CIMPA-UNESCO-INDIA School
Security of Computer Systems and Networks

January 25 - February 5, 2005

## Public key cryptosystems



## The asymetric world

Cryptosystem: use one algorithm $E$ to encrypt, a different one $D$ to decrypt; $E$ can be made public.

Signature: signing is done with algorithm $S$; everybody can verify using algorithm $V$.

Properties:

- Efficiency: easy to compute $E(M)$ (resp. $D(C)$ ).
- Elementary security: difficult to recover $D$ from $E$.

How to find $E$ and $D$ ? take a hard problem (complexity theory) and transform it into a secure cryptosystem using a secret trapdoor.

## General introduction

## Fundamental questions concerning security:

Who are the bad guys? What power do they have?

Two approaches to cryptographic security:

- Old approach: my system is secure since I, nor anybody, found an attack (until one is found, etc.).
- Modern approach: a system is secure if and only if I can prove it, in some model, as close to the real world as possible.

The ideal picture


## General overview of the three lectures

1st lecture: a tour of hard problems.
2nd lecture: RSA.
3rd lecture: elliptic curve cryptography.

## Bibliography

- Prime numbers - A Computational Perspective (Crandall \& Pomerance);
- Handbook of applied cryptography (A. Menezes \& P. C. van Oorschot \& S. A. Vanstone);
- Elliptic curve public key cryptosystems (Menezes);
- Elliptic curves in cryptography (Blake, Seroussi, Smart);


## Part 1: miscellaneous hard problems

I. Knapsack.
II. Error correcting codes.
III. Polynomial systems.

## I. A tour of hard problems

1. Miscellaneous hard problems.
2. Discrete logarithm.
3. Integer factorization.

## I. Knapsack

1st example of public key cryptosystem (Merkle, 1976)
Hard problem: Given $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)$ and $N \in \mathbb{N}$, find $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ in $\{0,1\}^{n}$ s.t.

$$
N=\sum_{i=0}^{n-1} \alpha_{i} x_{i}
$$

Thm. Decision problem is NP-complete.

Easy case: (superincreasing sequences) $\forall i, \alpha_{i}>\sum_{0 \leqslant j<i} \alpha_{j}$.
Ex. $\alpha_{0}=1, \alpha_{1}=3, \alpha_{2}=9, \alpha_{3}=15, N=19$.

Key generation: Alice chooses an integer $m,\left(\alpha_{i}\right)$ a superincreasing sequence s.t. $\sum_{i=0}^{n-1} \alpha_{i}<m$, and $w$ an integer prime to $m$; she computes $\alpha_{i}^{\prime}=w \alpha_{i} \bmod m$.

Public key: $\left(\alpha_{i}^{\prime}\right)$.
Private key: $w, m$.
ENCRYPTION: to send $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$, Bob sends $N^{\prime}=\sum_{i=0}^{n-1} \alpha_{i}^{\prime} x_{i}$.
Decryption: Alice computes
$N \equiv w^{-1} N^{\prime} \bmod m \equiv \sum_{i}\left(w^{-1} \alpha_{i}^{\prime}\right) x_{i} \bmod m=\sum_{i} \alpha_{i} x_{i}$ and solves the easy instance of the knapsack problem.

Rem. Broken by Shamir (1978); all generalizations also broken (using the famous LLL algorithm).

Rem. Idem for systems proposed following Ajtai's result.

## II. Error correcting codes: the McEliece cryptosystem

 Key generation:- $\mathcal{C}$ linear code $(n, k)$ correcting $t$ errors and $G^{\prime}$ a $k \times n$ generating matrix;
- $P$ permutation matrix $(n \times n)$;
- $S$ non singular matrix $(k \times k)$.

Public key: $G=S G^{\prime} P$ (matrix $k \times n$ ).
Private key: $G^{\prime}$.

ENCRYPTION: Bob computes $c=m G+z$ with a random $z$ of weight $\leqslant t$.
Decryption: Alice computes $c^{\prime}=c P^{-1}$, decodes $c^{\prime}$ to recover $m^{\prime}$; finally $m=m^{\prime} S^{-1}$.

Example: $\mathcal{C}$ is a Goppa code, $n=1024, t=50, k=524$.
François Morain, École polytechnique (LIX)

## Advantages:

- old and resistant;
- faster than RSA;
- security not related to integer factorization;
- very short signatures (Courtois, Finiasz, Sendrier, ASIACRYPT'2001).


## Drawbacks:

- huge public key $\left(n^{2}\right)$;
- ciphertext twice as long as cleartext.


## III. Polynomial systems

## Hidden fi eld equations (HFE)

(J. Patarin, EUROCRYPT'96)

Key generation: $K=\mathbb{F}_{p^{m}}=\mathbb{F}_{q},\left[L_{n}: K\right]=n, \beta_{i, j}, \alpha_{i} \in L_{n}$, $\theta_{i, j}, \varphi_{i, j}, \xi_{i}$ integers, $s, t: L_{n} \rightarrow L_{n}$ affine bijections.

$$
\begin{aligned}
& f: L_{n} \rightarrow L_{n} \\
& x \mapsto \sum_{i, j} \beta_{i, j} x^{q^{\theta_{i, j}}+q^{\varphi_{i, j}}+\sum_{i} \alpha_{i} x^{q^{\xi_{i}}}+\mu_{0} .} \\
& y=t(f(s(x))) \Longleftrightarrow\left\{\begin{array}{l}
y_{1}=p_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
y_{2}=p_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\ldots \\
y_{n}=p_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right.
\end{aligned}
$$

Thm. the $p_{i}$ are of degree $2\left(x \mapsto x^{q^{k}}\right.$ is linear).
Rem. $f$ must be invertible; typical example: $q=p=2, d=80, n=80$.
Secret key: $(f, s, t)$.
Public key: $\left(p_{i}\right)$.
ENCRYPTION: $y=\left(p_{1}(x), p_{2}(x), \ldots, p_{n}(x)\right)$.
Decryption: $x=s^{-1}\left(f^{-1}\left(t^{-1}(y)\right)\right)$.
Security: MQ problem (solving a quadratic system) is NP-complete.
Advantages: ciphertext and signature are very short.
Drawbacks: really equivalent to MQ? Attacks by Shamir \& Kipnis, Courtois,
J.-C. Faugère, A. Joux (Buchberger algorithm is simply exponential over finite fields).

## I. Cryptographic motivation: Diffi e-Hellman

(1st known example of public key algorithm.)
Public Parameters: $p$ prime number, $g$ generator of $\mathbb{F}_{p}^{*}$.
Protocol:

$$
\begin{gathered}
A^{g^{a} \xrightarrow[\bmod p]{\longrightarrow} B} \\
A^{g^{b}} \underset{\bmod p}{\longleftrightarrow} B \\
A: K_{A B}=\left(g^{b}\right)^{a} \equiv g^{a b} \bmod p \\
B: K_{B A}=\left(g^{a}\right)^{b} \equiv g^{a b} \bmod p
\end{gathered}
$$

DH problem: given $\left(p, g, g^{a}, g^{b}\right)$, compute $g^{a b}$.
DL problem: given $\left(p, g, g^{a}\right)$, find $a$.
Thm. DL $\Rightarrow \mathrm{DH}$; converse true for a large class of groups (Maurer \& Wolf).

## Partie 2: discrete logarithm

I. Cryptographic motivation.
II. Generic algorithms.
III. Index-calculus.

## II. Generic algorithms

$\mathrm{Pb}: G=\langle g\rangle$ of ordre $n$; one wants to solve $g^{x}=a$.

## Pohlig-Hellman

Idea: reduce to $n$ prime.

$$
n=\prod_{i} p_{i}^{\alpha_{i}}
$$

Solving $g^{x}=a$ is equivalent to knowing $x \bmod n$, i.e. $x \bmod p_{i}^{\alpha_{i}}$ for all $i$ (chinese remainder theorem).
Idea: let $p^{\alpha} \| n$ and $m=n / p^{\alpha}$. Then $b=a^{m}$ is in the cyclic group of ordre $p^{\alpha}$ generated by $g^{m}$. We can find the log of $b$ in this group, which yields $x \bmod p^{\alpha}$.

Cost: $O(\max (D L(p)))$.
Consequence: in DH, $n$ must have at least one large prime factor.

## Shanks

$$
\begin{gathered}
x=c u+d, 0 \leq d<u, \quad 0 \leq c<n / u \\
g^{x}=a \Leftrightarrow a\left(g^{-u}\right)^{c}=g^{d} .
\end{gathered}
$$

- Step 1 (baby steps): $\mathcal{B}=\left\{g^{d}, 0 \leq d<u\right\}$;
- Step 2 (giant steps): compute $f=g^{-u}=1 / g^{u}$; for $c=0 . . n / u$, if $a f^{c} \in \mathcal{B}$, then stop.
- End: $a f^{c}=g^{d}$ hence $x$.

Analysis: $u+n / u$ group operations, minimal for $u=\sqrt{n} \Rightarrow$ (deterministic) time and space complexity $O(\sqrt{n})$.
Implementation: use hashing to test membership in $\mathcal{B}$.
Rem. Pollard (collisions), space $O(1)$, randomized time $O(\sqrt{n})$.

## II. Index-calculus

(Western and Miller, Pollard, Adleman, etc.)
Rem. works over finite fields or in the cases where some notion of prime number exist.

- Step 1: compute the logs of $\mathcal{B}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$;
- Step 2: express $a g^{b}$ over $\mathcal{B}$ and deduce the $\log$ of $a$.

Step 1: look for relations of the type

$$
\begin{gathered}
g^{u} \equiv \prod_{i} p_{i}^{\alpha_{i}} \bmod p \\
u \equiv \sum_{i} \alpha_{i} \log _{g} p_{i} \bmod (p-1) .
\end{gathered}
$$

Once $k$ relations have been collected, solve the linear system and get $\log _{g} p_{i}$.

## Improvements

- Coppersmith, Odlyzko, Schroeppel (sieve).
- $\mathbb{F}_{2^{n}}$ : Coppersmith et al..
- Number field sieve (Gordon, Schirokauer): $L_{p}[1 / 3, c]$.

Records: Joux \& Lercier in april 2001, 120 decimal digits ( 10 weeks, on a unique 525 MHz quadri-processors Digital Alpha Server 8400 computer); $\mathbb{F}_{2^{607}}$ by E . Thomé in february 2002 ( 7 month on one hundred $600 \mathrm{MHz}-\mathrm{PC}$; sparse matrix $1033593 \times 766$ 150).
Notation: $L_{N}[\alpha, c]=\exp \left(c(\log N)^{\alpha}(\log \log N)^{1-\alpha}\right)$

$$
L_{N}[0, c]=(\log N)^{c}, \quad L_{N}[1, c]=N^{c}
$$

Prop. Step 1 costs $L_{p}[1 / 2,2]$, step $2 L_{p}[1 / 2,3 / 2]$.

## Let's do some theory: what about DL in general?

Generic weak instance: $n=\# G$ is smooth (Pohlig-Hellman) $\Rightarrow$ better to have $n$ prime.

Upper-bound: Shanks $O(\sqrt{n})$. Hence, $n$ at least $\approx 2^{200}$.

Lower-bound: (Nechaev, Shoup) any algorithm solving DL (resp. DH) using group operations only, must perform at least $O(\sqrt{\# G})$ operations.
Nechaev group: best algorithm is $O(\sqrt{\# G})$.

## Do Nechaev group exist at all?

## Part 2: integer factorization

```
From: xxx@zzz (yyy)
Subject: Factoring public keys attack?
Newsgroups: sci.crypt
Date: 02 Oct 1999 22:12:54 GMT
Instead of trying to factor a prime based public key after
somebody has used it, why not have a lookup table of all
the keys. It is quicker to create the keys than to factor
a key.
[...]
The government could have just been making keys for the past
2 0 \text { years to put on its lookup table. Then if you use one of}
the keys of the standard lengths, they already know the prim
```

Answer: $\pi\left(2^{256}\right)>6 \times 10^{74}$.

Which groups?

| Group | $\# G$ | LD |
| :--- | :--- | :--- |
| $\mathbb{F}_{q}^{*}$ | $q-1$ | $L_{q}[1 / 3]$ |
| class groups | subexp | subexp |
| jacobian | $g=1:$ poly | $\sqrt{\# G}$ |
|  | $g=2,3,4:$ poly (?) | $\sqrt{\# G}$ |
|  | $g \rightarrow \infty:$ poly (?) | $L_{q^{g}}[1 / 2]$ |

$$
L_{N}[\alpha, c]=\exp \left((c+o(1))(\log N)^{\alpha}(\log \log N)^{1-\alpha}\right) .
$$

Security: 1024 bits for $\mathbb{F}_{q}^{*}=200$ bits for elliptic curves.

## Which algorithms?

## Methods that depend on $p$ :

- sieve, $\rho$;
- $p-1$ :
a- compute $g=\left(a^{k!}-1, N\right)$ for $a$ prime to $N$. If $p \mid N$ and $p-1 \mid k$ !, then $g>1$.
b- other groups: $p+1$ (Lucas sequences); quadratic forms; $\mathbf{E C M}$ (elliptic curves), etc.

| size of $p$ | $N$ | who | when |
| :---: | :---: | :---: | :---: |
| 55 | $629^{59}-1$ | Miyamoto | $06 / 10 / 01$ |
| 57 | $6^{396}+1$ | Zimmermann | $31 / 10 / 03$ |
| 58 | $8 \cdot 10^{141}-1$ | Backstrom | $31 / 10 / 03$ |

General purpose methods: quadratic sieve, algebraic sieve.



## Combining congruences

Kraitchik: find $x$ tq $x^{2} \equiv 1 \bmod N, x \neq \pm 1 \bmod N$.

Step 1: find pairs $\left\{\left(u_{i}, v_{i}\right)\right\}_{i \in I}$ s.t.

$$
\mathbf{u}_{\mathbf{i}}^{2} \equiv \mathbf{v}_{\mathbf{i}} \bmod \mathbf{N}, \quad \mathbf{u}_{\mathbf{i}}^{2} \neq \pm \mathbf{v}_{\mathbf{i}}
$$

Step 2: find $J \subset I$,

$$
\prod_{j \in J} v_{j}=V_{J}^{2}
$$

Step 3:

$$
U_{J}=\prod_{j \in J} u_{j}, \quad U_{J}^{2} \equiv V_{J}^{2} \bmod N .
$$

Step 4: $x=U_{J} / V_{J} \bmod N$ is a squareroot of 1 and with probability $\geq 1 / 2$, it is non-trivial.

## Dixon's algorithm

Take $u_{i}=i$ and $v_{i} \equiv i^{2} \bmod N$.
Ex. $N=2117, \mathcal{B}=\{-1,2,3,5,7,11\}$ :

| rel | $i$ | $v_{i}$ | rel | $i$ | $v_{i}$ |
| :---: | :---: | :--- | :---: | :---: | :--- |
| 1 | 65 | $-1 \times 3^{2}$ | 5 | 81 | $2 \times 3 \times 5 \times 7$ |
| 2 | 74 | $-1 \times 5^{3} \times 7$ | 6 | 92 | $-1 \times 2^{2}$ |
| 3 | 75 | $-1 \times 2 \times 3 \times 11^{2}$ | 7 | 99 | $-1 \times 2^{4} \times 7^{2}$ |
| 4 | 79 | $-1 \times 2 \times 5 \times 11$ |  |  |  |

$R_{2} \times R_{3} \times R_{5}$ yields:

$$
\begin{gathered}
(74 \times 75 \times 81)^{2} \\
\equiv\left(-5^{3} \times 7\right)\left(-1 \times 2 \times 3 \times 11^{2}\right)(2 \times 3 \times 5 \times 7) \\
\equiv\left(2 \times 3 \times 5^{2} \times 7 \times 11\right)^{2} \bmod N
\end{gathered}
$$

$746^{2} \equiv 11550^{2}, \operatorname{pgcd}(746-11550, N)=73$.

## The quadratic sieve

Basic version (Pomerance, 1981):

$$
u_{i}=i+\lfloor\sqrt{N}\rfloor, v_{i}=(i+\lfloor\sqrt{N}\rfloor)^{2}-N
$$

Advantages:

- $v_{i} \approx 2 i \sqrt{N} \ll N$;
- crible:

$$
p \mid v_{i} \Leftrightarrow(i+\lfloor\sqrt{N}\rfloor)^{2} \equiv N \bmod p
$$

implies $N$ square modulo $p$ and

$$
p \mid v_{i} \Leftrightarrow i \equiv i_{-} \text {ou } i \equiv i_{+} \bmod p
$$

Thm. QS runs in time $O\left(L_{N}[1 / 2,3 / \sqrt{8}]\right)$, and space $O\left(k=L_{N}[1 / \sqrt{8}]\right)$.

## Variants

- CFRAC: (Morrison \& Brillhart, 1970) $\alpha=1 / 2$
- QS, etc.: (Pomerance, Montgomery, Lenstra \& Manasse) $\alpha=1 / 2$.
- NFS: (Pollard, Lenstra, Buhler) $\alpha=1 / d$ with $d$ as a function of $N \Rightarrow$ change in complexity.
Notation: $L_{N}[\alpha, c]=\exp \left(c(\log N)^{\alpha}(\log \log N)^{1-\alpha}\right)$

$$
L_{N}[0, c]=(\log N)^{c}, \quad L_{N}[1, c]=N^{c}
$$

Prop. Dixon, CFRAC, QS have complexity $L_{N}[1 / 2, c]$; NFS has complexity $L_{N}[1 / 3, c]$.

| $N$ | $\sqrt{N}$ | $L_{N}[1 / 2,1]$ | $L_{N}[1 / 3,1]$ |
| :--- | :---: | :--- | :--- |
| $2^{512}$ | $1.16 \times 10^{77}$ | $6.69 \times 10^{19}$ | $1.02 \times 10^{10}$ |

## Programming the sieve

procedure sieve(L) (* sieve $\left[0, L\left[{ }^{*}\right)\right.$

1. $S[i] \leftarrow v_{i}$ for $i \in[0, L[$;
2. for $p \in \mathcal{B}$

$$
\text { for } i_{0}=i_{ \pm}(p)
$$

$i \leftarrow i_{0} ;$
while $i<L$

$$
S[i] \leftarrow S[i] / p ; i \leftarrow i+p ;
$$

3. if $S[i]=1, v_{i}$ is completely factored.

Rem. $\infty$ of tricks to speed up.
MPQS: (Montgomery, 1985) use a lot of polynomials $\Rightarrow$ QS can be massively distributed: email (A. K. Lenstra \& M. S. Manasse, 1990), INTERNET (RSA-129).

## B) Number Field Sieve (NFS)

- Combination of congruences method invented by Pollard in 1988.
- Use $f(X)=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0}$ irreducible over $\mathbb{Q}$ s.t. $f(m) \equiv 0 \bmod N$.
- Operations in the field $\mathbb{Q}[X] /(f(X))=\left\{\sum_{i=0}^{d-1} b_{i} X^{i}, b_{i} \in \mathbb{Q}\right\}$.

Ex. In $\mathbb{Q}[X] /\left(X^{2}+1\right)$

$$
\left(b_{1} X+b_{0}\right)\left(c_{1} X+c_{0}\right) \equiv\left(b_{1} c_{0}+b_{0} c_{1}\right) X+b_{0} c_{0}-b_{1} c_{1}
$$

- One can sieve (in fact two in parallel).
- The size of the coefficients of $f$ has a great impact on the algorithm: SNFS: factorizes $b^{n} \pm 1$; GNFS: all numbers.
- Non-trivial implementation. Faster than PPMPQS for 120dd-130dd.


## V. Linear algebra

Rem.: $\mathcal{M}$ is very sparse $\left(\Omega(N) \leq \log _{2} N\right)$.

| Nb | size | $\#$ coeffs $\neq 0$ <br> per row |
| :---: | :---: | :---: |
| RSA-100 | $50,000 \times 50,000$ |  |
| RSA-110 | $80,000 \times 80,000$ |  |
| RSA-120 | $252,222 \times 245,810$ <br> $(89,304 \times 89,088)$ |  |
| RSA-129 | $569,466 \times 524,338$ <br> $(188,614 \times 188,160)$ | 47 |
| RSA-130 | $3,504,823 \times 3,516,502$ | 39 |
| RSA-140 | $4,671,181 \times 4,704,451$ | 32 |
| RSA-155 | $6,699,191 \times 6,711,336$ | 62 |
| RSA-160 | $5,037,191 \times 5,037,191$ | $? ?$ |

## IV. Some records

| dd | who | when | timings |
| :---: | :---: | :---: | :---: |
| 100 | Manasse \& A. K. Lenstra | 1991 | 7 MIPS-years |
| 110 | AKL | 1992 | one month on $5 / 8$ of a 16 K MasPar |
| 120 | AKL, Dodson, Denny, Manasse Lioen, te Riele | 1993 | 835 MIPS-years |
| 129 | Atkins, Graff, AKL, Leyland + INTERNET | 1994 | 5000 MIPS-years |
| 130 | Dodson, Montgomery, AKL, WWW, Elkenbracht-Huizing, Fante, Leyland, Weber, Zayer | 1996 | 500 MIPS-years |
| 140 | te Riele, Cavallar, Lioen, Montgomery, Dodson, AKL, Leyland, Murphy, Zimmermann | 1999 | 1500 MIPS-years |
| 155 | CABAL | 1999 | 8000 MIPS-years |
| 160 | Franke et al. | 04/2003 | ?? |
| 174 | Franke et al. | 12/2003 | ?? |

## A) Gaussian elimination

$O\left(k^{3}\right)$ but with a very low constant (32 bits into an int, vector processors);

```
do i=2, ni
            i1 = (piv-1)*nblocs
            i2 = (tabi(i)-1)*nblocs
```

CDEC\$ INIT_DEP_FWD
do $k=1$, nblocs
$M(i 2+k)=M(i 2+k)$.xor. $M(i 1+k)$
enddo
enddo

Variants taking sparsity into account (structured Gaussian elimination).

## B) Sparse methods

- Wiedemann: look for the minimal polynomial of $\mathcal{M}$ via the minimal polynomial of the sequence of bits $e_{i}=u \cdot\left(M^{i} b\right)$ with the Berlekamp-Massey algorithm in time $O\left(k^{2+\varepsilon}\right)$; bloc method due to Coppersmith.
- Lanczos: adapted from numerical analysis, used over a finite field (!), $O\left(k^{2+\varepsilon}\right)$; better constant than Wiedemann; bloc variant by P. L. Montgomery finds 64 dependance relations in the same time.


## Predictions?

## It is unwise to make predictions about the difficulty of factoring

## Back to complexity:

| $T(N)$ | $N \mapsto N^{2}$ |
| :---: | :---: |
| $\sqrt{N}$ | $T^{2}$ |
| $L_{N}[1 / 2]$ | $T^{\sqrt{2}}$ |
| $L_{N}[1 / 3]$ | $T^{\sqrt[3]{2}}$ |

Ex. $N=2^{512}, T(N)=8000$ MIPSY, $T\left(2^{1024}\right)=82715$ MIPSY, but with a matrix of size $\left(3 \times 10^{8}\right)^{2}$ (feasable in 2018 (Brent)?)

Moore's law? get 32 bits each time.

CIMPA-UNESCO-INDIA School Security of Computer Systems and Networks

Plan
I. Introduction.
II. Theory.
III. Implementation.
IV. Advanced security.
V. Signing.
VI. RSA in TLS.

## I. Introduction

Cryptosystem: use one algorithm $E$ to encrypt, a different one $D$ to decrypt; $E$ can be made public.

Signature: signing is done with algorithm $S$; everybody can verify using algorithm $V$.

## Properties:

- Efficiency: easy to compute $E(M)$ (resp. $D(C)$ ).
- Elementary security: difficult to recover $D$ from $E$.

How to find $E$ and $D$ ? take a hard problem (complexity theory) and transform it into a secure cryptosystem using a secret trapdoor

## II. Theory

Key generation: Alice chooses two random primes $p$ and $q, p \neq q, N=p q, e$ s.t. $\operatorname{pgcd}(e, \lambda(N))=1, d \equiv 1 / e \bmod \lambda(N)=\operatorname{lcm}(p-1, q-1)$.

Public key: $(N, e)$.
Private key: $d$.
Encryption:

- Bob retrieves the authenticated public key of Alice.
- Bob computes $y=x^{e} \bmod N$ and sends it to Alice.

Decryption: Alice computes $y^{d} \bmod N \equiv x$.

## Justification

Prop. Let $N$ be an odd integer $>2$. Then $N$ is squarefree iff $\forall a \in \mathbb{Z} / N \mathbb{Z}$, $a^{\lambda(N)+1} \equiv a \bmod N$.

> Proof.
> $\Rightarrow$ if $a \equiv 0 \bmod N$ : clear;
$a \equiv 0 \bmod p: a^{1+\lambda(N)} \equiv 0^{1+\lambda(N)} \bmod p \equiv a \bmod p ;$
$(a, p)=1: a^{1+\lambda(N)} \equiv a^{1+K \lambda(p)} \bmod p \equiv a \bmod p$,
$\Leftarrow$ write $N=p^{e} N^{\prime},\left(p, N^{\prime}\right)=1$ : choose $a=N^{\prime} p$ :

$$
a^{p-1} \equiv 0 \bmod p^{2} \not \equiv a \bmod p^{2} . \square
$$

Back to RSA:

$$
a^{1+k \lambda(N)} \equiv a^{1+\lambda(N)} a^{(k-1) \lambda(N)} \equiv a \times a^{(k-1) \lambda(N)} \bmod N . \square
$$

## Elementary security of RSA

RSA pb: given $(N, e, y)$, find $x$ s.t. $x^{e} \equiv y \bmod N$.
Thm. Breaking RSA $\Leftarrow$ factor $N$; converse may be false (Boneh and Venkatesan).

Prop. Knowing $(N, \lambda(N))$ is equivalent to knowing $(p, q)$.
Proof. Enough to compute $\varphi(N)=(p-1)(q-1)=N-(p+q)+1$. $\varphi(N)=\operatorname{gcd}(p-1, q-1) \lambda(N)=g \lambda(N)$.

Claim: $g=\operatorname{gcd}(N-1, L)$.

$$
\begin{gathered}
g=\operatorname{gcd}(p-1, q-1), \quad p-1=g p^{\prime}, \quad q-1=g q^{\prime}, \\
L=\lambda(N)=(p-1)(q-1) / g=g p^{\prime} q^{\prime}
\end{gathered}
$$

Now:

$$
\operatorname{gcd}(N-1, L)=g \operatorname{gcd}\left(g p^{\prime} q^{\prime}+p^{\prime}+q^{\prime}, p^{\prime} q^{\prime}\right)=1 \square
$$

François Morain, École polytechnique (LIX) 44

## Prop. Knowing $(e, d)$ is equivalent to knowing $(p, q)$ via a randomized algorithm.

Proof. $k=e d-1=2^{s} \ell \equiv 0 \bmod \lambda(N)$, hence

$$
\forall a \in(\mathbb{Z} / N \mathbb{Z})^{*}, a^{k} \equiv 1 \bmod N
$$

Lem. 1 has four squareroots modulo $N$. Two of them break $N$.
Proof. If $r \equiv 1 \bmod p, r \equiv-1 \bmod q$, then $(r-1, N)=p$.

Back to the thm. ed $-1=2^{s} \ell$, $\ell$ odd; for some $u<s, b=a^{2^{u} \ell}$ is a squareroot of 1 . With probability $1 / 2, b \neq \pm 1$.
A. May, CRYPTO'2004: the same result is true via a deterministic algorithm (using LLL).

## III. Implemention

## Choosing prime numbers:

- $p \neq q, \log _{2} p \approx \log _{2} q \approx 512$ (NFS);
- $(p-1, q-1)=2$ (maximize $\lambda(N)) ; p / q \neq$ small rational; $p-q$ big (de Weger).
- $p \pm 1$ with a large prime factor $p-1=2 k p^{\prime}$ (Pollard) s.t. $p^{\prime}-1$ has a large prime factor to prevent the cycling attack: find $n$ s.t.

$$
y \equiv x^{e}, \mathbf{y}^{\mathbf{e}^{\mathbf{n}}} \equiv \mathbf{y} \bmod \mathbf{N} \quad(*)
$$

which gives $x \equiv y^{e^{n-1}} \bmod N$. Then

$$
(*) \Leftrightarrow e^{n} \equiv 1 \bmod \lambda(N)
$$

## Possible prime generating algorithm:

- build $r_{0}$ (probably) prime s.t. $r_{0}-1$ has a large (probable) prime factor found by the Artjuhov-Miller-Rabin algorithm;
- build $r_{1}$ (probably) prime;
- find $p$ prime s.t. $p \equiv 1 \bmod r_{0}, p \equiv-1 \bmod r_{1}$ using CRT.

Artjuhov-Miller-Rabin: $N-1=2^{s} t, t$ odd:

$$
a^{N-1}-1=\left(a^{t}-1\right)\left(a^{t}+1\right)\left(a^{2 t}+1\right) \cdots\left(a^{2^{s-1} t}+1\right)
$$

If $N$ is prime, it must divide one of the factors.
Thm. The number of false witnesses is $\leq N / 4$.
Coro. Proba $(N$ passes $k$ runs $N$ is composite $) \leq 1 / 4$.
Rem. We can deduce from that: $\operatorname{Proba}(N$ is prime $\mid N$ passes $k$ runs).

## Encryption:

- Primitive: $m \mapsto m^{e} \bmod N$ with $0 \leqslant m<N$; takes time $O(\log e)$.
- Conversion uchar $\mathrm{t}[0 . . \mathrm{n}-1]$ to mpz _t z :

$$
z=t[0] 256^{n-1}+t[1] 256^{n-2}+\cdots+t[n-1]
$$

called OS2IP in PKCS \#1 v2.1; inverse function I2OSP.

- Put the length of the useful message at the beginning:

$$
M=l_{U}\left\|M_{U}\right\| \operatorname{MD5}\left(l_{U} \| M_{U}\right)
$$

with $l_{U}=a_{3} 256^{3}+a_{2} 256^{2}+a_{1} 256+a_{0} \mapsto$ a3 a2 a1 a0.

- Cut $M$ into blocks and add noise:

| $N$ | $n_{k-1}$ | $n_{k-2}$ | $\cdots$ | $n_{0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $m$ | 0 | $m_{k-2}$ | $\cdots$ | $m_{0}$ |

## IV. Advanced security

## Textbook RSA does not obey Shannon

Common modulus: (Simmons) $N$ common to all users: if $M$ is sent to two users with $\left(e_{1}, e_{2}\right)=1$, then using $u e_{1}+v e_{2}=1$, one gets:

$$
\left(M^{e_{1}}\right)^{u}\left(M^{e_{2}}\right)^{v} \equiv M \bmod N
$$

Common exponent: $C_{i}=M^{3} \bmod N_{i}$ for $i=1,2,3$; one builds $C=M^{3} \bmod N_{1} N_{2} N_{3}$; since $M<N_{i}$, we deduce $C=M^{3}$, hence $M$. Generalization to more general polynomials $g_{i}(M)$ by J. Håstad.

## Side channel attacks

Timing attacks: (Kocher) monitor the time taken when exponentiating to recover the secret bits one at a time.
$\Rightarrow$ new algorithmics where computations must be concealed.

Error attacks: (Boneh et al.) Simplest example when using CRT for decrypting $y=x^{e} \bmod N$. One computes $z=y^{d} \bmod N$ in the following way: $z_{p}=y^{d \bmod (p-1)} \bmod p, \quad z_{q}=y^{d \bmod (q-1)} \bmod q+$ CRT. If $z_{p}$ is correct, but not $z_{q}$, then recover $p$ as $\operatorname{gcd}(z-x, N)$.

## Timestamp attacks

If $M^{e} \bmod N$ and $(M+c)^{e} \bmod N$ are sent with known $c, M$ can be recovered.

Ex. (Franklin-Reiter) $C_{1} \equiv M^{3} \bmod N, C_{2} \equiv(M+1)^{3} \bmod N$; then:

$$
\left\{\begin{array}{l}
C_{2}+2 C_{1}-1=3 M^{3}+3 M^{2}+3 M \\
C_{2}-C_{1}+2=3 M^{2}+3 M+3
\end{array}\right.
$$

hence $M=\left(C_{2}+2 C_{1}-1\right) /\left(C_{2}-C_{1}+2\right) \bmod N$.
More generally: $\operatorname{gcd}\left(M^{e}-C_{1},(M+c)^{e}-C_{2}\right)$ even if $\mathbb{Z} / N \mathbb{Z}$ has zero divisors.
Thm. (Coppersmith) if $f(X)$ has degree $d$, one can find all solutions $<N^{1 / d-\varepsilon}$ of $f(X) \equiv 0 \bmod N$ in polynomial time in $\min (1 / \varepsilon, \log N)$.

## Beyond elementary security

## Goals:

- IND: indistinguishability (Goldwasser \& Micali). One cannot distinguish $E($ "yes") from $E($ "no").
- NM: non-malleability (Dolev, Dwork, Naor). Given $E(m)$ and $E\left(m^{\prime}\right)$, one cannot build $E\left(m \otimes m^{\prime}\right)$ (say).


## Attacks:

- CPA: chosen-plaintext attack (in asymetric crypto, everybody can encrypt!).
- CCA1: non-adaptative chosen-ciphertext attack (Naor \& Yung), decryption oracle before the attack.
- CCA2: adaptative chosen-ciphertext attack (Rackoff \& Simon), decryption oracle available except on the target message.


## Examples with text book RSA

Text book RSA is not IND-CPA: easy to distinguish TB-RSA("yes") from TB-RSA("no").

TB-RSA is not NM-CPA: $x^{e} \times y^{e}=(x y)^{e}$.
Ex. if $M<2^{m}$ and $M=M_{1} M_{2}, M_{i}<2^{m / 2}$, then

$$
M_{1}^{e} M_{2}^{e} \equiv C \bmod N \Longleftrightarrow C / M_{2}^{e} \equiv M_{1}^{e} \bmod N
$$

## TB-RSA does not resist a CCA2:

- Charlie intercepts $C=M^{e} \bmod N$;
- Charlie chooses $r$ at random and asks the oracle to decrypt $y=r^{e} C$;
- the oracle sends back $y^{d}=r^{e d} C^{d}=r C^{d}$ from which $M$ is recovered s.t. $C^{d}=M$.


## Counterattack: OAEP, etc.

Idea: take a CPA cryptosystem and transform it into a IND-CCA one.
OAEP: (Bellare \& Rogaway)
INPUT:

- Public algorithm $f$, private algorithm $g$ operating on strings $\in\{0,1\}^{k}$;

$$
k_{0}+k_{1}<k
$$

- Two hash functions $G:\{0,1\}^{k_{0}} \rightarrow\{0,1\}^{n+k_{1}}$, $H:\{0,1\}^{n+k_{1}} \rightarrow\{0,1\}^{k_{0}}$.
- The algorithm encrypts $M \in\{0,1\}^{n}$, with $n=k-k_{0}-k_{1}$.

| Encryption | Decryption |
| :--- | :--- |
|  | $x=z[0 . . n-1], c=z\left[n . . n+k_{1}-1\right.$ |
| $\mathbf{s}=\mathbf{G}(\mathbf{r}) \oplus\left(\mathbf{M}\| \| \mathbf{0}^{\mathbf{k}_{1}}\right) \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{n +}+\mathbf{k}_{1}}$ | $z=G(r) \oplus s$ |
| $t=H(s) \oplus r \in\{0,1\}^{k_{0}}$ | $r=H(s) \oplus t$ |
| $w=s \\| t \in\{0,1\}^{k}$ | $s \\| t=w\left[0 . . n+k_{1}-1 \\| n+k_{1} . . k\right]$ |
| $C=f(w)$ | $w=g(C)$ |

If $c=0^{k_{1}}$, then $M=x$, otherwise reject $C$ and do not send $x$ back.

Thm. In the random oracle model, OAEP is IND-CCA2.
Rem. In practice, take $G$ and $H$ as variants of MD5 à la Full Domain Hash.

Rem. Shoup discovered a breach in the proof and proposed with

$$
\mathbf{s}=(\mathbf{G}(\mathbf{r}) \oplus \mathbf{M}) \| \mathbf{H}^{\prime}(\mathbf{r} \| \mathbf{M})
$$

Rem. RSA-OAEP is sure anyway (Fujisaki, Okamoto, Pointcheval and Stern).
Boneh: (CRYPTO 2001)
SAEP:

$$
\left(\left(M \| 0^{s_{0}}\right) \oplus H(r)\right) \| r
$$

SAEP + :

$$
((M \| G(M \| r)) \oplus H(r)) \| r
$$

## V. Signing

## A) Signature with appendix

Prerequisite: each user has a pair $(S, V)$ where $S$ is the private signature algorithm and $V$ the public verification algorithm, s.t. $V(m, S(m))=$ true.

Signature: Alice signs $m$ and sends $\left(m, S_{A}(m)\right)$.
Verification: Bob gets the authenticated algorithm $V_{A}$ of Alice and tests whether $V_{A}(m, s)==$ true.

## Rem.

- must use $m$ to verify;
- if $m$ is too long, use $S(m)=S^{\prime}(\mathcal{H}(m))$.

Probabilistic signature scheme (Bellare, Rogaway) with security proof.

$$
\begin{aligned}
& \text { Prerequisite: } k_{0}+k_{1}<k ; H:\{0,1\}^{*} \rightarrow\{0,1\}^{k_{1}}, \\
& G:\{0,1\}^{k_{0}} \rightarrow\{0,1\}^{k-k_{1}-1} ; G(w)=\underbrace{G_{1}(w)}_{k_{0} \text { bits }} \| G_{2}(w) .
\end{aligned}
$$



Simple idea: $R(m)=m w=m \| \underbrace{0 \ldots 0}_{t \text { bits }} ; k=\left\lfloor\log _{2} N+1\right\rfloor, t<k / 2$, $w=2^{t}$ et $0 \leqslant m<n / w-1$.

But... existential forgery on given $m$ (De Jonge \& Chaum):

- Euclid's algorithm applied to $\left(N, m^{\prime}=m w\right)$ : at each step $x N+y m^{\prime}=r$ and at some point $|y|, r<N / w$;
- compute $\left(m_{2}, m_{3}\right)=(r w,|y| w)$;
- if $s_{2}=m_{2}^{d}$ and $s_{3}=m_{3}^{d}$ are known, then $s_{2} / s_{3}=\left(m_{2} / m_{3}\right)^{d}=m^{\prime d}$.

Other choices: $00 \cdots 00\|m\| 11 \cdots 11$ or $m \| \mathcal{H}(m)$ are not enough (cf. Girault, Misarsky, Bleichenbacher, etc.), nor ISO/IEC 9796 (1999-2000: Coron-Naccache-Stern, Coppersmith-Halevi-Jutla, Grieu; broken again by Girault-Misarsky).

## From primitives to protocols: SignCryption

Goal : $\operatorname{Bob}\left(\{E, D, S, V\}_{B}\right)$ wants to be sure that the cleartext corresponding to the ciphertext he just received was actually written by Alice $\left(\{E, D, S, V\}_{A}\right)$.

1) send $\left(E_{B}(m), S_{A}(m)\right)$ : Carole intercepts $\left(E_{B}\left(m_{b}\right), \sigma\right)$ and can compute for herself $V_{A}\left(m_{0}, \sigma\right)$ and $V_{A}\left(m_{1}, \sigma\right)$.
2) send $\left(E_{B}(m), S_{A}\left(E_{B}(m)\right)\right)$ : one knows that Alice signed $E_{B}(m)$ and not $m$. Carole can sign it too.
3) send $S_{A}\left(E_{B}(m)\right)$ : beware of Anderson \& Needham : Alice sends $\left\{M^{e_{B}} \bmod N_{B}\right\}^{d_{A}} \bmod N_{A}$. If Bob wants a signature on $M^{\prime}$, he can solve $\left[M^{\prime}\right]^{x}=M \bmod N_{B}$ and register the key $\left(x e_{B}, N_{B}\right)$ as (another) public key of his own.
4) $E_{B}\left(m \| S_{A}(m)\right)$ : Carole cannot deduce anything.
VI. RSA in TLS - RFC 2246, january 1999


François Morain, École polytechnique (LIX)


Bleichenbacher (CRYPTO’98)

| Client | Server |
| :---: | :---: |
| Certificate* : $\ni$ Pub $_{C}$ <br> ClientKeyExchange: Pub $_{S}(p m s)$ | Certificate* (X509) : $\ni$ Pub $_{S}$ ServeryeyExcyánge* CertificateRequest* ServerHelloDone |

Attack: by using the server as an oracle, can decrypt a message $m$ with a large number of trials, if formatted using PKCS \# 1 v1.5.

```
Conclusion: replace
if(! goodFormatForMessage(m))
    send_error("bad format");
by
ok = goodFormatForMessage(m);
if(ok){
        {remaining code}
}
if(! ok)
    kill_connection();
```


## Conclusions on RSA

- Good cryptography is orthogonal to good software engineering!! For instance, modularity is at stakes.
- RSA is the king, it generated much enthousiasm, anger, theorems, etc. over 30 years. But resisted. Still more to come?
- However, important drawbacks: implementing a safe RSA is like crossing a mine field by night; bandwidth has reduced a lot (768 bits over 1024).
- Isolated point in crypto space $(E(D(m))=D(E(m))$ for instance).
- Replace with new stuff (elliptic curves?)


## Manger's attack - CRYPTO'01

Timing attack on the preceding scheme. Replace it with:
ok $=$ goodFormatForMessage (m);
\{remaining code\}
if(!ok) kill_connection();
$\Rightarrow$ Do not turn a program into an oracle!

CIMPA-UNESCO-INDIA School Security of Computer Systems and Networks

## III. Algebraic curve cryptography

F. Morain



RINRIA

## Plan

I. EIGamal cryptosystem and signature.
II. Building AC-systems.
III. Attacking AC-systems.
IV. Pairings and applications.
V. Other algebraic curves; tori.

## I. EIGamal cryptosystem and signature

## A) EIGamal encryption

Key generation: Alice chooses a prime $p,(\mathbb{Z} / p \mathbb{Z})^{*}=\langle g\rangle, 0<a<p-1$.
Public key: $\left(p, g, h=g^{a} \bmod p\right)$
PRIVATE KEY: $a$.
Encryption: Bob chooses $r \in_{R}(\mathbb{Z} /(p-1) \mathbb{Z})^{*}$, sends $(u, v)=\left(g^{r}, h^{r} M\right)$.
Decryption: Alice computes $M \equiv v / u^{a}$.
Justification: $v / u^{a} \equiv h^{r} M / g^{r a} \bmod p$.
Rem. ElGamal generalizes trivially to any cyclic group $G=\langle g\rangle$ of order $n$.
Drawback: ciphertext twice as long as the cleartext.
Rem. Encryption must be randomised, otherwise $h^{r} M_{1} /\left(h^{r} M_{2}\right)=M_{1} / M_{2}$.
Choosing $r$ must be done with great care (Phong Nguyen et al.).
Francois Morain, École polytechnique (LIX) 74

## Discrete logarithm and security

## Three problems:

- discrete logarithm (LD): given $g^{x}$, compute $x$;
- computational Diffie-Hellman problem (CDH): given $\left(g^{x}, g^{y}\right)$, compute $g^{x y}$;
- decisionnal Diffie-Hellman problem (DDH): given $\left(g^{x}, g^{y}, g^{z}\right)$, do we have $z \equiv x y \bmod n ?$

Prop. $\mathrm{LD} \Rightarrow \mathrm{CDH} \Rightarrow \mathrm{DDH}$.

Thm. (Maurer \& Wolf) For a lot of groups LD $\Leftrightarrow \mathrm{CDH}$.

Thm. (Joux \& Nguyen) There exist groups for which DDH is easier than CDH.

## Security of EIGamal's cryptosystem

Pb EIGamal: given $(p, g)$, for all $\left(h=g^{a}, u, v\right)$, one can compute $v / u^{a}$.
Prop. EIGamal $\Longleftrightarrow$ CDH.
Proof. If CDH is solvable: target message $\left(g^{r}, h^{r} M\right)$; from $h=g^{a}$ and $g^{r}$, one gets $g^{a r}=h^{r}$, hence $M$.

If EIGamal can be solved: send $\left(g^{-x}, g^{y}, 1\right)$, get $M=1 /\left(g^{y}\right)^{-x}=g^{x y}$

Prop. EIGamal is not NM-CPA.
Proof. Given $\left(g^{r}, h^{r} m\right)$, one can compute $\left(g^{2 r}, h^{2 r} m^{2}\right)$.
Prop. ElGamal does not resist to a CCA2.
Proof. given $(u, v)$, one asks the oracle to decrypt $(g u, v)$ and we get back $M / h$, hence $M . \square$

## Thm. EIGamal is IND-CPA iff DDH is difficult.

Proof. give $m_{0}, m_{1}$ to the encrypting oracle that sends back
$(u, v)=\left(g^{r}, h^{r} m_{b}\right), b \in\{0,1\}$. The attacked must find out which of $\left(u, h, v / m_{0}\right)$ or $\left(u, h, v / m_{1}\right)$ is a valid DH triplet.

Rem. When $G=(\mathbb{Z} / p \mathbb{Z})^{*}$, this is not true, since $(m / p)$ is available.

Variant: $\left(g^{r}, m \oplus H\left(h^{r}\right)\right)$; but $m \oplus H\left(h^{r}\right) \oplus 1_{n}=\left(m \oplus 1_{n}\right) \oplus H\left(h^{r}\right)$.
Baek, Lee, Kim (ACISP2000): variant of Fujisaki-Okamoto, CRYPTO'99 that turns EIGamal into an IND-CCA2 scheme.

## B) Signing with EIGamal

Key generation: Alice chooses a prime $p,(\mathbb{Z} / p \mathbb{Z})^{*}=\langle g\rangle, 0<a<p-1$.
Public key: $\left(p, g, h_{A}=g^{a} \bmod p\right)$.
Private key: $a$.

Signature of $m$ : Alice chooses a secret $k \in_{R}(\mathbb{Z} /(p-1) \mathbb{Z})^{*}$; signature is $(r, s)$ with $r=g^{k} \bmod p, s=(m-a r) / k \bmod (p-1)$.

Verification:

- Bob gets the authenticated key of Alice: $h_{A}$;
- Bob checks whether $1 \leq r<p \quad(*)$;
- Bob checks whether $h_{A}^{r} r^{s}=g^{m} \bmod p$.

Justification: $h_{A}^{r} r^{s}=g^{a r+k s}=g^{m}$.
François Morain, École polytechnique (LIX) 78
$\left(r^{\prime}=g^{b} h_{A}^{c}, s^{\prime}=-r^{\prime} / c \bmod (p-1)\right)$ is a valid signature for $m^{\prime}=-r^{\prime} b / c \bmod (p-1)$.

## Elementary security:

- $\Leftarrow$ DL: one gets $a$.
- If one knows $s$, one has to solve $h_{A}^{r} r^{s}=g^{m}$ ??
- If one knows $r$, one must solve DL on $r^{s}=g^{m} / h_{A}^{r}$;
- Take care to $k$.

Why Bob must check $(*)$ : let $(r, s)$ be a signature on some known $m ; m_{2}$ is the target message. Write $u \equiv m_{2} / m \bmod (p-1)$;

$$
g^{m_{2}} \equiv g^{h u} \equiv\left(h_{A}\right)^{r u} r^{s u} \bmod p
$$

Choose $s_{2} \equiv s u \bmod (p-1)$ and $r_{2} \equiv r u \bmod (p-1), r_{2} \equiv r \bmod p$ using CRT. Then $\left(r_{2}, s_{2}\right)$ is a valid signature on $m_{2}$.

Existential forgery: if $b$ and $c$ are prime to $p-1$, then

## C) DSA

Key generation: prime $p$ of 512 to 1024 bits, $q$ prime factor of $p-1$ with 160 bits; $g \equiv h^{(p-1) / q} \bmod p \not \equiv 1$.

Public key: $y=g^{x} \bmod p$.
Private key: $x<q$.
Signature: Alice chooses $k<q$ at random; signature is $(r, s)$ with

$$
r=\left(g^{k} \bmod p\right) \bmod q, \quad s=\left(k^{-1}(\mathcal{H}(m)+x r)\right) \bmod q
$$

VERIfication:
$w \equiv 1 / s \bmod q, \quad u_{1} \equiv(\mathcal{H}(m) w) \bmod q, \quad u_{2} \equiv r w \bmod q$,

$$
\left(g^{u_{1}} y^{u_{2}} \bmod p\right) \stackrel{?}{=} r \bmod q .
$$

Advantage: short signature. Drawback: slow verification.

## General defi nitions

Let $C$ be a plane smooth projective curve of genus $g$ with equation $F(X, Y)=0$ with coefficients in $\mathbb{K}, \operatorname{char}(\mathbb{K})=p$.

Conic: (genus 0) $x^{2}+y^{2}=1$.
Elliptic curve: (genus 1) $y^{2}=x^{3}+x+1$.
Hyperelliptic curve: (genus $g$ ) $y^{2}=x^{2 g+1}+\cdots$ (or in some cases $\left.y^{2}=x^{2 g+2}+\cdots\right)$.

Def. $C(\mathbb{K})=\left\{P=(x, y) \in \mathbb{K}^{2}, F(x, y)=0\right\}$.
Thm. When $g \leq 1$, there is a group law on $C(\mathbb{K})$. When $g>1$, there is a group law on the jacobian of the curve.

## II. Building AC-cryptosystems

## Why ACC? best candidates to be Nechaev groups.

Best groups so far: hyperelliptic curves of genus $g$, with size $\approx q^{g}$ over some finite field $\mathbb{F}_{q}$. Typical size $q^{g} \approx 2^{160--200} \approx 10^{50--60}$.

- Miller, Koblitz (1986): elliptic curves are suggested for use, following the breakthrough of Lenstra in integer factorization (1985).
- Koblitz (1988): hyperelliptic cryptosystems.
- See: Algebraic curves and cryptography, S. Galbraith \& A. Menezes, January 12, 2005.
82 CIMPA-UNESCO-INDIA School, 2005


## Group law

$$
\begin{aligned}
& E: Y^{2}=X^{3}+a X+b \\
& \uparrow{ }^{\circ} \\
& P_{3}=P_{1} \oplus P_{2},[k] P=\underbrace{P \oplus \cdots \oplus P}_{k \text { times }} \\
& \lambda=\left\{\begin{array}{l}
\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right) \\
\left(3 x_{1}^{2}+a\right) /\left(2 y_{1}\right)
\end{array}\right. \\
& x_{3}=\lambda^{2}-x_{1}-x_{2} \\
& y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
\end{aligned}
$$



## Cardinality

Thm. (Hasse-Weil) $(\sqrt{q}-1)^{2 g} \leq \# \operatorname{Jac}(C) \leq(\sqrt{q}+1)^{2 g}$.
$g=1: \# E=q+1-t,|t| \leq 2 \sqrt{q}$. Explains why so much success in integer factorization (ECM) or primality proving (ECPP).

Pb: compute this cardinality as quickly as possible (polynomial time?). No general formulae except in special cases that might be dangerous (CM curves, supersingular curves).

Cryptographic needs: $\mathbb{F}_{p}$ with large $p$ or $\mathbb{F}_{2}{ }^{n}$ with $n$ prime (Weil descent, see below); subgroups of large prime order.

## Algorithms:

- $g=1, p$ large: Schoof (1985), Pila, etc. Completely practical after improvements by Elkies, Atkin, and implementations by M., Lercier, etc. New recent record M . for $p=10^{999}+7$.
- $p=2$ : $p$-adic methods (Satoh, Fouquet/Gaudry/Harley; Mestre; Lercier-Lubicz, etc.; Kedlaya; Lauder-Wan). Completely solved.

| $g \backslash p$ | 2 | small | medium | large |
| :---: | :---: | :---: | :---: | :---: |
| 1 | MF \& PG \& Harley | Satoh | Couveignes | SEA |
|  | Mestre, etc. | Kohel | RL \& FM | FM |
| 2 | Mestre, etc. | Kedlaya | PG \& NG | PG \& Schost |
|  |  | PG \& NG | \& Bostan+Schost |  |
| 3-hyper | RL \& Lubicz | idem | idem | tbd |
| 3-super | Ritzenthaler | idem | idem | tbd |

```
#define RL "R.^Lercier"
#define PG "P.~Gaudry"
#define MF "M. ~Fouquet"
#define NG "N.~Gürel"
```


## III. Attacking AC-systems

- No (known) subexponential method for small $g$ (including $g=1$ ); recover a subexp method when $g$ increases.
- Reduction $\operatorname{Jac}(C) / \mathbb{F}_{q} \hookrightarrow \mathbb{F}_{q^{k}}$ with $k$ small:
- Supersingular curves: MOV (Menezes, Okamoto, Vanstone using the Weil pairing); Frey \& Rück (using the Tate pairing); Galbraith.
- other cases: elliptic curves with $t=2$ with the Tate pairing.
- Discrete logs in subgroups of order $p^{e}$ of $\operatorname{Jac}(C) / \mathbb{F}_{p^{r}}$ can be found in polynomial time: $g=1$ (anomalous curves) done by Satoh-Araki, Semaev, Smart; $g>1$ by Rück.
- Elliptic curves: largest example done: ECC2-109 in april 2004 (1200 years of Athlon XP 3200+, http: / /www. certicom. com/chal/).


## Gaudry's variant

Idea: use a $O(q)$ factor basis + random walk to generate relations.
Time $O\left(q^{2} \log ^{c} q\right)$ for fixed $g$. Provably (and practically) better than Pollard's $\rho$ for $g>4$.

Thériault (2003): use one large prime, leads to $O\left(q^{2-2 /(g+0.5)}\right)$, so $g=3$ and $g=4$ are in danger (assuming $q$ is large).

Gaudry/Thériault/Thomé (2004): use double large primes leads to a method in $O\left(q^{2-2 / g}\right)$.

## Discrete log on hyperelliptic curves

- Algorithm ADH from Adleman, DeMarrais, Huang (ANTS I):

$$
\mathbf{L}_{\mathbf{p}^{2 g+1}}[1 / 2, \mathbf{c}]
$$

with $c \leq 2.181$ if $\log p \leq(2 g+1)^{0.98}$ (heuristic using Lovorn's theorem on smooth polynomials); SNF.

- Flassenberg \& Paulus: using sieving techniques; experiments with $y^{2}=x^{2 g+1}+2 x+1$, faster than Shanks for $g \geq 6$.
- $y^{2}=x^{2 g+2}+\cdots$ (Müller-Stein-Thiel): proved $L_{p^{2 g+2}}[1 / 2,1.44]$.
- Extensions, proved analysis and optimizations by Enge: if $\theta \log q \leq g$

$$
\mathbf{L}_{\mathbf{q}^{\mathbf{g}}}[\mathbf{1} / \mathbf{2}, \mathbf{c}(\theta)],
$$

with $\lim _{\theta \rightarrow 0} c(\theta)=+\infty$; easier SNF. Smaller $c=\sqrt{2}$ by Enge and Gaudry.
$\qquad$

## Weil descent <br> (Frey, 1998; Gaudry-Hess-Smart, 2002)

Rough idea: to attack $\operatorname{DLP}$ in $\operatorname{Jac}\left(C / \mathbb{F}_{q^{n}}\right)$, find another curve $X / \mathbb{F}_{q}$ and a non-constant rational map $f: X \rightarrow C$ s.t. DLP is easier on $X$.

Typical example. $\mathbb{F}_{q}=\mathbb{F}_{2^{21}}, E / \mathbb{F}_{q^{4}}$, leads to a curve $X / \mathbb{F}_{q}$ of genus $g=4$ (therefore $O\left(q^{3 / 2}\right)$ using GTT).

Rem. $m$ further analyzed by Menezes \& $\mathrm{Wu}, \mathbb{F}_{2^{p}}$ not breakable; see also Menezes, Maurer, Teske for the composite case.

Rem. Recent computations of Smart: can break $E / \mathbb{F}_{q^{4}}, g=8$, faster than $\rho$ for $q>2^{17}$

Recent results: Semaev; Gaudry; Diem: Subexponential $L_{p^{n}}[3 / 4]$ attack for $E / \mathbb{F}_{p^{n}}$ when $n \sim \log p$.

## IV. Pairings and applications

Setup: $\ell$ prime, $\ell \mid \# E$ and $\ell \mid q^{k}-1, \Rightarrow \exists P \in E\left(\mathbb{F}_{q}\right), Q \in E\left(\mathbb{F}_{q^{k}}\right)$ that generate $E[\ell]$.

Weil and Tate pairings: $e:\langle P\rangle \times\langle Q\rangle \rightarrow \mu_{\ell} \subseteq \mathbb{F}_{q^{k}}^{\times}$

- bilinear: $e(a P, b Q)=e(P, Q)^{a b}$;
- non-degenerate;
- efficiently computable if $k$ is small (in $O\left(\log (\ell) M\left(q^{k}\right)\right)$ ).

Immediate application: MOV reduction when $k$ is small, reduction of $\operatorname{DL}$ to $\mathbb{F}_{q^{k}}$.

More recent applications: identity based cryptosystems, short signatures (Boneh, Lynn, Sacham), etc.

## Conclusions on algebraic curves

- Recent, but resist to many attacks, especially in genus 1 or 2 .
- Many advantages: short keys, short signatures, new tools (pairing), etc.
- Many systems can be interpreted in terms of curves (e.g., torus based cryptography of Rubin and Silverberg reinterpreted by Kohel as generalized jacobians of curves).


## Non interactive key exchange (Sakai-Ohgishi-Kasahara)

Private Key Generator
Master key $s \in[0, \ell-1]$
Alice
Bob

$$
\begin{array}{cc}
P_{A}=H \text { ("ALICE") } & \\
Q_{A}=H^{\prime}(" \mathrm{ALICE"}) & \\
e\left(\mathbf{P}_{\mathbf{B}}, s Q_{A}\right) & Q_{B}=H^{\prime}(\text { "ВОВ" }) \\
& =e\left(P_{B}, Q_{A}\right)^{s}= \\
& e\left(s P_{B}, \mathbf{Q}_{\mathbf{A}}\right)
\end{array}
$$

## General conclusions for the three talks

- A lot of systems were designed; new must be added/tested (biodiversity).
- Theory of security emerged, though not completely satisfactory. Algebra of composition still needed (possible at all?).
- More and more MATHEMATICS involved, but used in a computer science game.

