MPRI Concurrency (course number 2-3) 2004-2005: π-calculus
9 December 2004
http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/
James J. Leifer
INRIA Rocquencourt
James.Leifer@inria.fr

9 December 2004

Weak barbed bisimulation

Recall that a process P has a strong barb x, written $P \downarrow x$ iff there exists P_{0}, P_{1}, and \vec{y} such that $P \equiv \boldsymbol{\nu} \vec{y} \cdot\left(\bar{x} u \cdot P_{0} \mid P_{1}\right)$ and $x \notin \vec{y}$.

A process P has a weak barb x, written $P \Downarrow x$ iff there exists P^{\prime} such that $P \longrightarrow{ }^{*} P^{\prime}$ and $P^{\prime} \downarrow x$.

A relation \mathcal{R} is a weak barbed bisimulation if it is symmetric and for all $(P, Q) \in \mathcal{R}$
\bullet if $P \longrightarrow P^{\prime}$, there exists Q^{\prime} such that $Q \longrightarrow{ }^{*} Q^{\prime}$ and $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{R}$;

- if $P \downarrow x$ then $Q \downarrow x$.

[^0]
Today's plan

- exercises from last week
- review: barbed bisimilarity
- two natural congruences
- a family portrait
- weak barbed congruence and weak labelled bisimilarity correspond

Two possible equivalences (non-input congruences)

We write "equivalence" for "non input-prefixing congruence".
Clearly $\dot{\sim}$ isn't an equivalence: $\bar{x} y \dot{\approx} \bar{x} z$ but $-\mid x(u) . \bar{u} w$ can distinguish them. There are two ways of building an equivalence:

- Close up at the end: weak barbed equivalence, $\dot{\sim}^{\circ}$, is the largest equivalence included in $\dot{\sim}$. Concretely, $P \dot{\sim}^{\circ} Q$ iff for all contexts $C \in \mathcal{E}$ we have $C[P] \dot{\approx} C[Q]$. Check!
- Close up at every step: weak barbed reduction equivalence, \approx, is the largest relation \mathcal{R} such that \mathcal{R} is a weak barbed bisimulation and an equivalence. Concretely, \approx is the largest symmetric relation \mathcal{R} such that for all $(P, Q) \in \mathcal{R}$,
- if $P \longrightarrow P^{\prime}$, there exists Q^{\prime} such that $Q \longrightarrow * Q^{\prime}$ and $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{R}$;
- if $P \downarrow x$ then $Q \Downarrow x$;
- for all $C \in \mathcal{E}$, we have $(C[P], C[Q]) \in \mathcal{R}$.

Check!

An extended family portrait

	strong	
	labelled	barbed
not an equivalence		"bisimilarity" $\dot{\sim}$
equivalence	"bisimilarity" \sim_{ℓ}	"equivalence" "reduction equivalence"
congruence	"full bisimilarity" \simeq_{ℓ}	"congruence" $\dot{\simeq}^{\circ}$ "reduction congruence" \simeq
		weak
	labelled	barbed
not an equivalence		"bisimilarity" $\dot{\sim}$
equivalence	"bisimilarity" \approx_{ℓ}	"equivalence" $\dot{\sim}^{0}$ "reduction equivalence"
congruence	"full bisimilarity" \cong_{ℓ}	"congruence" $\dot{\cong}^{0}$ "reduction congruence" \cong

What's the difference between \approx and ≈ 0 ?

- $\approx \subseteq \dot{\sim}^{0}$: Yes, trivially.
- $\approx \supseteq \dot{\sim}^{0}$: Not necessarily.

Two difficult results due to Cédric Fournet and Georges Gonthier. "A hierarchy of equivalences for asynchronous cacluli". ICALP 1998. Journal version:
http://research.microsoft.com/~fournet/papers/a-hierarchy-of-equivalences-for-asynchronous-calculi.pdf

- In general they're not the same. $\dot{\sim}^{0}$ is not even guaranteed to be a weak barbed bisimulation:

$$
\begin{array}{rl}
P & C[P] \longrightarrow
\end{array} P^{\prime}
$$

- But for π-calculus, they coincide.

A detailed family portrait

	labelled		barbed
not an equivalence			
equivalence	\approx_{ℓ} : largest \mathcal{R} st	\approx : largest \mathcal{R} st $Q \xrightarrow{*} Q^{\prime}$ $P \downarrow x$ implies $Q \Downarrow x$ $\forall D \in \mathcal{E} \cdot(D[P], D[Q]) \in \mathcal{R}$	$\begin{aligned} & \dot{\tilde{\sim}}^{0}: \\ & \{(P, Q) /(\forall D \in \mathcal{E} \cdot D[P] \dot{\approx} D[Q]\} \end{aligned}$

9 December 2004

Comparing labels and barbs

$\bullet \approx_{\ell} \subseteq \approx:$ Yes, easy.
$\bullet \approx_{\ell} \supseteq \approx:$ Yes, provided we have name matching. The result is subtle.

Name matching

Motivation: Which context can detect that $P \xrightarrow{\bar{x} y} P^{\prime}$? It's easy to tell P can output on x; we just check $P \downarrow x$. If we want to test that this transition leads to P^{\prime}, we can take the context $C=-|x(u) . k| \bar{k}$ for k fresh. Now

$$
C[P] \longrightarrow \longrightarrow P^{\prime}
$$

where $P^{\prime} \not x k$.
But how do we detect that the message is y ? We could try

$$
C=-|x(u) \cdot(\bar{u} \mid y \cdot k)| \bar{k}
$$

but this risks having the \bar{u} and the y interact with the process in the hole.
Thus, we introduce a simple new construct called name matching:

$$
\begin{aligned}
& P::=\ldots \\
& {[x=y] . P }
\end{aligned}
$$

Reductions: $[x=x] . P \longrightarrow P$
Labelled transitions: $[x=x] . P \xrightarrow{\tau} P$

Barbed equivalence is a weak labelled bisimulation

Theorem: $\approx \ell \supseteq$.

Proof: Consider $P \approx Q$ and suppose $P \xrightarrow{\alpha} P^{\prime}$. (For simplicity, ignore structural congruence.)
case $\alpha=\tau$: Then $P \longrightarrow P^{\prime}$. By definition, there exists Q^{\prime} such that $Q \longrightarrow{ }^{*}$ Q^{\prime} and $P^{\prime} \approx Q^{\prime}$. Thus $Q \xrightarrow{\tau}{ }^{*} Q^{\prime}$ as desired.
case $\alpha=x y$: Let $C=-|\bar{x} y . k| \bar{k}$, where k is fresh. Then $C[P] \longrightarrow \longrightarrow P^{\prime}$. Therefore, there exists Q such that $C[Q] \longrightarrow^{*} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$. Since $P^{\prime} \nVdash k$, we have $Q^{\prime} \nVdash k$, therefore $Q \xrightarrow{\tau} * \xrightarrow{x y}{ }^{\tau} Q^{\prime}$, as desired.

9 December 2004

Exercises for next lecture

1. Since the last lecture, the proof has been fixed by using $\not \psi_{k} k$ everywhere. Prove from the definition of \approx that for $P \approx Q$ if $P \Downarrow x$ then $Q \Downarrow x$, and thus the contrapositive: if $Q \not \& x$ then $P \nVdash x$.
2. The last case of the proof relies on the following lemma: $H_{z, y}[P] \approx$ $H_{z, y}[Q]$ implies $P \approx Q$, where $z \notin \mathrm{fn}(P) \cup \mathrm{fn}(Q)$. In the updated version of the proof you will find the definition $H_{z, y}=\boldsymbol{\nu} y \cdot(\bar{z} y \mid-)$.
Hints...
In order to prove this, consider

$$
\mathcal{R}=\left\{(P, Q) / z \notin \mathrm{fn}(P) \cup \mathrm{fn}(Q) \text { and } H_{z, y}[P] \approx H_{z, y}[Q]\right\}
$$

Our goal (as usual) is to prove that \mathcal{R} satisfies the same properties as \approx, and thus deduce that $\mathcal{R} \subseteq \approx$. Assume $(P, Q) \in \mathcal{R}$.
$\bullet \mathcal{R}$ is a bisimulation: Show that $P \longrightarrow P^{\prime}$ implies that there exists Q^{\prime} such that $Q \longrightarrow{ }^{*} Q^{\prime}$ and $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{R}$.

- \mathcal{R} preserves barbs: Show that $P \downarrow w$ implies $Q \Downarrow w$.
$\bullet \mathcal{R}$ is an equivalence: It is sufficient to show that $(C[P], C[Q]) \in \mathcal{R}$ where $C=\boldsymbol{\nu} \vec{w} \cdot(-\mid S)$. Hint: try to find a context C^{\prime} such that $H_{z, y}[C[P]] \approx C^{\prime}\left[H_{z, y}[P]\right]$ and the same for Q (perhaps using a labelled bisimilarity since we know $\approx_{\ell} \subseteq \approx$). You may have to distinguish between the cases $y \in \vec{w}$ and $y \notin \vec{w}$.

[^0]: Weak barbed bisimilarity, written $\dot{\sim}$, is the largest such relation.

