MPRI Concurrency (course number 2-3) 2004-2005:

 π-calculus
16 November 2004

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

Books

- Robin Milner. Communicating and mobile systems: the π-calculus. (Cambridge University Press, 1999).
- Robin Milner. Communication and concurrency. (Prentice Hall, 1989).
- Davide Sangiorgi and David Walker. The π-calculus: a theory of mobile processes. (Cambridge University Press, 2001).

Tutorials available online

- Robin Milner. "The polyadic pi-calculus: a tutorial". Technical Report ECS-LFCS-91-180, University of Edinburgh.
http://www.Ifcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/ECS-LFCS-91-180.ps
- Joachim Parrow. "An introduction to the pi-calculus". http://user.it.uu.se/~joachim/intro.ps
- Peter Sewell. "Applied pi - a brief tutorial". Technical Report 498, University of Cambridge. http://www.cl.cam.ac.uk/users/pes20/apppi.ps

About the lectures

- The MPRI represents a transition from student to researcher. So...
- Interrupting me with questions is good.
- Working through a problem without already knowing the answer is good.
- I'll make mistakes. 8-)

About me

- 1995-2001: Ph.D. student of Robin Milner's in Cambridge, UK
- 2001-2002: Postdoc in INRIA Rocquencourt, France
- 2002-: Research scientist in INRIA Rocquencourt, France
- November 2004: voted against W (who, despite this, was elected for the first time)

16 November 2004

Today's plan

- syntax
- reduction semantics and structural congruence
- labelled transitions
- bisimulation

Syntax

$P::=$	$\bar{x} y . P$		output
	$x(y) . P$		input $(y$ binds in $P)$
	$\boldsymbol{\nu} x . P$		restriction (new) $(x$ binds in $P)$
	$P \mid P$		parallel (par)
	$\mathbf{0}$		empty
	$!P$		replication (bang)

Significant difference from CCS: channels carry names.

Reduction (\longrightarrow)

We say that P reduces to P^{\prime}, written $P \longrightarrow P^{\prime}$, if this can be derived from the following rules:

$$
\begin{array}{cr}
\bar{x} y \cdot P \mid x(u) \cdot Q & \longrightarrow P \mid\{y / u\} Q \\
P \longrightarrow P^{\prime} \\
\hline P\left|Q \longrightarrow P^{\prime}\right| Q & \text { (red-comm) } \\
P \longrightarrow P^{\prime} \\
\frac{\boldsymbol{\nu} x \cdot P}{} \longrightarrow \boldsymbol{\nu} x \cdot P^{\prime} & \text { (red-par) } \\
\text { (red-new) }
\end{array}
$$

Example: $\boldsymbol{\nu} x .(\bar{x} y \mid x(u) . \bar{u} z) \longrightarrow \boldsymbol{\nu} x .(\mathbf{0} \mid \bar{y} z)$
As currently defined, reduction is too limited:

$$
\begin{gathered}
(\bar{x} y \mid \mathbf{0}) \mid x(u) \not 尸 \\
\boldsymbol{\nu} w \cdot \bar{x} y \mid x(u) \not 尸
\end{gathered}
$$

Free names

The free names of P are written $\mathrm{fn}(P)$.
Example: $\operatorname{fn}(\mathbf{0})=\varnothing ; \operatorname{fn}(\bar{x} y . z(y) . \mathbf{0})=\{x, y, z\}$.
Exercise: Calculate $\mathrm{fn}(z(y) . \bar{x} y .0) ; \mathfrak{f n}(\boldsymbol{\nu} z .(z(y) . \bar{x} y) \mid \bar{y} z)$.
Formally:

$$
\begin{array}{ll}
\mathrm{fn}(\bar{x} y \cdot P) & =\{x, y\} \cup \mathrm{fn}(P) \\
\mathrm{fn}(x(y) \cdot P) & =\{x\} \cup(\mathrm{fn}(P) \backslash\{y\}) \\
\mathrm{fn}(\boldsymbol{\nu} x \cdot P) & =\mathrm{fn}(P) \backslash\{x\} \\
\mathrm{fn}\left(P \mid P^{\prime}\right) & =\mathrm{fn}(P) \cup \mathrm{fn}\left(P^{\prime}\right) \\
\mathrm{fn}(\mathbf{0}) & =\varnothing \\
\mathrm{fn}(!P) & =\mathrm{fn}(P)
\end{array}
$$

Alpha-conversion

We consider processes up to alpha-conversion: provided $y^{\prime} \notin \mathrm{fn}(P)$, we have

$$
\begin{aligned}
x(y) \cdot P & =x\left(y^{\prime}\right) \cdot\left\{y^{\prime} / y\right\} P \\
\boldsymbol{\nu} y \cdot P & =\boldsymbol{\nu} y^{\prime} \cdot\left\{y^{\prime} / y\right\} P
\end{aligned}
$$

Exercise: Freshen all bound names: $\boldsymbol{\nu} x .(x(x) . \bar{x} x) \mid x(x)$

$$
16 \text { November } 2004
$$

Structural congruence (\equiv)

$$
\begin{array}{cr}
P|(Q \mid S) \equiv(P \mid Q)| S & \text { (str-assoc) } \\
P|Q \equiv Q| P & \text { (str-commut) } \\
P \mid \mathbf{0} \equiv P & \text { (str-id) } \\
\boldsymbol{\nu} x . \boldsymbol{\nu} y . P \equiv \boldsymbol{\nu} y . \boldsymbol{\nu} x . P & \text { (str-swap) } \\
\boldsymbol{\nu} x . \mathbf{0} \equiv \mathbf{0} & \text { (str-zero) } \\
\boldsymbol{\nu} x . P \mid Q \equiv \boldsymbol{\nu} x .(P \mid Q) \quad \text { if } x \notin \mathrm{fn}(Q) & \text { (str-ex) } \\
!P \equiv P \mid!P & \text { (str-repl) }
\end{array}
$$

We close reduction by structural congruence:

$$
\frac{P \equiv \longrightarrow \equiv P^{\prime}}{P \longrightarrow P^{\prime}}
$$

(red-str)
Exercise: Calculate the reductions of $\boldsymbol{\nu} y \cdot(\bar{x} y \mid y(u) \cdot \bar{u} z) \mid x(w) \cdot \bar{w} v$ and $\bar{x} y \mid \boldsymbol{\nu} y .(x(u) . \bar{u} w \mid y(v))$

Application of new binding: from polyadic to monadic channels

Let us extend our notion of monadic channels, which carry exactly one name, to polyadic channels, which carry a vector of names, i.e.

$$
\begin{aligned}
P::= & \bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle \cdot P & & \text { output } \\
& x\left(y_{1}, \ldots, y_{n}\right) \cdot P & & \text { input }\left(y_{1}, \ldots, y_{n} \text { bind in } P\right)
\end{aligned}
$$

Is there an encoding from polyadic to monadic channels? We might try:

$$
\begin{gathered}
\llbracket \bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle \cdot P \rrbracket=\bar{x} y_{1} \ldots \bar{x} y_{n} \cdot \llbracket P \rrbracket \\
\llbracket x\left(y_{1}, \ldots, y_{n}\right) \cdot P \rrbracket=x\left(y_{1}\right) \ldots x\left(y_{n}\right) \cdot \llbracket P \rrbracket
\end{gathered}
$$

but this is broken! Can you see why? The right approach is use new binding:

$$
\begin{aligned}
& \llbracket \bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle \cdot P \rrbracket=\boldsymbol{\nu} z \cdot\left(\bar{x} z \cdot \bar{z} y_{1} \ldots \cdot \bar{z} y_{n} \cdot \llbracket P \rrbracket\right) \\
& \llbracket x\left(y_{1}, \ldots, y_{n}\right) \cdot P \rrbracket=x(z) \cdot z\left(y_{1}\right) \ldots z\left(y_{n}\right) \cdot \llbracket P \rrbracket
\end{aligned}
$$

where $z \notin \mathrm{fn}(P)$ in both cases. (We also need some well-sorted assumptions.)

Labels

The labels α are of the form:

$$
\begin{aligned}
\alpha::= & \bar{x} y & & \text { output } \\
& \bar{x}(y) & & \text { bound output } \\
& x y & & \text { input } \\
& \tau & & \text { silent }
\end{aligned}
$$

The names $\mathrm{n}(\alpha)$ and bound names $\mathrm{bn}(\alpha)$ are defined as follows:

$$
\begin{array}{r|cccc}
\alpha & \bar{x} y & \bar{x}(y) & x y & \tau \\
\hline \mathrm{n}(\alpha) & \{x, y\} & \{x, y\} & \{x, y\} & \varnothing \\
\mathrm{bn}(\alpha) & \varnothing & y & \varnothing & \varnothing
\end{array}
$$

Application of new binding: from synchronous to asynchronous ouput

In distributed computing, sending and receiving messages may be asymmetric: we clearly know when we have received a message but not necessarily when a message we sent has been delivered. (Think of email.)

$$
\begin{aligned}
P::= & \bar{x} y & & \text { output } \\
& x(y) . P & & \text { input }(y \text { binds in } P)
\end{aligned}
$$

Nonetheless, one can always achieve synchronous sends by using an acknowledgement protocol:

$$
\begin{gathered}
\llbracket \bar{x} y \cdot P \rrbracket=\boldsymbol{\nu} z \cdot(\bar{x}\langle y, z\rangle \mid z() \cdot \llbracket P \rrbracket) \\
\llbracket x(y) \cdot P \rrbracket=x(y, z) \cdot(\bar{z}\langle \rangle \mid \llbracket P \rrbracket)
\end{gathered}
$$

provided $z \notin \mathrm{fn}(P)$ in both cases.

$$
16 \text { November } 2004
$$

Labelled transitions ($P \xrightarrow{\alpha} P^{\prime}$)

Labelled transitions are of the form $P \xrightarrow{\alpha} P^{\prime}$ and are generated by:

$$
\begin{aligned}
& \bar{x} y \cdot P \xrightarrow{\bar{x} y} P \quad \text { (lab-out) } \quad x(y) \cdot P \xrightarrow{x z}\{z / y\} P \quad \text { (lab-in) } \\
& \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \text { if } \mathrm{bn}(\alpha) \cap \mathrm{fn}(Q)=\varnothing \quad \text { (lab-par-I) } \\
& \frac{P \xrightarrow{\alpha} P^{\prime}}{\boldsymbol{\nu} y \cdot P \xrightarrow{\alpha} \boldsymbol{\nu} y \cdot P^{\prime}} \text { if } y \notin \mathrm{n}(\alpha) \quad \text { (lab-new) } \quad \frac{P \xrightarrow{\bar{x} y} P^{\prime}}{\boldsymbol{\nu} y \cdot P \xrightarrow{\bar{x}(y)} P^{\prime}} \text { if } y \neq x \quad \text { (lab-open) }
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[{!P \xrightarrow{\alpha} P^{\prime}}]{P \mid!P \stackrel{\alpha}{\longrightarrow} P^{\prime}} \quad \text { (lab-bang) }
\end{aligned}
$$

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).

Labelled transitions and structural congruence

Theorem:

1. $P \longrightarrow P^{\prime}$ iff $P \xrightarrow{\tau} \equiv P^{\prime}$.
2. $P \equiv \stackrel{\alpha}{\longrightarrow} P^{\prime}$ implies $P \xrightarrow{\alpha} \equiv P^{\prime}$

Exercise: Why does the converse of the second not hold?
Exercise: Show that the following pair of processes are both in (\longrightarrow) and $(\xrightarrow{\tau}$):

$$
\boldsymbol{\nu} z \cdot \bar{x} z \mid x(u) \cdot \bar{y} u \quad \boldsymbol{\nu} z \cdot \bar{y} z
$$

Fun with side conditions

Exercise: Show that the side condition on (lab-par-l) is necessary by considering the process $\nu y .(\bar{x} y . y(u)) \mid \bar{z} v$ and an alpha variant.

Bisimulation proofs

Theorem: $P \equiv Q$ implies $P \sim Q$.
Can you think of a counterexample to the converse?
Some easy results:

1. $P \mid \mathbf{0} \sim P$
2. $\bar{x} y \cdot \boldsymbol{\nu} z \cdot P \sim \boldsymbol{\nu} z \cdot \bar{x} y \cdot P$, if $z \notin\{x, y\}$
3. $x(y) . \boldsymbol{\nu} z \cdot P \sim \boldsymbol{\nu} z \cdot x(y) . P$, if $z \notin\{x, y\}$
4. ! $\boldsymbol{\nu} z . P \nsim \boldsymbol{\nu} z!!P$ for some P

More difficult:

1. $\boldsymbol{\nu} x . P \mid Q \sim \boldsymbol{\nu} x .(P \mid Q)$
2. $!P \mid!P \sim!P$
3. $P \sim Q$ implies $P|S \sim Q| S$

Strong bisimulation

A relation \mathcal{R} is a strong bisimulation if for all $(P, Q) \in \mathcal{R}$ and $P \xrightarrow{\alpha} P^{\prime}$, where $\operatorname{bn}(\alpha) \cap \mathrm{fn}(Q)=\varnothing$, there exists Q^{\prime} such that $Q \xrightarrow{\alpha} Q^{\prime}$ and $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{R}$, and symmetrically.

Strong bisimilarity \sim is the largest strong bisimulation.

Adding sum

$$
\begin{aligned}
P::= & M & & \text { sum } \\
& P \mid P & & \text { parallel (par) } \\
& !P & & \text { replication (bang) } \\
M::= & \bar{x} y \cdot P & & \text { output } \\
& x(y) . P & & \text { input }(y \text { binds in } P) \\
& M+M & & \text { sum } \\
& \mathbf{0} & &
\end{aligned}
$$

Change structural congruence to treat + as associative and commutive with identity 0.

Change reduction: $(\bar{x} y \cdot P+M)|(x(u) \cdot Q+N) \longrightarrow P|\{y / u\} Q$.
Change labelled transition: $M+\bar{x} y \cdot P+N \xrightarrow{\bar{x} y} P$
$M+x(y) \cdot P+N \xrightarrow{x z}\{z / y\} P$

