent passing

� Algebraic theories, model checking and tool

� Adding physical distribution

Each of these will be treated as area reports including summary, work done, inter-

relation between sites and other areas, future work and list of reports.

5.2.1 Comparing name passing with agent passing

5.2.1.1 Summary

One of the main objectives in the Calculi area is to understand the relationship between

name passing, as found in the �-calculus and to some extent in the concurrent constraint

paradigm (cc paradigm), and agent passing as found in the �-calculus as well as in

higher order process calculi such as CHOCS and HO�. As the following listing shows

this has been a very active �eld of research in the project and comprises the following

contributions:

� The Lambda-Calculus with Multiplicities

(G. Boudol)

� The Lazy Lambda Calculus in a Concurrency Scenario

(D. Sangiorgi)

� An investigation into Functions as Processes

(D. Sangiorgi)

� Non deterministic lazy �-calculus vs. �-calculus

(C. Lavatelli)

� From �-calculus to Higher-Order �-calculus | and back

(D. Sangiorgi)

� On the Reduction of Chocs Bisimulation to �-calculus Bisimulation

(R. Amadio)

52 CHAPTER 5. PROGRESS

� Mobility in the cc Paradigm

(C. Laneve, U. Montanari)

� Process Calculi and Parallel Object-Oriented Programming Languages (D.Walker)

� Non-determinism in a Functional Setting

(C.-H. L. Ong)

Work Done

5.2.1.2 The Lambda-Calculus with Multiplicities

G. Boudol has recently introduced and started to study a re�nement of the �-calculus

[Bou93], based on the notion of multiplicity. This emerged from the study of Milner's

encoding of the lazy �-calculus of Abramsky into the �-calculus. Milner has shown

that this encoding is adequate, in the sense that any two terms that can be separated

by �-calculus contexts can also be separated by �-calculus means. The converse is not

true however, and this means that the �-calculus is strictly more powerful in some

sense than the lazy �-calculus. This topic was further investigated by Sangiorgi who

showed that what is missing from the �-calculus, to make it as powerful as the �-

calculus, is essentially a non-deterministic choice operator. This full-abstraction result

was established with respect to weak barbed congruence as the notion of semantic

equality for both calculi.

There is however a canonical interpretation for the lazy �-calculus, as shown by

Abramsky. This interpretation has as domain a lifted continuous functions space, and

the non-deterministic choice may be interpreted in this domain as the join, that is

parallel composition of functions (see [Bou90]). Then one may wonder whether the

�-calculus encoding is fully abstract with respect to the resulting canonical semantic

equality. It turns out that this is not true, and the reason is quite instructive: in the

encoding, one uses the replication of the arguments, that is an in�nite parallel composi-

tion of them, to deal with their possible duplication during the reduction process. Then

by providing only a limited number of copies of an argument, one is able to distinguish

in the �-calculus some terms which are equated in the canonical interpretation, such

as xx and x(�y:xy).

This suggests to introduce a re�nement of the �-calculus, where the arguments

come with an explicit (�nite or in�nite) multiplicity, indicating how many copies of

them are available. More generally, an argument in this re�ned calculus will be a

multiset of terms, that is a bag of resources. To de�ne the evaluation mechanism, and

more generally the reduction process in this �-calculus with multiplicities, it is quite

convenient to use explicit substitutions, as proposed by Curien et al. In the paper

[Bou93] it is shown that we thus obtain a strict re�nement of the lazy �-calculus. In

particular, one is able to de�ne a non-deterministic choice, in exactly the same way as

it would be de�ned in the �-calculus. Moreover, some other new phenomena arise, like

the possibility of deadlocks during the evaluation.

We show in the paper that the �-calculus with multiplicities has a natural logical

interpretation, which is a re�nement of the semantics given by Coppo et al. by means

5.2. CALCULI 53

of the intersection types discipline. Our logic is an a�ne logic, following Girard's termi-

nology, that is we use the weakening rule while disallowing the contraction rule. In the

logic the conjunction is managed in a multiplicative manner { again, following Girard's

terminology. We show that the logical interpretation is adequate, by establishing that

a term has a non-trivial interpretation if and only if its evaluation may terminate on a

value.

5.2.1.3 The Lazy Lambda Calculus in a Concurrency Scenario

The use of �-calculus in richer settings, possibly involving parallelism, is examined in

terms of the e�ect on the equivalence between �-terms. D. Sangiorgi concentrates on

Abramsky's lazy �-calculus [Abr89], following two directions. Firstly, the �-calculus is

studied within a process calculus by examining the equivalence

�

$ induced by Milner's

encoding into the �-calculus. We start from a characterisation of

�

$ presented in

[San92]. We derive a few simpler operational characterisations, from which we prove

full abstraction w.r.t. L�evy-Longo Trees. Secondly, we examine Abramsky's applicative

bisimulation when the �-calculus is augmented with (well-formed) operators, that is

symbols equipped with reduction rules describing their behaviour. In this way, the

maximal discrimination between pure �-terms (i.e. the �nest behavioural equivalence)

is obtained when all operators are used. We prove that the presence of certain non-

deterministic operators is su�cient and necessary to induce it and that it coincides with

the discrimination given by

�

$. We conclude that the introduction of non-determinism

into the �- calculus is exactly what makes applicative bisimulation appropriate for

reasoning about the functional terms when concurrent features are also present in the

language, or when they are embedded into a concurrent language.

5.2.1.4 An investigation into Functions as Processes

In [Mil92] Milner examines the encoding of the �-calculus into the �-calculus [MPW92].

The former is the universally accepted basis for computations with functions, the latter

aims at being its counterpart for computations with processes. The primary goal of

this paper by D. Sangiorgi is to continue the study of Milner's encodings. We focus

mainly on the lazy �-calculus [Abr87]. We show that its encoding gives rise to a �-

model, in which a weak form of extensionality holds. However the model is not fully

abstract: To obtain full abstraction, we examine both the restrictive approach, in which

the semantic domain of processes is cut down, and the expansive approach, in which �-

calculus is enriched with constants to obtain a direct characterisation of the equivalence

on �-terms induced, via the encoding, by the behavioural equivalence adopted on the

processes. Our results are derived exploiting an intermediate representation of Milner's

encodings into the Higher-Order �-calculus, an !-order extension of �-calculus where

also agents may be transmitted. For this, it is essential the use of the fully abstract

compilation from Higher-Order �-calculus to �-calculus studied in [San92].

54 CHAPTER 5. PROGRESS

5.2.1.5 Non deterministic lazy �-calculus vs. �-calculus

C. Lavatelli has examined and compared various lambda calculi with parallel and con-

vergence testing. The �

j

-calculus, a lazy calculus augmented with a non-deterministic

choice operator and a convergence testing combinator, has emerged as a suitable lan-

guage to be encoded into the �-calculus. The substitution process in �

j

is managed in a

semi-explicit way via the use of closures for variables and abstractions. The semantics

associated to both �

j

and the �-calculus are based on contextual testing preorders. An

encoding of �

j

into �-calculus is de�ned and it is proved adequate with respect to those

semantics. However, the encoding is not fully-adequate. Standard examples show that

the �-calculus is still more discriminating than �

j

.

This work builds on previous results by Milner, Sangiorgi and Thomsen, among oth-

ers, which analyse the expressive power of �-calculus. In these studies it was observed

that the standard translation of the lazy �-calculus into �-calculus is adequate (but

not fully adequate) w.r.t. to suitable notions of bisimulation. Later, Sangiorgi showed

that adding to the lazy �-calculus a non-deterministic operator and providing it with

a strong notion of testing equivalence (which behaves very much like a bisimulation

equivalence) is enough to get full adequacy. Lavatelli's work shows that whenever the

semantics is based on Morris' contextual testing equivalence then non-determinancy is

not the only extra-feature which distinguishes �-calculus from its �-calculus embedding.

5.2.1.6 From �-calculus to Higher-Order �-calculus | and back

D. Sangiorgi compares the �rst-order and the higher-order paradigms for the repre-

sentation of mobility in process algebras. The prototypical calculus in the �rst-order

paradigm is the �-calculus. By generalising its sort mechanism we derive an !-order

extension, called Higher-Order �-calculus (HO�). We give examples of its use, includ-

ing the encoding of �-calculus. Surprisingly, we show that such an extension does not

add expressiveness: Higher-order processes can be faithfully represented at �rst order.

We conclude that the �rst-order paradigm, which enjoys a simpler and more intuitive

theory, should be taken as basic. Nevertheless, the study of the �-calculus encodings

shows that a higher-order calculus can be very useful for reasoning at a more abstract

level.

5.2.1.7 On the Reduction of Chocs Bisimulation to �-calculus Bisimulation

R. Amadio has pursued the analysis of the relationships between Chocs and �-calculus.

These are two natural extensions of CCS where, respectively, processes and channels are

transmissible values. In previous work he had proposed a formalization of the notion of

bisimulation for Chocs. His new contribution is a more e�ective way to reason about

this notion by means of an embedding of Chocs into a richer calculus endowed with

a notion of \activation" channel which is christened Chocs

t

. t is the name of a new

internal action which is produced by a synchronization on an activation channel, such

a synchronization has the e�ect of forcing the execution of an idle process. In �rst ap-

proximation transitions in Chocs

t

may be understood as sequences of synchronizations

5.2. CALCULI 55

along activation channels followed by an \observable" transition. There is a simple

de�nition of bisimulation for Chocs

t

which satis�es natural laws and congruence rules,

moreover the synchronization trees associated to Chocs

t

processes are �nitely branch-

ing. Chocs

t

is proposed as an intermediate step towards the de�nition of a tool for the

veri�cation of Chocs bisimulation.

Davide Sangiorgi from the University of Edinburgh has independently obtained a

reduction of a restricted form of Chocs where sums are \guarded" to the standard

�-calculus (using weak bisimulation). Although these works share similar motivations

their technical approaches are quite distinct.

5.2.1.8 Mobility in the cc Paradigm

In this area the relevant research developments include the study of mobility in the

paradigm of concurrent constraints. C. Laneve and U. Montanari prove that cc-

languages get higher order power even with a very poor underlying constraint system

(the signature consists of a constant and a concatenation operation). The turning point

is to observe that the phenomenon of mobility is already present in the cc-paradigm as

mobility of variables. Therefore, by simulating �-calculus channels in terms of streams,

it is possible to rephrase Milner's encodings of lazy and call-by-value �-calculus into

the �-calculus. The encodings distinguish between channels that are used once, just

for book-keeping reasons, and those representing variables in Milner's encodings, thus

yielding a clearer distinction between resources.

5.2.1.9 Process Calculi and Parallel Object-Oriented Programming Lan-

guages

D. Walker has studied how to give semantics for parallel object-oriented programming

languages by translations to process calculi: the (polyadic) �-calculus, the Higher-Order

�-calculus of Sangiorgi, and most recently an extension of the (�rst-order) �-calculus

with value-expressions and conditional agents. He has shown how these semantics

are related to natural structural operational semantics. Finally work has begun on

examining how the semantics, in conjunction with techniques from process calculus,

can be used to reason about parallel object-oriented programs.

5.2.1.10 Non-determinism in a Functional Setting

The function paradigm in programming methodology is built on foundations which

are both logically (via Curry-Howard Isomorphism) as well as computationally (via

Church's Thesis) sound. The Lambda Calculus { a language of functions { is the

prototypical sequential programming language. But is the function paradigm an ade-

quate basis for the modern practice of parallel (and even distributed) computing? Can

it be extended satisfactorily to a useful theoretical framework in which parallel and

sequential, and even non-deterministic computations coexist in harmony?

As a �rst step, the pure untyped Lambda Calculus extended with an (erratic) choice

operator is considered as an idealised non-deterministic functional language. Based

56 CHAPTER 5. PROGRESS

on both the \may" and the \must" modalities of convergence, a behavioural relation

called applicative bisimulation is proposed. Its relationship with a notion of testing

equivalence is then investigated. In the style of Abramsky's work on Domain Theory

in Logical Form, the denotational type that captures this computational situation is

� = P [[� ! �]

?

] where P [�] is the Plotkin powerdomain functor. A systematic pro-

gramme which hinges on three distinct interpretations of �, namely, process-theoretic,

denotational and logical is then carried out. This work may be seen as a step towards

a reapprochement between the algebraic theory of processes in Concurrency on the one

hand, and the Lazy Lambda Calculus as a foundation for functional programming on

the other.

5.2.1.11 Interrelations between sites and to other areas

G. Boudol is currently investigating the full-abstraction problem for the �-calculus with

multiplicities in collaboration with C. Lavatelli, ENS Paris. The logical interpretation

of this calculus is also relevant to the \Logics" area of the Project.

With Milner's action structures �-calculus and Higher-Order � (HO�) are put into

a more general framework. This gives strong relationship to the area of Foundational

models.

The work in [San93c, San93b] shows that HO� is representable within �-calculus.

But it also shows (for instance, in the study of the encodings of �-calculus) that a

higher-order calculus can be very useful for reasoning and programming at a more

abstract level. The work by Pierce, Remy and Turner on a higher-order programming

language based on �-calculus exploit HO� and its translation to �-calculus as given in

[San93c].

HO� is a sorted calculus. Its sorts can be arbitrarily higher order, and are reminis-

cent of higher-order types in functional programming languages. This is also relevant

to the \Logics" area of the Project.

C.-H. L. Ong is developing a systematic programme which hinges on three distinct

semantic approaches, namely, process-theoretic, denotational and logical. In collabora-

tion between C.-H. L. Ong and ECRC the e�ectiveness of this approach will be tested

by using it to provide a semantic basis for the Facile language developed at ECRC.

5.2.1.12 Future work

C. Lavatelli, ENS Paris, and G. Boudol, INRIA Sophia-Antipolis, are currently investi-

gating the full-abstraction problem for the �-calculus with multiplicities. The question

is to see whether the logical interpretation is fully abstract, and whether the encoding

of the �-calculus with multiplicities into the �-calculus is fully abstract. This would

give another view on the expressive power of the �-calculus, compared with the one of

the lazy �-calculus (extended with parallel functions).

We are also starting the study of a typed version of the �-calculus with multiplic-

ities, still using an a�ne logic. Here the intention is to see whether some standard

results (such as: strong normalization, subject reduction, principal typing) still hold.

5.2. CALCULI 57

Moreover, this could provide us with a good syntax for the Bounded Linear Logic of

Girard et al. Another interesting point is to see whether this re�ned typing disci-

pline, including some logical information about the multiplicities, could be used from

an implementation point of view.

Further development of the theory of HO� is expected. The ultimate goal is to

exploit the full abstraction of the encoding of HO� into the �-calculus [San93c] and

the theory of the latter, to derive proof systems for HO�.

Process algebra with local ports is studied by J.A. Bergstra, J.W. Klop, P. Roden-

burg. A note is in preparation for distribution at the Amsterdam workshop. A detailed

study is made within the framework of ACP, Algebra of Communicating processes, of

a restricted subset of pi-calculus.

5.2.1.13 List of reports

[Ama93] R. Amadio: On the Reduction of Chocs Bisimulation to �-calculus

Bisimulation. In Proc. CONCUR 93, Lecture Notes in Computer Sci-

ence, Springer-Verlag, volume 715, 1993. Also appeared as Research

Report Inria-Lorraine 1726.

[Bou93] G. Boudol: The Lambda-Calculus with Multiplicities. (Preliminary re-

port), INRIA Research Report 2025. (1993). A preliminary version

was presented in an invited talk at the CONCUR'93 Conference,

Hildesheim, August 1993.

[LanMon92] C. Laneve, U. Montanari: Mobility in the cc Paradigm. Submitted for

publication 1993. Preliminary version in MFCS'92, Lecture Notes in

Computer Science, Springer-Verlag, volume 629, 1992.

[Lav93] C. Lavatelli: Non deterministic lazy �-calculus vs. �-calculus. Techni-

cal Report LIENS 93-15, September 1993.

[Ong93] C.-H. L. Ong: Non-determinism in a functional setting. In Proc. of

LICS 93, 1993.

[San93] D. Sangiorgi: The Lazy Lambda Calculus in a Concurrency Scenario.

Submitted for publication. This is a revised and extended version of a

paper in the Proc. of LICS 92, 1993.

[San93b] D. Sangiorgi: An investigation into Functions as Processes. In Proc.

Ninth International Conference on the Mathematical Foundations of

Programming Semantics (MFPS'93), 1993.

[San93c] D. Sangiorgi: From �-calculus to Higher-Order �-calculus | and back.

In Proc. TAPSOFT'93, Lecture Notes in Computer Science, Springer-

Verlag, volume 668, pp. 151{166, 1993.

[Wal93] D. Walker: Objects in the pi-calculus. To appear in Information and

Computation, 1993.

58 CHAPTER 5. PROGRESS

[Wal93b] D. Walker: Process calculus and parallel object-oriented programming

languages. In Proc International Summer Institute on Parallel Com-

puter Architectures, Languages and Algorithms, Prague, July 1993

(Computer Society Press, to appear).

[Wal93c] D. Walker: Algebraic proofs of properties of objects. Submitted for

publication, 1993.

5.2.2 Algebraic theories, model checking and tool

5.2.2.1 Summary

During just one year of the CONFER project the area of name passing calculi has ma-

tured to a state where sound and complete axiomatisations for bisimulations, and even

a veri�cation tool has emerged. This is remarkable since in other areas of concurrency

theory these developments have taken considerable longer time to emerge. Moreover,

the notion of bisimulation has been extensively studied. Several approaches have been

compared, and some of them have been shown to lead to the same notion. The following

contributions have addressed these issues:

� Algebraic Theories for Name-Passing Calculi

(J. Parrow, D. Sangiorgi)

� A Theory of Bisimulation for the �-calculus

(D. Sangiorgi)

� The �-calculus with Explicit Substitutions

(G. Ferrari, U. Montanari, P. Quaglia)

� Model Checking Mobile Processes

(M. Dam)

� The Mobility Workbench | a tool for the �-calculus

(F. Moller, B. Victor)

Work Done

5.2.2.2 Algebraic Theories for Name-Passing Calculi

In a theory of processes the names are atomic data items which can be exchanged and

tested for identity, but which admit no other functions or predicates. A well-known

example of a calculus for name-passing is the �-calculus, where names additionally are

used as communication ports. J. Parrow and D. Sangiorgi provide complete axiomati-

sations of late and early bisimulation equivalences in such calculi. Since neither of the

equivalences is a congruence we also axiomatise the corresponding largest congruences.

We consider a few variations of the signature of the language; among these, a calculus

of deterministic processes which is reminiscent of sequential functional programs with a

5.2. CALCULI 59

conditional construct. Most of our axioms are shown to be independent. The structure

of the systems reveals the symmetries of the calculi and equivalences since they di�er

only by a few simple axioms.

5.2.2.3 A Theory of Bisimulation for the �-calculus

D. Sangiorgi studies a new formulation of bisimulation for the �-calculus, which we

have called open bisimulation (�). In contrast with the previously known bisimilarity

equivalences, � is preserved by all �-calculus operators, including input pre�x. The

di�erences among all these equivalences already appear in the sublanguage without

name restrictions: Here the de�nition of � can be factorised into a \standard" part

which, modulo the di�erent syntax of actions, is the CCS bisimulation, and a part

speci�c to the �-calculus, which requires name instantiation. Attractive features of �

are: a simple axiomatisation (of the �nite terms), with a completeness proof which leads

to the construction of minimal canonical representatives for the equivalence classes

of �; an \e�cient" characterisation, based on a modi�ed transition system. This

characterisation seems promising for the development of automated veri�cation tools

and also shows the call-by-need avour of �. Although in the paper we stick to �-

calculus, the issues developed may be relevant to value-passing calculi in general.

5.2.2.4 The �-calculus with Explicit Substitutions

The �-calculus is centered around the notions of name and name instantiation which

emerge both in the transition semantics, and in the de�nition of behavioural equiva-

lences. Name instantiation confers mobility to the language. However, in designing

an abstract machine for the �-calculus one has to cope with the problem that name

instantiation is a meta-level operation which performs a run-time modi�cation of the

program. In practice, name instantiation must be applied in a more controlled way.

Moreover, since name instantiation is not a proper operation of the language, the �-

calculus transition semantics does not �t in any of the studied formats of Structured

Operational Semantics (SOS). Hence, the �-calculus theory cannot take direct advan-

tage of the SOS meta-theory developed for \static" process calculi. To address these

problems a new formulation of the �-calculus, where name instantiation is handled

explicitly, is presented by G. Ferrari, U. Montanari and P. Quaglia. Behavioural equiv-

alences originally developed for the �-calculus are retrieved by giving the description

of the corresponding strategies for name instantiation. The explicit handling of name

instantiation allows us to take advantage of the SOS meta-theory. Thus, axiomatic

characterizations of behavioural equivalences can be automatically derived by analyz-

ing the syntactic structure of the SOS inference rules. This is a �rst step towards the

design of abstract machines (and programming environments) for concurrent languages

based on the �-calculus.

60 CHAPTER 5. PROGRESS

5.2.2.5 Model Checking Mobile Processes

Other work in the area has focused on the development of a temporal logic for the

polyadic �-calculus based on �xed point extensions of Hennessy-Milner logic. M. Dam

adds features to account for parametrisation, generation, and passing of names. These

include the use, following Milner, of dependent sum and product to account for (unlo-

calised) input and output, and explicit parametrisation on names using �-abstraction

and application. The latter enables a clean and uniform account of parametrisation

for both input, output, and �xed points. A proof system and decision procedure has

been developed based on Stirling and Walker's approach to model checking the modal

�-calculus using constants. One di�culty, for both conceptual and e�ciency-based rea-

sons, is to avoid the explicit use of the !-rule for parametrised processes. A key idea,

following Hennessy and Lin's approach to deciding bisimulation for certain types of

value-passing processes, is the relativisation of correctness assertions to conditions on

names. Based on this idea soundness, completeness and decidability is obtained for ar-

bitrary �-calculus processes with �nite control, �-calculus correlates of CCS �nite-state

processes, avoiding the use of parallel composition in recursively de�ned processes. To

the best of our knowledge this represents the �rst decidability result in the veri�cation

of recursive (or replicative) agents in the �-calculus.

A preliminary version of this work was presented at the �rst CONFER workshop at

INRIA-Sophia-Antipolis, and a later version was presented at CONCUR'93 [Dam93].

5.2.2.6 The Mobility Workbench | a tool for the �-calculus |

The Mobility Workbench (MWB) is a tool for manipulating and analyzing mobile

concurrent systems described in the �-calculus [MPW92], developed by F. Moller and

B. Victor in collaboration with D. Sangiorgi at the University of Edinburgh. It is

written in Standard ML, and currently runs under the New Jersey SML compiler.

In the current preliminary version, the basic functionality is to decide the open

bisimulation equivalence of Sangiorgi [San93d], for agents in the monadic �-calculus

with the original positive match operator. This is decidable for �-calculus agents with

�nite control, correlating to CCS �nite-state agents, which do not admit parallel com-

position within recursively de�ned agents.

The algorithm is based on the e�cient characterization of the equivalence described

in [San93d], and (necessarily) generates the state space \on the y". Versions for both

the strong and weak equivalences are implemented.

There are also commands for �nding deadlocks and for interactively simulating an

agent.

The syntax of the agents is kept close to the syntax used in Milner's tutorial on the

polyadic �-calculus [Mil91]. An example:

MWB> agent P(x) = (^b)x(a).('a<u>.0 | b(v).0)

MWB> agent Q(x) = (^b)x(a).('a<u>.b(v).0 + b(v).'a<u>.0 + [a=b]t.0)

MWB> eq P(a) Q(a)

yes

5.2. CALCULI 61

5.2.3 Interrelations between sites and to other areas

The purpose of [ParSan93, San93d] is to understand the notion of (interleaving) bisimu-

lation in calculi for mobile processes like the �-calculus. This notion is well-understood

in CCS-like languages, but its generalisation to �-calculus lends itself to subtle varia-

tions. Such variations are essentially due to di�erent approaches to the instantiation of

the bound names of an input. Therefore, to some extent, they are reminiscent of the

variety of evaluation strategies in �-calculus, which are caused by di�erent approaches

to the instantiation of the bound variable of a � abstraction.

A basic theme in [ParSan93, San93d] is the study of how the basic constructs of

�-calculus | �rst of all the conditional operators | a�ects the theory of the various

kinds of bisimulation (axiomatisation, de�nition of normal forms etc..).

A major motivation for investigating di�erent semantics theories of the �-calculus

is to �nd suitable directions for the development of software tools to reason about �-

calculus processes. We are at the moment experimenting (collaboration among Bjorn

Victor (SICS), Faron Moller and Davide Sangiorgi (EdU)) with a tool based on open

bisimulation for the mechanical check of process bisimilarities.

Ongoing and future work in this direction includes implementation in the �-calculus

workbench currently under development in a cooperation between SICS and Edinburgh;

case studies to investigate the viability of temporal logics along these lines as practi-

cal program speci�cation tools; the application of the decision procedure to obtain

decidability of late strong bisimulation equivalence of �nite-control agents. Addition-

ally, cooperation has been initiated with ECRC on the issue of temporal logics that

incorporate higher-order process passing.

5.2.4 Future work

In the work on logics for concurrency we would like to know what is the best logic

theory for the various bisimulations.

Future work on �-calculus will for some part be based on the observation that there

seems to be a connection between the variety of � bisimulations and the variety of

�-calculus evaluation strategies. For instance, the open bisimulation of [San93d] has

the avour of the call-by-need strategy of �-calculus.

The work in [ParSan93, San93d] focus on "strong" bisimulations, which do not

abstract away from internal details of processes. A natural development of the work is

to look at "weak" bisimulations. We would like to continue the study of the primitive

constructs of �-calculus, initiated in [ParSan93, San93d] by studying the expressiveness

they provide.

Future work on temporal logics and model checkers for the �-calculus includes im-

plementation in the �-calculus workbench currently under development in a cooperation

between SICS and Edinburgh; case studies to investigate the viability of temporal logics

along these lines as practical program speci�cation tools; the application of the decision

procedure to obtain decidability of late strong bisimulation equivalence of �nite-control

agents. Additionally, cooperation has been initiated with ECRC on the issue of tem-

poral logics that incorporate higher-order process passing.

62 CHAPTER 5. PROGRESS

We intend to continue the experimentation with the software tool based on open

bisimulation and mentioned above. Future work includes algorithm versions for the

polyadic �-calculus; investigating the open bisimulation equivalence in the presence of

a mismatch operator; case studies to investigate the relation to the late bisimulation

equivalence; algorithms for �nding minimal distinctions and matchings for which two

open agents are equivalent; modal logics and model checking for the open bisimulation.

5.2.5 List of Reports

[Dam93] M. Dam: Model Checking Mobile Processes. In Proc. CONCUR'93,

Lecture Notes in Computer Science, Springer-Verlag, volume 715, pp.

22-36, 1993.

[FerMonQua93] G. Ferrari, U. Montanari, P. Quaglia: The �-calculus with Explicit

Substitutions. Submitted for publication, 1993.

[ParSan93] J. Parrow, D. Sangiorgi: Algebraic Theories for Name-Passing Calculi.

Report ECS{LFCS{93{262, Laboratory for Foundations of Computer

Science, Computer Science Department, Edinburgh University, 1993.

Extended Abstract to appear in Proc. REX '93 Summer school, Lec-

ture Notes in Computer Science, Springer-Verlag.

[San93d] D. Sangiorgi: A Theory of Bisimulation for the �-calculus. Report

ECS{LFCS{93{270, Laboratory for Foundations of Computer Science,

Computer Science Department, Edinburgh University, 1993. An Ex-

tended Abstract of this paper has appeared in Proc. CONCUR'93, Lec-

ture Notes in Computer Science, Springer-Verlag, volume 715, 1993.

5.2.6 Adding physical distribution

5.2.7 Summary

One of the main motivations for studying concurrent and functional systems is the use

in distributed systems. In the CONFER project two promising steps have been taken:

� Observing Time-Complexity of Concurrent Programs

(G. Ferrari, U. Montanari)

� Some Issues in the Semantics of Facile Distributed Programming

(B. Thomsen, L. Leth and A. Giacalone)

The �rst contribution studies a calculus capable of expressing communicating costs

in distributed systems. The result is so far limited to a static language (i.e. without

mobility). The second contribution comes from practical experience with the Facile

programming language where physical distribution is an integral part of the language.

It is a �rst step towards extending the Facile calculus to cover these aspects.

As may be seen from the section on future work this (sub)area looks promising and

will probably be very active in the coming year.

5.2. CALCULI 63

5.2.8 Work Done

5.2.8.1 Observing Time-Complexity of Concurrent Programs

G. Ferrari and U. Montanari develop a semantic framework to describe and reason

about the time-complexity of concurrent programs. To this purpose, we introduce a

modular approach to the semantics of concurrent languages where the functional part

of programs is handled together with the complexity part. We show that the time-

complexity analysis of concurrent programs can be naturally dealt with a specialized

matrix calculus.

In this area the relevant research developments include the analysis of history depen-

dent behaviours in process calculi. To capture the phenomena of history dependency

a new paradigm has been introduced. The basic idea is that the state of a system is a

pair consisting of a process together with a second component expressing an abstrac-

tion of the past moves of the ongoing computation. Many interesting issues of process

calculi can be captured and explained by exploiting the history dependent paradigm.

As a case study, a semantic framework to describe and reason about time-complexity

of concurrent programs has been developed. To this purpose, a modular approach to

the semantics of process calculi, where the functional part of programs (the actions

processes perform) is clearly separated from the complexity part (the histories), has

been introduced. In this case, a history records the amount of computational resources

consumed, from the beginning of the computation, by each of the active processing

sites (where processes can be executed). This semantic framework can be applied to

deal with broader notions of program complexity rather than time-complexity.

5.2.8.2 Some Issues in the Semantics of Facile Distributed Programming

The theoretical foundation of Facile is based on an operational semantics in terms of

labelled transition systems, and a notion of observability of programs has been de�ned

by extending the notion of bisimulation. The foundation can be viewed as an integration

of the typed call-by-value �-calculus with a model of concurrency derived from Milner's

CCS. The implementation, obtained by extending the SML/NJ implementation of the

ML language, supports polymorphic types as well as mobility of functions, processes and

communication channels across a distributed computing environment. Thus a number

of language constructs have been added or modi�ed to handle certain issues that arise

with real distribution. These include the need to control the locality of computation in a

physically distributed environment, the potentially expensive implementation of certain

operators and the need for a system to tolerate partial failures. In the paper listed below

we discuss a possible approach for the operational semantics of these constructs that

follows the Facile philosophy and some recent results in concurrency theory.

5.2.9 Interrelations between sites and to other areas

This work shows promising results for the work on programming languages and we

hope to strengthen the link between Pisa, Edinburgh and ECRC on the subject of time

64 CHAPTER 5. PROGRESS

analysis of distributed concurrent functional systems and developing true concurrency

semantics for mobile systems.

5.2.10 Future work

Solving the problem of distributed semantics for distributed higher-order functional and

concurrent systems may be di�cult. As a starting point it may be better to concentrate

on distributed semantics for mobile systems such as the �-calculus.

Up to now an intensive e�ort has been devoted to the study of the interleaving

semantics for the �-calculus, but nothing has yet been done on the non-interleaving

(or true-concurrency) side. Various behavioural equivalences which belong to the latter

area have been formulated using special machineries of reference- or pointer-like objects;

examples are the location bisimulation, causal bisimulation and ST-split semantics.

These instruments are intrinsic ingredients of the �-calculus and it is reasonable to ask

ourselves whether this fact can be exploited in any signi�cant way.

5.2.11 List of Reports

[FerMon93] G. Ferrari, U. Montanari: Observing Time-Complexity of Concurrent

Programs. 1993.

[ThoLetGia92] B. Thomsen, L. Leth, A. Giacalone: Some Issues in the Semantics of

Facile Distributed Programming. Technical report ECRC-92-32, 1992.

Also appearing in proceedings of the 1992 REX Workshop on \Se-

mantics: Foundations and Applications", Lecture Notes in Computer

Science, Springer-Verlag, volume 666, 1992.

[Abr87] S. Abramsky: Domain Theory and the Logic of Observable Properties.

Ph.D. Thesis, University of London, 1987.

[Abr89] S. Abramsky: The Lazy Lambda Calculus. In Research Topics in Func-

tional Programming, editor D. Turner, pp. 65-116, Addison-Wesley,

1989.

[Bou90] G. Boudol: A Lambda-Calculus for Parallel Functions. INRIA Re-

search Report 1231, May 1990.

[Mil91] R. Milner: The polyadic �-calculus: a tutorial. Technical Report ECS-

LFCS-91-180, Laboratory for Foundations of Computer Science, Dept

of Computer Science, University of Edinburgh, UK, October 1991.

[Mil92] R. Milner: Functions as Processes. Research Report 1154, INRIA,

Sophia Antipolis, 1990. Final version in Journal of Mathem. Structures

in Computer Science 2(2):119{141, 1992.

[MPW92] R. Milner, J. Parrow, D. Walker: A calculus of mobile processes, Parts

I and II. Journal of Information and Computation, 100:1{77, Septem-

ber 1992.

5.2. CALCULI 65

[San92] D. Sangiorgi: Expressing Mobility in Process Algebras: First-Order

and Higher-Order Paradigms. Ph.D. Thesis, Department of Computer

Science, University of Edinburgh, 1992. Also published as ECS{LFCS{

93{266.

66 CHAPTER 5. PROGRESS

5.3 Logics for Concurrency and �-calculus

This section describes the work carried out in the \Logics for Concurrency and �-

calculus" area of the CONFER Basic Research Action. This work has been carried out

at four sites: the Department of Computing, Imperial College, London; the Laboratory

for the Foundations of Computer Science, Edinburgh University; the Dipartimento di

Informatica, University of Pisa; and ECRC, Munich. The topics addressed fall into the

following groups.

� Interaction Categories (S. Abramsky, S. J. Gay, R. Nagarajan)

� Sorts and Types in the �-calculus (S. J. Gay, B. Pierce, D. Sangiorgi)

� Sorts and Types in FACILE (L. Leth, B. Thomsen)

� Linear Logic (S. Abramsky, F. Lamarche, I. C. Mackie, L. Rom�an)

� Semantics of �-calculus (R. Jagadeesan)

� Optimality and Concurrency (C. Laneve, U. Montanari)

Interaction Categories are a new foundation for semantics of sequential and concurrent

computation; sorts and types are important in the context of correctness and opti-

mization of concurrent/functional programs; the work on Linear Logic and Optimality

transfers techniques from �-calculus paradigm to concurrency. Therefore, the work

done clearly reects the fruitful interplay between logic, concurrency, and functional

computation.

A summary of the work done on each of these topics appears in Section 2. A list

of reports and publications appears at the end of this document, along with other

references.

5.3.1 Work Done

5.3.1.1 Interaction Categories

Interaction Categories [Abr93a, Abr93b, Abr93c, Abr94] have been developed as a new

paradigm for the semantics of computation. The categories standardly used for deno-

tational semantics have structured sets as objects and functions as morphisms. This

limits the really e�ective use of denotational methods to the sphere of functional com-

putation. Interaction Categories have speci�cations as objects, processes as morphisms,

and interaction as composition.

Potential applications include:

� A useful type discipline for concurrent programming, integrated with a composi-

tional veri�cation methodology.

� Foundations for programming languages incorporating both concurrency and

higher-order polymorphic constructs.

5.3. LOGICS FOR CONCURRENCY AND �-CALCULUS 67

We do not, as yet, o�er de�nitive axioms for Interaction Categories. More to the

point at this stage, we can provide a number of substantive examples (the �rst with

hindsight), in each of which the above paradigm is clearly visible:

1. Concrete Data Structures and Sequential Algorithms

2. Geometry of Interaction Categories

3. Games and Strategies

4. Speci�cations and Processes (this work)

The examples (1){(3) above apply to sequential and/or functional computation. The

decisive example needed to make the Interaction Category framework compelling is (4),

to encompass concurrency. This was �rst mooted in [Abr91] which explicitly proposed

the Interaction Category paradigm, albeit couched in terms of sequent calculus rather

than categories.

The key new example of an Interaction Category SProc for concurrent computation

follows the picture:

Objects Speci�cations

Morphisms Processes

Composition Synchronous composition + restriction.

SProc has a very rich structure. Firstly, it provides a model for full (second order)

Classical Linear Logic, and hence also, quite automatically, for typed �-calculi such as

System F. It also supports a hierarchy of delay monads which express the temporal

structure of the category. They allow asynchrony to be built on top of synchrony,

as in Milner's original work on SCCS, but in a richer mathematical framework. The

delay monads also satisfy distributive laws with respect to the exponentials, relating

delay|extension in time|to replication|extension in space.

Much of the familiar process calculus material can be extracted from the structure

of SProc. Relabelling and Restriction can be described in terms of a subcategory

of \embeddings"; Non-determinism arises from the semi-additive structure of SProc;

simulations appear as 2-cells.

Our development of SProc clearly exhibits a view of processes as \relations ex-

tended in time". This is made precise by the fact that SProc is a bicategory of rela-

tions in the sense of Carboni and Walters. Finally, we show how the compact closed

structure of SProc supports a \Multi-Cut" rule which allows general process networks

to be described within a typed framework.

The overall e�ect of this program is that process calculus in the CCS tradition is

reconstituted in functorial form, and integrated with type theory and functional pro-

gramming. Moreover, a notion of speci�cation structure is introduced which provides

a framework in which the Propositions-as-Types and Veri�cation paradigms are com-

bined smoothly in a single framework. This allows a new and conceptually satisfying

treatment of the thorny old problem of fairness. There is also a speci�cation structure

68 CHAPTER 5. PROGRESS

supporting a compositional treatment of deadlock-freedom, combining ideas from con-

currency theory (ready sets) and Linear realizability (orthogonality). In this fashion,

we obtain a working version of the Propositions-as-Types paradigm for concurrency,

achieving the goal originally set forth in [Abr91].

In addition to SProc another Interaction Category,ASProc, of asynchronous pro-

cesses has been developed. One reason why a synchronous model was developed �rst

is that there are problems with identity morphisms in a world of complete asynchrony.

The key toASProc is that a certain amount of simultaneity is also needed|the identi-

ties still output data in the same instant as that in which it is received. ASProc shares

a great deal of structure with SProc, and this provides helpful pointers towards an

axiomatisation of Interaction Categories. The main di�erence is that non-determinism

arises from weak biproducts rather than biproducts (as in SProc), and this gives the

resulting combinators more of a avour of CSP than CCS. The entire Linear type struc-

ture is present, however, and speci�cation structures can still be used. Thus a lot of

work can be done in quite a general way before deciding which category is the most

appropriate for a speci�c example.

5.3.1.2 Interaction Categories: Illustrative Examples

Following the development of Interaction Categories [Abr93a] and in particular the cat-

egory SProc of synchronous processes, one area of work has been the study of existing

concurrency formalisms and examples in the new framework. Initially, the dataow

model of concurrent computation was studied. Dataow is well-suited to an analysis in

terms of Interaction Categories because of the fact that processes are connected rigidly

in a network of �xed topology. It is straightforward to represent individual nodes as

morphisms in a category of processes and use categorical composition to connect them

into a network. It has been established [Gay93b] that, subject to a condition on the

formation of feedback loops (this condition is enforced in real dataow languages), the

SProc semantics of dataow agrees with the standard Kahn-style least �xed point

semantics.

The established dataow languages Signal and Lustre have also been considered

[GN93a, GN93b]|they are especially suitable because they are based on a synchrony

hypothesis. Each language has its own particular features, which have enabled the

appropriateness of the structure of Interaction Categories to be tested. In Lustre a

stream of data may contain non-data values, or delays, and the clock of a stream is

another stream which determines when the delays appear. A clock may also contain

delays, and thus a stream can have multiple levels of clock, each with its own corre-

sponding delay. This structure is modelled very well by the delay monads of SProc|a

delay action is introduced into the alphabet of a type by applying a functor, and if this

is done several times the di�erent delay actions are naturally distinguished from one

another. In Signal, clocks are not nested, but have the subtlety that they need not

be fully speci�ed by the programmer. Rather, clock constraints are given, demanding

that two streams have the same clock or that one stream delays at least as often as

another one. Such clock constraints can be transformed into additional nodes inserted

5.3. LOGICS FOR CONCURRENCY AND �-CALCULUS 69

into the network, so that the laws of composition in SProc automatically perform the

clock calculation which is done by the Signal compiler.

Work has also begun on using SProc to give a semantics for the synchronous real-

time language Esterel [AGN93]. This has been approached by way of the existing

\electrical semantics" ofEsterel, which converts programs into circuits; these circuits,

like dataow networks, are in a convenient form for modelling in Interaction Categories.

Moving on from dataow and synchronous languages, SProc has also been used to

model standard asynchronous concurrency examples, for example Milner's cyclic sched-

uler [AGN93]. This involves using the delay monads to allow the explicit introduction

of idle actions at suitable points.

5.3.2 Typed Processes

This work [Abr93d] pursues the goal of typed concurrency along the lines suggested,

initially in the work on Proofs as Processes [Abr91] and later in far more detail with

the development of Interaction Categories. The central idea of Proofs as Processes is

that the interface of a process can be described by a linear (in the sense of Linear Logic

[Gir87]) type; the work on Interaction Categories reinforces this view by exhibiting

several categorical models of concurrency which have a linear type structure.

Types have played an important rôle in sequential programming, and the typed

�-calculus not only provides an elegant connection between logic and computation via

the Curry-Howard Isomorphism but also serves directly as the foundation for the many

typed functional languages in practical use. When we turn to concurrency, however,

the picture is very di�erent. No canonical calculus for concurrent processes has yet

emerged, and the many calculi which do exist have largely been developed without

reference to types. There is the more limited notion of sort, but this does not seem

to o�er the same possibilities for a tight connection with a logic in the spirit of the

Propositions as Types paradigm.

We have addressed this issue by developing a typed process calculus based on In-

teraction Categories and gaining experience with its use to de�ne processes of interest

arising out of standard examples from the literature. Moreover, we have begun to

explore the possibilities for carrying out veri�cation in the same Interaction Category

framework. A cyclic scheduler [Mil89], for instance, has been constructed and veri�ed

using these ideas.

The combinators of our calculus are inspired by both CCS and the Interaction

Category structure (which match rather well in any case). They are presented in

the form of typed introduction rules, as is familiar from the typed �-calculus, and

include summation, parallel composition (with and without restriction), pre�xing and

recursion. While Interaction Categories have not yet been axiomatised, our calculus can

be given a semantics using a certain amount of structure which is present in both SProc

and ASProc|namely the Linear type structure, weak biproducts, and a unit delay

functor with the unique �xed point property. The fact that this amount of structure

supports a useful calculus points towards an axiomatisation based on this structure or

something close to it.

70 CHAPTER 5. PROGRESS

As for veri�cation, initially we have considered the safety properties built into

SProc and ASProc. We state the safety of a process as an equality between two

morphisms, one being the process itself, and the other being the composition of the

process and a \safety morphism". A safety morphism is an identity morphism \cut

down" to allow only safe behaviour. It is then possible to manipulate assertions about

safety by means of equational reasoning. This has been illustrated in [Abr93d] by taking

a safety speci�cation for the cyclic scheduler, decomposing it into safety speci�cations

for the individual cells used to implement the scheduler, stating the safety of the cells

categorically, and recombining the corresponding safety equations to prove safety of the

whole scheduler. Current work aims to extend this general approach to other forms of

speci�cation, by means of the speci�cation structures of Interaction Categories.

5.3.2.1 A Sort Inference Algorithm for the Polyadic �-Calculus

Milner's Polyadic �-Calculus is a notation for communicating processes, intended to

play a role in concurrency analogous to that of the � calculus in sequential programming.

Processes communicate by sending or receiving names along channels; an essential

feature is that channels are identi�ed by names of the same nature as those that can be

passed along them. Milner introduces the notion of sort: the sort of a name determines

the form of data which can be passed along the channel of that name, ie how many

names may be passed, and also what their sorts may be. A well-sorted process is one

in which whenever two channels are connected together, their sorts are the same. This

means that whenever a message is passed along a channel, the sender and the receiver

agree about what the message looks like and what can subsequently be done with it.

In a programming environment, sorts help the programmer to write correct programs,

in the same way that types help the functional programmer. An obvious question is

whether, given a �-calculus process, a sorting scheme can be derived which makes the

process well-sorted. This question is left as an open problem in Milner's original work

on the �-calculus.

An algorithm has been developed [Gay93a] for deriving sorting schemes of the above

form. It is based on a sequent calculus style system for constructing well-sorted pro-

cesses; the construction of a well-sorted process also exhibits the sorting which it re-

spects. This is very much in the style of Hindley-Milner type inference in functional

language systems. In addition to the sequent calculus system, a concrete algorithm for

unifying sortings (the non-trivial step in constructing sortings for well-sorted processes)

is presented. The sort inference algorithm as a whole is shown to have polynomial com-

plexity in the syntactic size of the process.

5.3.2.2 Typing and Subtyping for Mobile Processes

We already noted that the �-calculus is a process algebra that supports process mo-

bility by focusing on the communication of channels and that Milner's presentation

of the �-calculus includes a type system assigning arities to channels and enforcing a

corresponding discipline in their use.

5.3. LOGICS FOR CONCURRENCY AND �-CALCULUS 71

We extend Milner's language of types by distinguishing between the ability to read

from a channel, the ability to write to a channel, and the ability both to read and to

write [PS93]. This re�nement gives rise to a natural subtype relation similar to those

studied in typed �-calculi.

The greater precision of our type discipline yields stronger versions of some standard

theorems about the �-calculus. These can be used, for example, to obtain the validity of

�-reduction for the more e�cient of Milner's encodings of the call-by-value �-calculus,

for which �-reduction does not hold in the ordinary �-calculus.

We de�ne the syntax, typing, subtyping, and operational semantics of our calculus,

prove that the typing rules are sound, apply the system to Milner's �-calculus encodings,

and sketch extensions to higher-order process calculi and polymorphic typing.

5.3.2.3 Sorts and Types in FACILE

In this work [Tho93] we present a sort and type system for a simple variant of Facile

where constructs for channel creation, sending and receiving are functions of polymor-

phic type as opposed to syntactic constructs in the original de�nition of Facile. The

sort and type system is inspired by the type and e�ect discipline developed by Talpin

and Jouvelot. The type system is polymorphic in the style of Damas and Milner, and

the sort system is inspired by the type system for Nielson's TPL and it is similar to

the sort system for CHOCS developed by Thomsen. The sort system is used to con-

trol type generalisation in presence of channel creation and communication. Regions

(lacking a better name) are used to abstract sets of possible aliased channels. The

observable communications of an expression range over the regions that are free in its

type environment and its type. Thus communications with processes which are \local"

to the expression can be discarded during type reconstruction. Apart from provid-

ing information for safe polymorphic generalisation sort and type systems may be of

independent interest for concurrent functional programming since sorts and types cap-

ture essential static information about a programs dynamic behaviour, in particular its

communication potential, and may thus prove useful for compile-time optimisations as

well as for run-time placement of processes and channels in a distributed environment.

Furthermore, sort and type information may prove valuable in module systems where

the sort can be seen as enriching the signature with statements about the dynamic

behaviour of encapsulated entities.

5.3.2.4 True concurrency semantics for the �-calculus

We have developed [Jag93] a true concurrency semantics for the �-calculus, viewing

processes as sets of functions. The sets of functions for a process can be viewed oper-

ationally as the denotation of a dataow network that implements the process. The

novel feature of this description is that it is \name-free", in the spirit of the Geometry of

Interaction, and communication is captured by the feedback formula in Abramsky's gen-

eralised Kahn Principle. Thus, substitution of names is modelled equationally. When

restricted to CCS, the semantics coincides with augmented pomset traces, providing

an independent justi�cation for the \true-concurrency" content of the interpretation.

72 CHAPTER 5. PROGRESS

5.3.2.5 On Additive-Multiplicative Intuitionistic Linear Logic

We present a solution [Lam93] to the proof net problem for intuitionistic linear logic

with the connectives
;��;&. One way of stating this is to say that we give a \non-

syntactical" description of the free monoidal closed (without unit) category with binary

products over a countable number of generating objects. Our fragment of intuitionistic

linear logic can be treated with one-sided sequents, just like full linear logic, with the

use of the Danos-R�egnier polarities Input and Output. In particular formulas can be

negated (reversing the polarity) and the connectives � and } actually appear in the

syntax. Notice that the formulas of type Output are exactly the ones that appear as

objects of the category and those of type Input their negations, the ones that should

normally appear on the left side of the sequent.

Now somebody who claims having solved the proof net problem for any fragment

of linear logic should have a clean solution to the following points:

� representation of proofs, in particular the existence of normal forms, i.e. two

proofs representing the same morphism of the free category must have identical

normal forms

� cut elimination, that is, it must follow naturally from the representation used for

proofs.

We claim our solution is successful on both these counts. Let us say a little more

about representation: a proof P of sequent ` X

1

; : : : ; X

n

is given by a quadruple

(P;�;�; �) where P is a set with two order structures �;� and � a map from P to

the forest (disjoint union of trees, seen as an ordered set) of subformulas of X

1

; : : : ; X

n

,

the X

i

being minimal and the atomic subformula being maximal for the ordering. We

require that � respect the predecessor partial function given by both tree structures on

P and the sequent; this maps fails to be an isomorphism only because of the \additive

contractions" that appear because of the &-rule. The ordering � is a form of causality

that can be de�ned only in intuitionistic linear logic. Basically it is identical with �

on formulas (i.e. elements of P seen as occurrence of a subformula in the proof) of po-

larity Output, but its reverse on subformulas of polarity Input, while in an axiom link

the atomic subformula of polarity Input is immediately above the other one. We claim

that such structures satisfying some simple correctness conditions represent proofs, and

that there is an additional normal form criterion that picks out a unique representation

among the ones representing the same morphism of the category. One important point

is that a correct representation has a trivial automorphism group, which says that it is

uniquely de�ned except for trivial issues of naming the elements of its underlying set.

An interesting dividend of this approach is that if in a representation we keep only the

atomic subformulas we obtain a games semantics in which the two players (determined

by polarity) discard atomic formulas. Cut-elimination is obtained by matching the sub-

trees related to both cut formulas and constructing a new representation by induction

following the �-order.

5.3. LOGICS FOR CONCURRENCY AND �-CALCULUS 73

5.3.2.6 An Internal Language for Autonomous Categories

The main theme of this work [Mac93] is to �nd the internal language of Symmetric

Monoidal Closed (autonomous) categories; analogous to the �-calculus being the inter-

nal language for Cartesian Closed Categories.

Previous attempts, most notably the work of Barry Jay, to de�ne an internal lan-

guage for autonomous categories have taken the language to be the freely generated

class of terms with the basic ingredients of the monoidal structure, taking the congru-

ence which identi�es the basic terms. However this construction requires that for each

additional term we add, we must show that it preserves the congruence. In many cases

this is equivalent to showing that a particular diagram commutes, hence resort back to

diagrams.

Our work di�ers in that we give a language in which we can actually de�ne the basic

ingredients of the monoidal structure. We de�ne a language and show the standard

results, e.g. Subject Reduction, Church-Rosser and Strong Normalisation theorems.

We then generate a category for this language and show that it is the internal language

for autonomous categories. As an application the Coherence theorems of Kelly and

Mac Lane are proved in a very simple way.

The main theorem of the paper comes from the following de�nitions. We de�ne:

1. An autonomous theory LTC | our candidate for an internal language, which is

the proof expressions of the Multiplicative fragment of Intuitionistic Linear Logic.

We show the standard results for this language mentioned above.

2. A Categorical interpretation of this proof system in an Autonomous category C.

If � ` t : A is a valid proof, then we give a recipe for generating [[� ` t : A]]. This

is shown to be a sound model for the language, i.e. if t = t

0

is a valid equation

in the language, then [[t]] = [[t

0

]] in C.

3. A construction of a category C(LTC) from the autonomous theory, showing that

this does in fact yield an Autonomous category.

4. A construction of an internal language L(C) for an Autonomous category C, show-

ing that this language has the right structure to be an autonomous theory.

We then state the main result:

Theorem 5.3.1 There is a full and faithful autonomous functor F giving an equiva-

lence of categories:

F : C ' C(L(C)) : F

�1

:

This result tells us that our language is the internal language for Autonomous

categories.

With this result we have the capability to show the coherence theorems, which

basically states that \every diagram built up from the basic ingredients commutes".

The proof of this result is made complicated by the fact that each edge of a diagram

could be made up of arbitrary many morphisms. The technical di�culty is that we

74 CHAPTER 5. PROGRESS

cannot use an induction principle. However with our language we can restate the

theorem as follows:

Theorem 5.3.2 In the free autonomous category two arrows are equal if they have the

same binary type.

The proof of this theorem becomes straightforward since we can now reduce the term

to normal form (which exists, and has the same type because of the results stated above)

and perform induction on the term formation. Thus a very simple proof technique to

show these results, since the work was done once and for all in setting up the language.

5.3.2.7 Optimality and Concurrency

In this area the relevant research developments include a detailed analysis of the re-

lationships between strategies for optimal reduction and concurrency. To analyse the

issue of optimality and concurrency a new class of higher order rewriting systems, called

Interaction Systems, has been introduced. Interaction systems both generalize Lafont's

Interaction Nets, and form an interesting subclass of Klop's Combinatorial Reduction

Systems (where the Curry-Howard analogy \still makes sense"). The theory (and the

strategies) of optimal reduction has been generalized to interaction systems. For in-

stance, optimal implementations of interaction systems are obtained by extending the

Lamping-Gonthier graph reduction techniques. Moreover, the problem of describing

concurrent computations is addressed by studying the notion of permutation equiva-

lence. A complete axiomatization of permutation equivalence is provided. Meseguer's

Concurrent Rewriting provides the formal basis and most of the axioms. To obtain

completeness, some extra axioms modelling the interplay between the operation of

substitution and the rewrite rules must be added. Finally, a new concurrent semantics

for permutation equivalence is de�ned. The Distributive Permutation Equivalence is

the coarsest equivalence cointained into permutation equivalence which yields prime

algebraic domains as derivation spaces.

In [Lan] we address the problem of encoding evaluation strategies for the �-calculus

into concurrent processes, i.e. prime event structures. In order to ful�ll this aim a

necessary condition is that the derivation spaces yielded by the evaluation be prime

algebraic cpo's. This requirement is not met by L�evy's permutation equivalence (which

equips the �-calculus with a concurrent semantics). We solve this problem by taking,

among those equivalences which reduce disjoint sets of redexes and which are contained

into permutation equivalence, the coarsest one such that the downward closure of every

derivation is a distributive lattice. This equivalence, called distributive permutation

equivalence, is characterized directly by restricting permutations of redexes to those sets

U which are distributive, i.e. for every u 2 U , the development of every V � (U n fug)

does not a�ect the individuality of u. A simple consequence of our results is that

the derivation spaces of the call-by-value �-calculus are distributive lattices. Finally,

we show that a sequential evaluation mechanism can not, in general, be e�ectively

transformed into a maximally distributive one.

5.3. LOGICS FOR CONCURRENCY AND �-CALCULUS 75

The thesis [Lan93a] studies the problems of optimality and concurrency in a class

of higher order rewriting systems: the Interaction Systems. On one side these systems

provide the intuitionistic generalization of Lafont's Interaction Nets (that are linear),

by keeping the idea of binary interaction and the syntactical bipartition of operators

into constructors and destructors. On the other side, Interaction Systems are a suitable

subclass of Klop's Combinatory Reduction Systems where the Curry-Howard analogy

\still makes sense". Namely, it is possible to consider constructors and destructors of

Interaction Systems respectively as right and left introduction rules of intuitionistic

systems, interactions as instances of cut-rules and computations as eliminations of cut-

rules. In the �rst part of the thesis, we generalize the standard theory of optimality to

Interaction Systems. In particular we de�ne the notion of optimal sharing by means of

two di�erent approaches and prove their equivalence. Then we provide an implemen-

tation extending Lamping's graph reduction technique for the �-calculus and ful�lling

the optimality criteria. In the second part of the thesis, we study permutation equiva-

lence in the framework of Interaction Systems. This equivalence formalizes the notion

of parallel reduction, which is essential in the theory of optimality. Foremost we pro-

vide a complete axiomatization of permutation equivalence. Then, by taking �-calculus

as running example, we study the issues of implementing permutation equivalence on

Winskel's Event Structures, a mathematical model of distributed systems.

In [Lan93b] we axiomatize permutation equivalence in term rewriting systems and

Klop's orthogonal left-normal Combinatory Reduction Systems. The axioms for the

former ones are provided by the general approach proposed by Meseguer. The latters

need extra axioms modelling the interplay between reductions and the operation of

substitution.

5.3.3 Interrelations between sites and to other areas

Sangiorgi and Pierce's work on types in the �-calculus is related to Gay's work on

sort inference, and to a greater degree, to the work that David Turner at Edinburgh

is developing in his thesis. Turner generalises Milner's sorting discipline, showing that

principle types (or sorts) exist and giving an algorithm for �nding them. He also

extends Milner's system to allow polymorphism. Further, he shows that there exists a

precise correspondence between � calculus types and �-calculus sorts (exactly, the most

general sorts) in Milner's encoding of the (lazy) � calculus into the �-calculus. There

is no paper available on Turner's work yet, but it was presented at the �rst CONFER

workshop. Turner's work is also related to Gay's, but goes further in terms of the

nature of the sorts being considered. All of this is connected to the work by Leth and

Thomsen on sorts and types for FACILE.

Mackie, Rom�an and Abramsky's work on an internal language for autonomous

categories is strongly related to Mackie's development of the functional programming

language Lilac (described in the Area 4 report). Lilac is based on the linear term

calculus which forms the internal language for autonomous categories, with some more

user-friendly syntax and additional programming constructs. The work by Lamarche

is in the same realm.

76 CHAPTER 5. PROGRESS

The Interaction Categories work described in this report is a paradigm for semantics

of concurrency and as described in the work on typed processes gives a useful type dis-

cipline for concurrent programs. This is clearly related to the work on sorts and types.

Here it must be mentioned that we cannot as yet handle mobility in the Interaction

Category framework; but recent work by Montanari on encoding the �-calculus into

CCS may open up some possibilities. Both Interaction Categories and Milner's work on

Action Structures (which is described in the Area 2 report) are approaches to concur-

rency which make use of categorical structure (particularly a tensor product structure).

The exact relationship between the two approaches has not yet been understood, and

is an intriguing subject for future study.

5.3.4 Future Work

Future work on Interaction Categories will include the following:

� Identifying the essential common structure between the various categories, and

developing an axiomatisation of Interaction Categories.

� Continuing development of a language for processes, and gaining more experience

of its use in describing real examples.

� Continuing the work on veri�cation, and extending it by means of Speci�cation

Structures to cover more re�ned properties than safety, such as deadlock-freedom

and liveness.

On other topics, items that are on the agenda include:

� Sorts and types for FACILE - covering the full language and implementing the

type inference algorithm as well as integrating it in the Facile compiler.

� Obviously the next step in Lamarche's work is to incorporate the exponentials in

this approach to proof nets. He has succeeded in giving a very similar criterion for

the multiplicative-exponential fragment of intuitionistic linear logic, but a uni�ed

treatment of all three kinds of connectives at once is much more di�cult.

� Further work on Typing and Subtyping for mobile processes would concentrate

on establishing the theory �rmly, and on analysing how the typing/subtyping

discipline relate to formalisms in the literature for process types.

5.3.5 List of Reports

Imperial College, London

[Abr93a] S. Abramsky. Interaction Categories (Extended Abstract). In G. L. Burn,

S. J. Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993: Pro-

ceedings of the First Imperial College Department of Computing Workshop

on Theory and Formal Methods. Springer-Verlag Workshops in Computer

Science, 1993. To appear.

5.3. LOGICS FOR CONCURRENCY AND �-CALCULUS 77

[Abr93b] S. Abramsky. Interaction Categories I: Synchronous processes. Paper in

preparation, 1993.

[Abr93c] S. Abramsky. Interaction Categories II: Asynchronous processes. Paper in

preparation, 1993.

[Abr93d] S. Abramsky, S. J. Gay, and R. Nagarajan. Constructing and Verifying

Typed Processes. Paper in preparation, 1993.

[Abr94] S. Abramsky. Interaction Categories and communicating sequential pro-

cesses. In A. W. Roscoe, editor, A Classical Mind: Essays in Honour of

C. A. R. Hoare. Prentice Hall International, 1994. To appear.

[AGN93] S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction Categories: Illus-

trative examples, 1993. Abstract of talk given at the CONFER Workshop,

University of Edinburgh, UK.

[Jag93] R. Jagadeesan. Processes as sets of functions. Abstract of talk given at the

CONFER Workshop, University of Edinburgh, UK.

[Gay93a] S. J. Gay. A sort inference algorithm for the polyadic �-calculus. In POPL

93. ACM Press, 1993.

[Gay93b] S. J. Gay. On iteration and interaction. Draft paper, 1993.

[GN93a] S. J. Gay and R. Nagarajan. Modelling Signal in Interaction Categories.

In G. L. Burn, S. J. Gay, and M. D. Ryan, editors, Theory and For-

mal Methods 1993: Proceedings of the First Imperial College Department

of Computing Workshop on Theory and Formal Methods. Springer-Verlag

Workshops in Computer Science, 1993. To appear.

[GN93b] S. J. Gay and R. Nagarajan. Synchronous dataow in Interaction Cate-

gories, 1993. Unpublished Manuscript, 1993.

[GN93c] S. J. Gay and R. Nagarajan. Working with Interaction Categories, 1993.

Abstract of talk given at the CONFERWorkshop, INRIA Sophia Antipolis,

France.

[Lam93] F. Lamarche. On Additive-Multiplicative Linear Logic Submitted to the

proceedings of the 1993 Workshop on Linear Logic, Mathematical Sciences

Institute, Cornell University.

[Mac93] I. C. Mackie, L. Rom�an and S. Abramsky. An Internal Language for Au-

tonomous Categories. Journal of Applied Categorical Structures 1993 (to

appear)

78 CHAPTER 5. PROGRESS

University of Edinburgh

[PS93] B. Pierce and D. Sangiorgi. Types and subtypes for mobile processes.

In Proceedings, Eighth Annual IEEE Symposium on Logic in Computer

Science. IEEE Computer Society Press, 1993.

University of Pisa

[Lan] C. Laneve. Distributive Permutation Equivalence in the �-calculus. To

appear in Fundamenta Informaticae. Technical Report [D/Pisa/M1/3]

[Lan93a] C. Laneve. Optimality and Concurrency in Interaction Systems. PhD

Thesis TD-8/93. Dipartimento di Informatica, Universit�a di Pisa, 1993.

Technical Report [D/Pisa/M1/4]

[Lan93b] C. Laneve and U. Montanari. Axiomatizing Permutation Equivalence.

Submitted for publication 1993. Preliminary version in ALP'92, LNCS

632, 1992. Technical Report [D/Pisa/M1/6]

ECRC, Munich

[Tho93] B. Thomsen. Polymorphic Sorts and Types for Concurrent Functional

Programs. Technical report ECRC-93-10, 1993.

Other References

[Abr91] S. Abramsky. Proofs as processes. Unpublished Lecture Notes, 1991.

[Gir87] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1{102,

1987.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

5.4. PROGRAMMING LANGUAGES 79

5.4 Programming Languages

This section provides a brief summary of the work pursued in the context of the CON-

FER BRA in the area of programming language design, implementation and experience

with applications. As we focus this report on concrete work on programming languages

rather than abstract formalisms, the results we present are necessarily of a rather pre-

liminary nature. More concrete results should be expected for the last phases of the

BRA. One exception is the Facile programming language. However, it should be noted

that the Facile project was already in progress before the beginning of CONFER and

also that the dimensions and scope of the project are wider than what can be considered

as strictly relevant to the CONFER BRA.

The report includes short summaries of the following e�orts:

� Facile programming language

ECRC | A. Giacalone, F. Cosquer, F. Knabe, A. Kramer, T.M. Kuo, L. Leth,

S. Prasad, B. Thomsen. Also with contributions of P. Cregut, J.P. Talpin and C.

Crampton.

� Prototype compiler for �-calculus, based on graph reduction

INRIA | A. Asperti.

� Portable, unobtrusive garbage collection for multiprocessor systems

INRIA | D. Doligez, G. Gonthier, J.J. L�evy.

� Lilac: a prototype functional programming language based on Linear Logic

Imperial College | I. Mackie.

� Typed higher-order programming language based on �-calculus

University of Edinburgh | B. Pierce, D. R�emy, D. Turner.

� Termination properties of unfolding extended to programs with non-determinism

SICS | B. Lisper.

80 CHAPTER 5. PROGRESS

5.4.1 The Facile programming language

5.4.1.1 Summary

Facile is a higher-order, functional/concurrent programming language that supports the

implementation of distributed applications. The distributed implementation of Facile

environment has been realised by modifying and extending the Standard ML environ-

ment implemented at AT&T Bell Laboratories and Princeton University. The current

implementation allows the development of applications that operate on a network of

SPARC and Sun-3 workstations running UNIX and, to a limited extent, the Mach op-

erating system. Facile is conceived to support the development of systems exhibiting

a high degree of mobility, that is systems that may evolve dynamically in terms of

structure, communication and computation capabilities. Both processes and commu-

nication channels may be dynamically created and are treated as �rst-class values in

the same way as functions. In particular, they can be communicated over channels,

also between processes executing at di�erent physical locations. The notion of process

in Facile is quite powerful, since each process has its own environment and runs a full

ML program. However, its implementation is very light-weight, so that large numbers

of processes can potentially be executed concurrently.

We hope to be able to make the �rst release of Facile {the Facile \Antigua" release{

freely available to the research community in the very near future.

5.4.1.2 Work in progress

Continuing e�orts are directed at making the implementation increasingly e�cient and

at experimenting with certain constructs needed to manage distributed applications

(e.g. delay/time-out operators, operators for controlling the physical locations of pro-

cesses, exception handling). An activity has recently begun, to render communication

between Facile processes more reliable through the introduction of low-level protocols

that increase the tolerance of the system to partial hardware and software failures.

Important results have been recently obtained in supporting the dynamic but type

safe connection between di�erent applications, which may have been independently

compiled and activated. The result is important because this is going to be a rather

frequent scenario in pervasively networked computing environments, and also because

it appears to provide a solution to the more general question of \posting" and access-

ing resources on a network in a exible and reliable fashion. Finally, implementation

strategies are being investigated to enable applications developed with Facile to oper-

ate transparently over networks that may include heterogeneous processors as well as

heterogeneous software platforms. A crucial issue in this context is of course that of

e�cient communication of code (functions, processes) across di�erent processors.

A particular e�ort is currently directed at experimenting with the development of

advanced applications. This work began in mid-1992 as an internal activity directed

at experimenting with the integration of distributed computing and graphical user in-

terface technologies developed at ECRC. So far, the work has been focusing on a class

of distributed, interactive multiple-users systems {e.g. tele-conferencing. The �rst

5.4. PROGRAMMING LANGUAGES 81

demonstration system implemented was Calumet: a desktop conferencing tool that

supports meetings based on a slide presentation metaphor among users in di�erent

physical locations. The distributed part of the system, which handles all communica-

tions, has been built entirely with Facile and consists of less than two thousand lines

of source code. Calumet also utilizes the Tube system: a sophisticated, object oriented

environment for designing and implementing graphical user interfaces, that provides

support for de�ning constraints on user interface objects as well as advanced dialogue

management. Calumet was initially designed to operate in local area networks. During

the summer of 1993 the distributed part was redesigned and reimplemented {in less

than one month, and without touching the user interface implementation{ to enable the

system to operate on wide area networks and to render it tolerant to partial failures.

5.4.2 A prototype compiler for �-calculus based on graph reduction

5.4.2.1 Summary

Andrea Asperti and Cosimo Laneve have developed a prototype compiler for lambda

calculus, based on the graph reduction technique described in [12], and then simpli�ed

in [9, 10].

This reduction technique is optimal in the sense of L�evy [13]. This means, that it

is able to share all �-redexes that belong to a same family (L�evy has argued that this

is the maximal sharing we may expect during reduction).

No traditional implementation of �-calculus (e.g. Wadsworth's graph rewriting,

combinatory logic, supercombinators, environment machines, continuation passing style,

: : :) is able to pro�t of all the sharing in �-expressions, thus this new technique has a

great practical interest, not only from the point of view of e�ciency, but also of memory

occupation space.

Consider for instance Wadsworth's graph rewriting technique for the evaluation of

functional expressions. Every time you have a redex r = (�x:M)N you should start

with duplicating the functional part F = �x:M . Indeed, F could be shared by other

terms, and since we are going to instantiate it, we must eventually work on a new copy.

If F contains a redex, this will be duplicated as well. The fact of reducing F �rst, does

not help that much. The \redex" inside F could be only a \virtual" one (see [7] for

the formal notion of \virtual" redex). Suppose for instance to have in F a subterm

like (yP), where y is bound externally to r. The subterm (yP) is not a redex, but

its duplication can be as useless and expensive as the duplication of an actual redex.

Moreover, the problem of sharing cannot be simply solved by the choice of a suitable

reduction strategy. Indeed, L�evy has proved that there are terms, where every order of

reduction would duplicate work. A typical example is provided by the following term:

P = (�x:xIx : : :x)�y:((�x:x : : :x)(ya))

where I is the identity, a is some constant, and the two sequences of x have both length

n. We have two redexes in P . If the outermost is reduced �rst, we eventually create

n residuals of the inner one. Conversely, if we start reducing the innermost redex, n

82 CHAPTER 5. PROGRESS

copies of (ya) are created, and this will duplicate work later on, when I is passed as a

parameter to y. In conclusion, any reduction strategy is at least linear in n.

An optimal compiler is able to get (a suitable representation of) the normal form

of P in a constant number of �-reductions!

5.4.2.2 The compiler

Lamping's graph reduction technique is too complex to be discussed here. We just

mention that the graph rewriting rules needed for the computation can be expressed in

the form of an Interaction Net [11], and can be easily implemented in a quite e�cient

way.

The prototype compiler developed by A.Asperti and C.Laneve implements Lamp-

ing's technique via a sort of \lazy" strategy: reduction is pursued up to the weak head

normal form of the term, by iterating the reduction of the redex-family of the leftmost

outermost redex in the term.

The leftmost outermost redex is looked for by maintaining an auxiliary stack for the

main spine of the term (in a way similar to typical supercombinators implementations,

such as the G-machine).

One of the main problems of the implementation has been the read-back procedure,

that is the procedure for translating the complex internal representation of the �nal

lambda term into a readable form. This has been solved by implementing the readback

algorithm in [8].

The source C code is available by anonymous ftp, in the CONFER/asperti sub-

directory at theory.doc.ic.ac.uk. The �le, in compressed tar format is named

opt_impl.tar.Z.

5.4.2.3 Extensions and future work

The current version of the compiler is still very preliminary. In particular, the following

features are under investigation:

� Garbage Collector. This does not seem to be a di�cult problem: standard tech-

niques can be adopted.

� Data Types and Control Primitives. The current version only deals with pure

�-terms. It looks urgent to integrate the compiler with an interesting set of data

types (booleans, integers, lists, : : :), and some control ow constructs (condition-

als, recursion, etc.). The authors already developed the theoretical background

for such extensions [4, 6, 8], and the actual implementation does not look too

problematic.

� Optimizations. The complex book-keeping required by Lamping's technique is a

big draw-back to the actual performance of the compiler. It seems to be possible

to drastically reduce the number of control operators oating in the graph, but

no theoretical result has been proved yet.

5.4. PROGRAMMING LANGUAGES 83

5.4.3 Portable, unobtrusive garbage collection for multiprocessor sys-

tems

Abstract

Doligez-Leroy[POPL'93] developed a garbage collector which has been implemented in

CAML-light (INRIA version of ML) on a parallel shared-memory architecture (Encore).

This real-time collector has a fancy synchronising protocol which makes it by far 10

times better than the best known parallel collector by H.-J. Boehm which has a high

latency. It is so e�cient that this algorithm is also used for the uni-processor version.

The algorithm relies on 2 observations. First, in ML, few objects are mutable. So the

garbage collector can have e�ciently a mark-and-sweep collector on mutable objects in

global memory space and several generations for non-mutable objects of the local space

of each processor. Non-mutables variables may be replicated without any consistency

problems. Secondly, standard parallel garbage collectors do not treat hidden variables

such as processor registers, which are not accessible by other processors. The DL

real-time algorithm has a sophisticated marking strategy, di�erent from the standard

Dijkstra-Lamport which allows very little overhead on register load/store operations,

small latency on the collector which runs in parallel.

Doligez-Gonthier[POPL'94] proved the previously mentioned algorithm. The proof

starts by the translation of the true C program into a TLA/Unity language (TLA is

Lamport's Temporal Logic of Actions). The proof led to the discovery of rare but very

important mistakes, which were �xed by rewriting the algorithm with a �ner analysis

on overheads, livelocks and memory fragmentation. The proof is immediate, after the

right translation into TLA/Unity. Moreover, the assumptions of the garbage collector

make it independent of the hardware.

The present algorithm is the �rst e�cient, portable, real-time parallel garbage col-

lector.

5.4.4 Lilac: a prototype functional programming language based on

Linear Logic

Summary

A prototype functional programming language based on Linear Logic has been devel-

oped at Imperial College to conduct experiments to determine the usefulness of Linear

Logic proof terms (Linear Lambda Calculi) as a programming language. This pre-

liminary version consists of a small environment where programs can be edited and

executed. The 3000 lines of code is written in Standard ML.

The main aim of this research is to look closer into the notion of reduction in the

�-calculus by using more re�ned calculi with explicit substitutions, copying and discard-

ing. Linear Logic proof terms provide a solid basis for a more re�ned implementation:

� Substitutions are made explicit: indeed the progress of a substitution through a

term appears as explicit steps in the cut-elimination process.

84 CHAPTER 5. PROGRESS

� Copying an argument corresponds to the contraction rule of the logic. Knowing

that an argument is not copied tells us that we can perform In-place updates

safely.

� Discarding an argument corresponds to the weakening rule of the logic. Knowing

that an argument is discarded tells us that it is not strict in that argument.

The philosophy behind Lilac is a very explicit language where the programmer is

very much aware of the resource manipulations of the algorithm. Lilac is a very small

strongly typed functional programming language without many of the advanced fea-

tures found in languages such as Standard ML. The design philosophy was to keep

things simple|a syntactically sparse language in the same spirit as Miranda

1

for ex-

ample.

The main features of Lilac are:

� Script style: the current program is held in a script|a collection of function

de�nitions.

� Pattern matching: on both built-in data structures, and the linear patterns.

� Lists: eager lists and lazy lists (streams).

� General Recursion and Iterators (for the natural numbers).

� Currying.

Examples:

A small script is shown below to give the avour of the language. The functions

are shown together with their types generated by Lilac.

fun square (!x@!y) = x � y ;

square : !nat�� nat

fun S f g (y@z) = fy(gz) ;

S : (!��� � ��)�� (!��� �)��!���

fun K x = x;

K : ���!� �� �

fun fst hx; i = x ;

fst : �& � �� �

funrec length (: t) = let length be !len in 1 + len(t)

length [] = let length be in 0 ;

length : !(list(!�)�� nat)

funrec sum (h : t) = let sum be !s in h+ s(t)

sum [] = let sum be in 0 ;

sum : !(list(nat)�� nat)

1

Miranda is a trademark of Research Software Ltd.

5.4. PROGRAMMING LANGUAGES 85

5.4.5 A typed programming language based on the �-calculus

Summary

The �-calculus o�ers an attractive basis for concurrent programming languages. It is

small, elegant, and well understood, and it supports, via simple encodings, a wide range

of high-level constructs such as structured data, higher-order programming, concurrent

control structures, and objects. Moreover, familiar type systems for the �-calculus

have direct counterparts in the �-calculus, yielding strong, static typing for high-level

languages de�ned in this way.

We have developed a statically-typed higher-order concurrent programming lan-

guage, called PICT. PICT extends the �-calculus with structured data (such as inte-

gers, tuples and records) and enables the communication of higher-order processes (c.f.

[18]). PICT's static type system is derived from Milner's original work on sorts for the

�-calculus (c.f. [17]).

We are currently investigating the di�erent programming styles which can be used

in PICT, with a view to further re�ning our language design. In particularly, we are

interested in integrating work we have done separately on sequential object-oriented

languages.

A compiler and interpreter for PICT has been implemented using the CAML-light

compiler. A separate runtime system and bytecode interpreter has also been written in

C (for reasons of e�ciency). Both implementations emphasize simplicity and portabil-

ity, and are designed to work in the standard Unix environment. This work is closely

related to implementation e�orts at other CONFER sites, since the runtime support

required for PICT is very similar to that used by Poly/ML and Facile.

5.4.6 Termination properties of unfolding extended to programs with

non-determinism

Source-to-source program transformations are of importance for improving the perfor-

mance of high-level programs. A particular transformation method is called partial

evaluation: the idea is to create specialized codes for functions that are called with

some part of the argument known. The increased information about the input can

then be used to simplify the code, so it is "tailored" to the particular situation. Thus,

partial evaluation o�ers the possibility to write highly reusable code, with a high level

of abstraction, and still have the bene�ts of the performance improvements given by

specialized code. Partial evaluation can be done as a stand-alone process, but it can

also be used automatically by compilers as an optimizing preprocessing phase.

A technique used extensively by partial evaluators is unfolding, i.e. replacing a

function call with the de�nition, where actual parameters are substituted for formal

parameters. If the actual parameters are (partially) instantiated, simpli�cations can

often be carried out, which means transferring work from runtime to compile-time.

Much of the performance gains in partial evaluation comes from this. On the other

hand, unfolding introduces some hazards: one of these is the risk of nontermination

due to in�nite unfolding. Any partial evaluator must have some means to control this.

86 CHAPTER 5. PROGRESS

Partial evaluation is best developed for purely functional languages and logic pro-

gramming languages, and it is also being developed for languages with imperative fea-

tures. Languages with nondeterminism pose theoretical problems, however, and little

has been known about how to resolve them. (This is one of the \challenging problems"

in the area, as listed in [19].) Thus, it is also hard to treat programs with processes,

since processes introduce nondeterminism in general. Still, it is desirable to be able to

apply partial evaluation to such programs, since the possible bene�ts are still there.

The work carried out at SICS is concerned with the termination properties of un-

folding. Thus, it is directly applicable to program transformation software that uses

unfolding to improve performance. Previous work [20] concerns the purely functional

case: a model of symbolic evaluation is developed, certain properties of unfolding are

proved like correctness (the unfolded version does the same thing as the original pro-

gram), and criteria are developed that ensure termination of unfolding. When these

criteria are met, termination of symbolic unfolding is guaranteed provided that the orig-

inal program terminates with \real" arguments. Some syntactical tests are developed

and proved correct.

As part of the CONFER project, the results regarding unfolding are extended to

programs with nondeterminism. In a preliminary report [21], an operational model for

nondeterminism in applicative programs is developed. Nondeterminism is expressed

through a nonconuent term rewriting system. A theory for semantics-preserving un-

folding in presence of nondeterminism are developed. Semantics-preserving unfolding

means that the unfolded programs should be able to produce exactly the same results

(no more, no less) as the original program. The term rewriting system is factored

into a deterministic (conuent) part and a nondeterministic (nonconuent) part, and

unfolding is performed only with respect to the deterministic part. Then, termination

properties carry over directly from the previous work. It is then proved that under

certain conditions on the rewrite system the unfolding is indeed semantics-preserving,

and some examples are given.

5.4.7 List of reports

[1] L. Leth and B. Thomsen. Some Facile Chemistry. Technical report ECRC-92-14,

European Computer-Industry Research Centre, 1992. Journal version submitted

and currently under revision for publication.

[2] B. Thomsen, L. Leth and A. Giacalone. Some Issues in the Semantics of Facile

Distributed Programming. Technical report ECRC-92-32, European Computer-

Industry Research Centre, 1992. Also in proceedings of the 1992 REX Workshop

on Semantics: Foundations and Applications. LNCS 666, Springer-Verlag, 1992.

[3] Polymorphic Sorts and Types for Concurrent Functional Programs. Technical re-

port ECRC-93-10, European Computer-Industry Research Centre, 1993.

[4] A. Asperti, C. Laneve Interaction Systems I: the theory of optimal reductions. Rap-

port Technique 1748, INRIA-Rocquencourt. Submitted to Mathematical Struc-

tures in Computer Science. 1992.

5.4. PROGRAMMING LANGUAGES 87

[5] A. Asperti Linear Logic, Comonads and Optimal Reductions. Acta Informaticae,

Special Issue devoted to \Categories in Computer Science", Polish Academy of

Sciences (invited paper). To appear.

[6] A. Asperti, C. Laneve Optimal Reductions in Interaction Systems. Proc. of the

4th Joint Conference on the Theory and Practice of Software Development, TAP-

SOFT'93, Orsay (France). April 1993.

[7] A. Asperti, C. Laneve Paths, Computations and Labels in the �-calculus. Proc.

of the 5th International Conference on Rewriting Techniques and Applications,

RTA'93, Montreal. June 1993.

[8] A. Asperti, C. Laneve Interaction Systems II: the practice of optimal reductions.

Technical Report UBLCS-93-12, Laboratory for Computer Science, University of

Bologna. Submitted to Theoretical Computer Science. 1993.

[9] G. Gonthier, M. Abadi, J.J. L�evy. The geometry of optimal lambda reduction.

Proc. of the 19th Symposium on Principles of Programming Languages (POPL

92). 1992.

[10] G. Gonthier, M. Abadi, J.J. L�evy. Linear Logic without boxes. Proc. of the 7th

Annual Symposium on Logic in Computer Science (LICS'92). 1992.

[11] Y. Lafont. Interaction Nets. Proc. of the 17th Symposium on Principles of Pro-

gramming Languages (POPL 90). San Francisco. 1990.

[12] J. Lamping. An algorithm for optimal lambda calculus reductions. Proc. of the 17th

Symposium on Principles of Programming Languages (POPL 90). San Francisco.

1990.

[13] J.J.L�evy. R�eductions correctes et optimales dans le lambda-calcul. Th�ese de doc-

torat d'�etat, Universit�e de Paris VII. 1978.

[14] D. Doligez, G. Gonthier. Portable, Unobtrusive Garbage Collection for Multipro-

cessor Systems. To appear in Proceedings of POPL'94.

[15] I. Mackie. Lilac: A Functional Programming Language Based on Linear Logic. To

appear in the Journal of Functional Programming.

[16] B. Pierce, D. R�emy, D.N. Turner. A Typed Higher-Order Programming Language

Based on the Pi-Calculus. Draft, 1993.

[17] R. Milner. The polyadic �-calculus: a tutorial. Technical report ECS{LFCS{91{

180. LFCS. Dept. of Computer Science, Edinburgh University. 1991.

[18] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms. PhD Thesis. Technical report CST{9-93. Dept. of Computer

Science, Edinburgh University. 1992.

88 CHAPTER 5. PROGRESS

[19] N.D. Jones. Challenging Problems in Partial Evaluation and Mixed Computation.

In Partial Evaluation and Mixed Computation, Proceedings of the IFIP TC2Work-

shop (Gammel Avern�s, Denmark, October 1987). PP.1-14. D. Bj�rner, A.P. Er-

shov and N.D. Jones Editors. North-Holland, 1988.

[20] B. Lisper. Total Unfolding: Theory and Applications. To appear in Journal of

Functional Programming.

[21] B. Lisper. Unfolding of Programs with Nondeterminism. Preliminary report, 1993.

Chapter 6

Appendices

In separate documents, there are copies of transparencies of workshops 1 and 2, and of

the corresponding printed papers.

Below is a list of reports and publications mentioned in this document.

89

90 CHAPTER 6. APPENDICES

CONFER-1 J.W. Klop Combinatory Reduction Systems: introduction and survey

V. van Oostrom CWI Report CS-R93xx (to appear)

F.van Raamsdonk to be published in Theor. Comp. Sci.

CONFER-2 V. van Oostrom Comparing Combinatory Reduction Systems and Higher-order

F.van Raamsdonk Rewrite Systems. Report IR-333, Free University Amsterdam, Aug.

1993; to appear in Proceedings of HOA '93 (Intern. Workshop on

Higher Order Algebra, Logic and Term Rewriting, September 1993,

Amsterdam)

CONFER-3 J.A. Bergstra Process Algebra with Combinators

I. Bethke Report University of Amsterdam (to appear Sept. 93)

A. Ponse

CONFER-4 R. Milner An action structure for synchronous �-calculus

Proc. FCT Conference, Szeged, Hungary, LNCS 710, 1993.

CONFER-5 R. Milner Action calculi, or concrete action structures,

Proc. MFCS Conference, Gdansk, Poland, LNCS 711, 1993.

CONFER-6 J. Parrow Algebraic Theories for Name-Passing Calculi,

D. Sangiorgi To appear in the Proc. REX Summer School 1993, LNCS, Springer

Verlag.

CONFER-7 B. Pierce Typing and Subtyping for Mobile Processes,

D. Sangiorgi Proc. 8th LICS Conference

CONFER-8 D. Sangiorgi A Theory of Bisimulation for the �-calculus

Proc. CONCUR '93, LNCS 715, Springer Verlag, 1993.

CONFER-9 D. Sangiorgi From �-calculus to Higher-Order �-calculus | and back,

Proc. TAPSOFT '93, LNCS 668, Springer Verlag, 1993.

CONFER-10 D. Sangiorgi An investigation into Functions as Processes,

to appear in the Proc. Ninth International Conference on the Math-

ematical Foundations of Programming Semantics (MFPS'93).

CONFER-11 D. Walker Process calculus and parallel object-oriented programming languages

In Proc International Summer Institute on Parallel Computer Archi-

tectures, Languages and Algorithms, Prague, July 1993 (Computer

Society Press, to appear)

91

CONFER-12 L. Leth Some Facile Chemistry

B. Thomsen Technical report ECRC-92-14, 1992.

CONFER-13 B. Thomsen Some Issues in the Semantics of Facile Distributed Programming

L. Leth Technical report ECRC-92-32, 1992.

A. Giacalone

CONFER-14 J.-J. L�evy Esprit Basic Research Action 6454-CONFER:

B. Thomsen CONcurrency and Functions:

L. Leth description of the CONFER project

A. Giacalone Bulletin of EATCS, Number 45, October 1992, pp.158-185

CONFER-15 B. Thomsen Polymorphic Sorts and Types for Concurrent Functional Programs,

Technical report ECRC-93-10, 1993.

CONFER-16 R. Amadio On the Reduction of Chocs Bisimulation to �-calculus Bisimulation,

Proc. CONCUR 93, E. Best (ed.), SLNCS 715.

CONFER-17 P.-L. Curien On the Symmetry of Sequentiality

Conference on Mathematical Foundations of Program Semantics, to

appear in the Proceedings of the Conference.

CONFER-18 V. Danos Local and Asynchronous Beta-Reduction

L. Regnier in Proc. IEEE-LICS 93, Montreal.

CONFER-19 C. Lavatelli Non deterministic lazy �-calculus vs. �-calculus

Technical Report LIENS 93-15, September 1993.

92 CHAPTER 6. APPENDICES

CONFER-20 S. Abramsky Interaction Categories (Extended Abstract). In G. L. Burn, S. J.

Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993:

Proceedings of the First Imperial College Department of Computing

Workshop on Theory and Formal Methods. Springer-Verlag Work-

shops in Computer Science, 1993. To appear.

CONFER-21 S. Abramsky Interaction Categories and communicating sequential processes. In

A. W. Roscoe, editor, A Classical Mind: Essays in Honour of C. A.

R. Hoare. Prentice Hall International, 1994. To appear.

CONFER-22 S. Abramsky Constructing and Verifying Typed Processes

S. Gay ICDOC Technical Report, October 1993 (To appear).

R. Nagarajan

CONFER-23 S. J. Gay A sort inference algorithm for the polyadic �-calculus. In POPL 93.

ACM Press, 1993

CONFER-24 S. J. Gay Modelling Signal in Interaction Categories

R. Nagarajan In G. L. Burn, S. J. Gay, and M. D. Ryan, editors, Theory and Formal

Methods 1993: Proceedings of the First Imperial College Department

of Computing Workshop on Theory and Formal Methods. Springer-

Verlag Workshops in Computer Science, 1993. To appear.

CONFER-25 I. Mackie Lilac: A Functional Programming Language Based on Linear Logic.

To appear in the Journal of Functional Programming.

CONFER-26 I. C. Mackie An Internal Language for Autonomous Categories

L. Rom�an Journal of Applied Categorical Structures 1993 (to appear)

S. Abramsky

CONFER-27 L. Ong Non-determinism in a functional setting

In Proceedings of LICS 1993

93

CONFER-28 A. Asperti Linear Logic, Comonads, and Optimal Reductions

Fundamenta Informaticae, Special Issue devoted to \Categories in

Computer Science", Polish Academy of Sciences (invited paper). To

appear.

CONFER-29 A. Asperti Paths, Computations and Labels in the �-calculus

C. Laneve Proc. of the 5th International Conference on Rewriting Techniques

and Applications, RTA'93, Montreal. June 1993

CONFER-30 A. Asperti Interaction Systems

C. Laneve HOA'93. International Workshop on Higher-Order Algebra, Logic

and Term Rewriting. Amsterdam, September 1993

CONFER-31 A. Asperti Optimal Reductions in Interaction Systems

C. Laneve Proc. of the 4th Joint Conference on the Theory and Practice of

Software Development, TAPSOFT'93, Orsay (France). April 1993.

CONFER-32 A. Asperti Interaction Systems I: the theory of optimal reductions

C. Laneve Rapport Technique 1748, INRIA-Rocquencourt. Submitted to Math-

ematical Structures in Computer Science. 1992

CONFER-33 A. Asperti Interaction Systems II: the practice of optimal reductions

C. Laneve Technical Report UBLCS-93-12, Laboratory for Computer Science,

University of Bologna. Submitted to Theoretical Computer Science.

1993

CONFER-34 P.-L. Curien Strong normalisation of Substitutions

T. Hardin MFCS, Prague, 1992

A. Rios

CONFER-35 D. Doligez Portable, Unobtrusive Garbage Collection for Multiprocessor Systems

G. Gonthier To appear in Proceedings of POPL'94

CONFER-36 G. Gonthier Linear Logic without Boxes,

M. Abadi 7th LICS, Santa Cruz, 1992. Accepted for the special LICS issue

J.-J. L�evy of Information & Computation, to be submitted to this journal.

CONFER-37 G. Gonthier An abstract standardisation theorem

J.-J. L�evy 7th LICS, Santa Cruz, 1992.

P.-A. Melli�es

CONFER-38 T. Hardin From Categorical Combinators to ��-calculi: a quest for conuence,

INRIA Report 1777 - November 1992

94 CHAPTER 6. APPENDICES

CONFER-39 G. Boudol The Lambda-Calculus with Multiplicities

(Preliminary report), INRIA Research Report 2025. (1993).

presented in an invited talk at the CONCUR'93 Conference,

Hildesheim, August 1993.

CONFER-40 G. Boudol The Chemical Abstract Machine

invited talk at the REX workshop, "A Decade of Concurrency" (Am-

sterdam, June 1993)

CONFER-41 G. Ferrari The �-calculus with Explicit Substitutions

U. Montanari Submitted for publication 1993.

P. Quaglia

CONFER-42 G. Ferrari Observing Time-Complexity of Concurrent Programs

U. Montanari 1993.

CONFER-43 C. Laneve Distributive Evaluations of �-calculus, To appear in Acta

Informaticae.

CONFER-44 C. Laneve Optimality and Concurrency in Interaction Systems, PhD Thesis TD-

8/93, Dipartimento di Informatica, Universit�a di Pisa, 1993.

CONFER-45 C. Laneve Mobility in the cc Paradigm

U. Montanari Preliminary version in MFCS'92, LNCS 629, 1992

CONFER-46 U. Montanari Axiomatizing Permutation Equivalence, Submitted for publication

1993.

Preliminary version in ALP'92, LNCS 632, 1992

CONFER-47 B. Lisper Total unfolding: theory and applications

Accepted for publication in Journal of Functional Programming.

CONFER-48 J. Parrow Interaction Diagrams

Draft paper, presented at REX'93 workshop and summer school

CONFER-49 J. Parrow Algebraic Theories for Name-Passing Calculi

D. Sangiorgi SICS Research Report R93:04, 1993.

CONFER-50 M. Dam Model Checking Mobile Processes

In Proc. CONCUR'93, LNCS 715, pp. 22-36.

CONFER-51 B. Lisper Unfolding of Programs with Nondeterminism and Processes

In preparation (should be available in time for review)

