MPRI Concurrency (course number 2-3) 2004-2005: π -calculus

16 November 2004

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/

James J. Leifer INRIA Rocquencourt

James.Leifer@inria.fr

16 November 2004

Books

- Robin Milner. Communicating and mobile systems: the π -calculus. (Cambridge University Press, 1999).
- Robin Milner. Communication and concurrency. (Prentice Hall, 1989).
- Davide Sangiorgi and David Walker. The π -calculus: a theory of mobile processes. (Cambridge University Press, 2001).

Tutorials available online

- Robin Milner. "The polyadic pi-calculus: a tutorial". Technical Report ECS-LFCS-91-180, University of Edinburgh.
- http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/ECS-LFCS-91-180.ps
- Joachim Parrow. "An introduction to the pi-calculus".
 http://user.it.uu.se/~joachim/intro.ps
- Peter Sewell. "Applied pi a brief tutorial". Technical Report 498, University of Cambridge. http://www.cl.cam.ac.uk/users/pes20/apppi.ps

About the lectures

- The MPRI represents a transition from student to researcher. So...
- Interrupting me with questions is good.
- Working through a problem without already knowing the answer is good.
- I'll make mistakes. 8-)

About me

- 1995-2001: Ph.D. student of Robin Milner's in Cambridge, UK
- 2001–2002: Postdoc in INRIA Rocquencourt, France
- 2002-: Research scientist in INRIA Rocquencourt, France
- November 2004: voted against W (who, despite this, was elected for the first time)

16 November 2004

Today's plan

- syntax
- reduction semantics and structural congruence
- labelled transitions
- bisimulation

16 November 2004 2

6 November 2004

Syntax

$$P := \overline{x}y.P$$
 output $x(y).P$ input $y = (y \text{ binds in } P)$ output $y = (y \text{ binds in } P)$ ou

Significant difference from CCS: channels carry names.

16 November 2004

Reduction (\longrightarrow)

We say that P reduces to P', written $P \longrightarrow P'$, if this can be derived from the following rules:

$$\begin{array}{c} \overline{x}y.P \mid x(u).Q \longrightarrow P \mid \{y/u\}Q & \text{(red-comm)} \\ \\ \frac{P \longrightarrow P'}{P \mid Q \longrightarrow P' \mid Q} & \text{(red-par)} \\ \\ \frac{P \longrightarrow P'}{\nu x.P \longrightarrow \nu x.P'} & \text{(red-new)} \end{array}$$

Example: $\boldsymbol{\nu} x.(\overline{x}y \mid x(u).\overline{u}z) \longrightarrow \boldsymbol{\nu} x.(\boldsymbol{0} \mid \overline{y}z)$

As currently defined, reduction is too limited:

$$(\overline{x}y \mid \mathbf{0}) \mid x(u) \not\longrightarrow$$

 $\boldsymbol{\nu}w.\overline{x}y \mid x(u) \not\longrightarrow$

16 November 2004

Free names

The free names of P are written fn(P).

Example: $fn(\mathbf{0}) = \emptyset$; $fn(\overline{x}y.z(y).\mathbf{0}) = \{x, y, z\}$.

Exercise: Calculate $fn(z(y).\overline{x}y.0)$; $fn(\nu z.(z(y).\overline{x}y) \mid \overline{y}z)$.

Formally:

$$\begin{array}{ll} \operatorname{fn}(\overline{x}y.P) &= \{x,y\} \cup \operatorname{fn}(P) \\ \operatorname{fn}(x(y).P) &= \{x\} \cup (\operatorname{fn}(P) \setminus \{y\}) \\ \operatorname{fn}(\boldsymbol{\nu}x.P) &= \operatorname{fn}(P) \setminus \{x\} \\ \operatorname{fn}(P \mid P') &= \operatorname{fn}(P) \cup \operatorname{fn}(P') \\ \operatorname{fn}(\mathbf{0}) &= \varnothing \\ \operatorname{fn}(P) &= \operatorname{fn}(P) \end{array}$$

Alpha-conversion

We consider processes up to alpha-conversion: provided $y' \notin \operatorname{fn}(P)$, we have

$$x(y).P = x(y').\{y'/y\}P$$

 $\nu y.P = \nu y'.\{y'/y\}P$

Exercise: Freshen all bound names: $\nu x.(x(x).\overline{x}x) \mid x(x)$

16 November 2004

Structural congruence (≡)

$$\begin{array}{c} P \mid (Q \mid S) \equiv (P \mid Q) \mid S & \text{(str-assoc)} \\ P \mid Q \equiv Q \mid P & \text{(str-commut)} \\ P \mid \mathbf{0} \equiv P & \text{(str-id)} \\ \boldsymbol{\nu}x.\boldsymbol{\nu}y.P \equiv \boldsymbol{\nu}y.\boldsymbol{\nu}x.P & \text{(str-swap)} \\ \boldsymbol{\nu}x.\mathbf{0} \equiv \mathbf{0} & \text{(str-zero)} \\ \boldsymbol{\nu}x.P \mid Q \equiv \boldsymbol{\nu}x.(P \mid Q) & \text{if } x \notin \text{fn}(Q) & \text{(str-ex)} \\ !P \equiv P \mid !P & \text{(str-repl)} \end{array}$$

We close reduction by structural congruence:

$$\frac{P \equiv \longrightarrow \equiv P'}{P \longrightarrow P'}$$
 (red-str)

Exercise: Calculate the reductions of $\boldsymbol{\nu} y.(\overline{x}y \mid y(u).\overline{u}z) \mid x(w).\overline{w}v$ and $\overline{x}y \mid \boldsymbol{\nu} y.(x(u).\overline{u}w \mid y(v))$

November 2004

Application of new binding: from polyadic to monadic channels

Let us extend our notion of *monadic* channels, which carry exactly one name, to *polyadic* channels, which carry a vector of names, i.e.

$$P := \overline{x}\langle y_1, ..., y_n \rangle.P$$
 output $x(y_1, ..., y_n).P$ input $(y_1, ..., y_n \text{ bind in } P)$

Is there an encoding from polyadic to monadic channels? We might try:

$$[\![\overline{x}\langle y_1, ..., y_n\rangle.P]\!] = \overline{x}y_1...\overline{x}y_n.[\![P]\!]$$
$$[\![x(y_1, ..., y_n).P]\!] = x(y_1)...x(y_n).[\![P]\!]$$

but this is broken! Can you see why? The right approach is use new binding:

$$[\![\overline{x}\langle y_1,...,y_n\rangle.P]\!] = \boldsymbol{\nu}z.(\overline{x}z.\overline{z}y_1....\overline{z}y_n.[\![P]\!])$$
$$[\![x(y_1,...,y_n).P]\!] = x(z).z(y_1)....z(y_n).[\![P]\!]$$

where $z\notin \operatorname{fn}(P)$ in both cases. (We also need some well-sorted assumptions.)

16 November 2004

Labels

The labels α are of the form:

$$\begin{array}{ll} \alpha ::= \overline{x}y & \text{output} \\ \overline{x}(y) & \text{bound output} \\ xy & \text{input} \\ \tau & \text{silent} \end{array}$$

The names $n(\alpha)$ and bound names $bn(\alpha)$ are defined as follows:

$$\begin{array}{c|cccc} \alpha & \overline{x}y & \overline{x}(y) & xy & \tau \\ \hline \mathbf{n}(\alpha) & \{x,y\} & \{x,y\} & \{x,y\} & \varnothing \\ \mathbf{bn}(\alpha) & \varnothing & y & \varnothing & \varnothing \end{array}$$

6 November 2004

Application of new binding: from synchronous to asynchronous ouput

In distributed computing, sending and receiving messages may be asymmetric: we clearly know when we have received a message but not necessarily when a message we sent has been delivered. (Think of email.)

$$P := \overline{x}y$$
 output $x(y).P$ input $(y \text{ binds in } P)$

Nonetheless, one can always achieve synchronous sends by using an *acknowledgement* protocol:

provided $z \notin fn(P)$ in both cases.

ovember 2004

Labelled transitions ($P \stackrel{\alpha}{\longrightarrow} P'$)

Labelled transitions are of the form $P \xrightarrow{\alpha} P'$ and are generated by:

$$\frac{P\overset{\alpha}{\longrightarrow}P'}{P\mid Q\overset{\alpha}{\longrightarrow}P'\mid Q} \text{if } \operatorname{bn}(\alpha)\cap\operatorname{fn}(Q) = \varnothing \quad \text{(lab-par-l)}$$

$$\frac{P\overset{\alpha}{\longrightarrow}P'}{\nu y.P\overset{\alpha}{\longrightarrow}\nu y.P'} \text{if } y\notin\operatorname{n}(\alpha) \quad \text{(lab-new)} \qquad \frac{P\overset{\overline{x}y}{\longrightarrow}P'}{\nu y.P\overset{\overline{x}(y)}{\longrightarrow}P'} \text{if } y\neq x \quad \text{(lab-open)}$$

$$\frac{P\overset{\overline{x}y}{\longrightarrow}P' \quad Q\overset{xy}{\longrightarrow}Q'}{P\mid Q\overset{\overline{x}y}{\longrightarrow}P'\mid Q'} \quad \text{(lab-comm-l)} \qquad \frac{P\overset{\overline{x}(y)}{\longrightarrow}P' \quad Q\overset{xy}{\longrightarrow}Q'}{P\mid Q\overset{\overline{x}y}{\longrightarrow}P'\mid Q'} \text{if } y\notin\operatorname{fn}(Q) \quad \text{(lab-close-l)}$$

$$\frac{P\mid P\overset{\alpha}{\longrightarrow}P'}{\longrightarrow}P' \quad \text{(lab-bang)}$$

 $\overline{x}y.P \xrightarrow{\overline{x}y} P$ (lab-out) $x(y).P \xrightarrow{xz} \{z/y\}P$ (lab-in)

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).

16 November 2004 11

Labelled transitions and structural congruence

Theorem:

1.
$$P \longrightarrow P'$$
 iff $P \xrightarrow{\tau} \equiv P'$.

2.
$$P \equiv \stackrel{\alpha}{\longrightarrow} P'$$
 implies $P \stackrel{\alpha}{\longrightarrow} \equiv P'$

Exercise: Why does the converse of the second not hold?

Exercise: Show that the following pair of processes are both in (\longrightarrow) and $(\stackrel{\tau}{\longrightarrow}\equiv)$:

$$\boldsymbol{\nu} z. \overline{x} z \mid x(u). \overline{y} u \qquad \boldsymbol{\nu} z. \overline{y} z$$

Fun with side conditions

Exercise: Show that the side condition on (lab-par-l) is necessary by considering the process $\nu y.(\overline{x}y.y(u)) \mid \overline{z}v$ and an alpha variant.

16 November 2004

Strong bisimulation

A relation $\mathcal R$ is a strong bisimulation if for all $(P,Q)\in\mathcal R$ and $P\overset{\alpha}{\longrightarrow}P'$, where $\operatorname{bn}(\alpha)\cap\operatorname{fn}(Q)=\varnothing$, there exists Q' such that $Q\overset{\alpha}{\longrightarrow}Q'$ and $(P',Q')\in\mathcal R$, and symmetrically.

Strong bisimilarity \sim is the largest strong bisimulation.

16 November 2004

Bisimulation proofs

Theorem: $P \equiv Q$ implies $P \sim Q$.

Can you think of a counterexample to the converse?

Some easy results:

1.
$$P | \mathbf{0} \sim P$$

2.
$$\overline{x}y.\boldsymbol{\nu}z.P \sim \boldsymbol{\nu}z.\overline{x}y.P$$
, if $z \notin \{x,y\}$

3.
$$x(y).\nu z.P \sim \nu z.x(y).P$$
, if $z \notin \{x, y\}$

4.
$$!\boldsymbol{\nu}z.P \nsim \boldsymbol{\nu}z.!P$$
 for some P

More difficult:

1.
$$\nu x.P \mid Q \sim \nu x.(P \mid Q)$$

2.
$$!P \mid !P \sim !P$$

3.
$$P \sim Q$$
 implies $P \mid S \sim Q \mid S$

Adding sum

$$P := M \qquad \text{sum} \\ P \mid P \qquad \text{parallel (par)} \\ !P \qquad \text{replication (bang)} \\ M := \overline{x}y.P \qquad \text{output} \\ x(y).P \qquad \text{input (y binds in P)} \\ M + M \qquad \text{sum} \\ \mathbf{0}$$

Change structural congruence to treat + as associative and commutive with identity $\mathbf{0}.$

Change reduction: $(\overline{x}y.P + M) \mid (x(u).Q + N) \longrightarrow P \mid \{y/u\}Q.$

Change labelled transition: $M + \overline{x}y.P + N \xrightarrow{\overline{x}y} P$ $M + x(y).P + N \xrightarrow{xz} \{z/y\}P$

16 November 2004 15