CIMPA-UNESCO School, Bangalore, 2005:

Models of Concurrency

Jean-Jacques Lévy

INRIA

jeanjacqueslevy.net/cimpa.html

- λ-calculus [Church]
$M, N::=x|\lambda x . M| M N$
$M \simeq_{e} N$ iff $\forall C[] C[M] \longrightarrow{ }^{*} n f$ implies $C[N] \longrightarrow *$ nf
$M \simeq_{w} N$ iff $\forall C[] C[M] \longrightarrow *$ hnf implies $C[N] \longrightarrow \longrightarrow^{*}$ hnf
- PCF [Plotkin]
$M, N::=$ typed λ-calculus + recursion + arithmetic $M \simeq_{p} N$ iff $\forall C[] C[M] \longrightarrow^{*} \underline{n}$ implies $C[N] \longrightarrow{ }^{*} \underline{n}$ sequentiality
- Algol
$M, N::=$ valid Algol programs
$M \simeq_{p} N$ iff $\forall C[] C[M] \longrightarrow{ }^{*} \underline{n}$ implies $C[N] \longrightarrow \longrightarrow^{*} \underline{n}$
- etc

Semantics

A semantics function $\llbracket \cdots \rrbracket$ assigns meaning $\llbracket M \rrbracket$ to terms M
The induced relation \simeq defined by $M \simeq N$ iff $\llbracket M \rrbracket=\llbracket N \rrbracket$ must be:

1. compositional, i.e.
$M \simeq N$ implies $C[M] \simeq C[N]$ for any context $C[]$, i.e.
\simeq is a congruence
2. consistent with observation, i.e. if M produces α and $M \simeq N$, then N produces α
3. keeping choices (more specific to non-determinism), i.e. branching time semantics, i.e.
bisimulation [Milner]

Last item is more ideologic than necessary.
Bisimulation are useful for proofs.

Plan

1. Define a calculus for concurrency
2. Define directly semantics equivalence, instead of providing a semantics function.
3. Define observation
4. Context lemma for congruences
(to reduce the set of contexts to consider)

Unfortunately, there are 2 calculi:

1. CCS, A calculus of communicating systems, [Milner, 80]
2. π-calculus, Communicating and mobile systems: the π-calculus, [Milner et al, 90]

Fortunately, the π-calculus is strong to express interaction, and is useful in security.

Input-output behaviour

- x is a global variable. At beginning, $x=0$
- Consider
$S=[x:=1]$
$T=[x:=0 ; x:=x+1]$
$\llbracket S \rrbracket$ and $\llbracket T \rrbracket$ same functions on memory state.
- $S \| S$ and $T \| S$ are different relations on memory state.
$\Rightarrow \llbracket S \rrbracket \neq \llbracket T \rrbracket$ in any compositional semantics
- Conclusion: Interaction is important

Non-determinism

- x is a global variable. At beginning, $x=0$
- Consider:
$S=[x:=1 ;]$
$T=[x:=2 ;]$

After $S \| T$, then $x \in\{1,2\}$

- Result is not unique
- Concurrent programs are not described by functions \Rightarrow relations.

Atomicity

- x is a global variable. At beginning, $x=0$
- Consider
$S=[x:=x+1 \| x:=x+1]$
After S, then $x=2$.
- However if
$[x:=x+1]$ compiled into $[A:=x+1 ; x:=A]$
- Then
$S=[A:=x+1 ; x:=A] \|[B:=x+1 ; x:=B]$
After S, then $x \in\{1,2\}$.
- Conclusion: define atomicity

Interaction

- A process is an atomic action, followed by a process. Ie.

$$
\mathcal{P} \simeq \text { Null }+2^{\text {action } \times \mathcal{P}}
$$

Is this equation meaningful?

- Answer: Scott's domains, denotational semantics. Remarkable and difficult theory of [Plotkin, 1976] (powerdomains for Scott's domains).
- Too difficult theory

Termination

- Concurrent processes are often non terminating.
- An operating system never terminates; same for the software of a vending machine, or a traffic-light controler, or a human, etc.
- Atomic steps usually terminate.

Example (1/3)

A vending machine for coffee/tea. At beginning, P_{0}

Transition Graphs

A transition graph is a triple $(\mathcal{P}, \mathcal{A} c t, \mathcal{T})$ where

- \mathcal{P} is the set of processes
- Act is the set of (atomic) actions
- $\mathcal{T} \subseteq \mathcal{P} \times \mathcal{A} c t \times \mathcal{P}$ is the transition relation

Example (2/3)

A different vending machine for coffee/tea. At beginning, P_{0}^{\prime}

Is this graph equivalent to previous one?

Example (3/3)

Two new vending machines $P_{0}^{\prime \prime}$ and $P_{0}^{\prime \prime \prime}$

Why these graphs are not equivalent to previous ones?
CCS (1/2)

P, Q	::=			process
		$\sum_{i \in I} \alpha_{i} . P_{i}$	I finite set	guarded sum
		$P \mid Q$		composition
		($\nu a) P$		restriction
		$A\left\langle a_{1}, a_{2}, \ldots a_{n}\right\rangle$	$n \geq 0$	function call
0	$=$	$\sum_{i \in \emptyset} P_{i}$		
α	: $=$	$a \mid \bar{a}$		guard
$\overline{\bar{a}}$	$=$	a		
		$A\left\langle x_{1}, x_{2}, \ldots x_{n}\right\rangle$		function definition $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}=f n(P)$
$C[]$::=	[] \| $\alpha \cdot C[]+M$	$C[]\|P\| C[]$	context

$P|C| \mid C[\mid Q$ context
Process α abbreviates process $\alpha .0$

CCS (2/2)

$P_{0}\langle \rangle \stackrel{\text { def }}{=}$ coin. $\left(\right.$ coffee. $\overline{\text { drink }} . P_{0}\langle \rangle+$ tea $\left.. \overline{d r i n k} . P_{0}\langle \rangle\right)$
or simply
$P_{0} \stackrel{\text { def }}{=}$ coin. (coffee. $\overline{d r i n k} \cdot P_{0}+$ tea $\left.\cdot \overline{d r i n k} \cdot P_{0}\right)$
$P_{0}^{\prime} \stackrel{\text { def }}{=}$ coin. $P_{1}^{\prime} \quad P_{1}^{\prime} \stackrel{\text { def }}{=}$ coffee. $\overline{\text { drink }} \cdot P_{2}^{\prime}+$ tea $\cdot \overline{\text { drink }} \cdot P_{2}^{\prime}$
$P_{2}^{\prime} \stackrel{\text { def }}{=} \operatorname{coin} . P_{0}^{\prime}$
$P_{0}^{\prime \prime \prime} \stackrel{\text { def }}{=}$ coin. $\left(\right.$ coffee. $\overline{d r i n k} \cdot P_{0}+$ tea $\left.\cdot \overline{d r i n k} \cdot P_{0}\right)+$ coin. 0

Drinker $\stackrel{\text { def }}{=} \overline{\text { coin }} . \overline{c o f f e e} . d r i n k . \overline{c o i n} . \overline{t e a} . d r i n k .0$

Drinker $\mid P_{0}$
Drinker $\mid P_{0}^{\prime}$
Drinker $\mid P_{0}^{\prime \prime}$

Structural equivalence

- monoid laws

$$
\begin{array}{ll}
P+Q \equiv Q+P & P|Q \equiv Q| P \\
P+(Q+R) \equiv(P+Q)+R & P|(Q \mid R) \equiv(P \mid Q)| R \\
P+0 \equiv P & P \mid 0 \equiv P
\end{array}
$$

- $A\left\langle y_{1}, y_{2}, \ldots y_{n}\right\rangle \equiv P\left[y_{1} / x_{1}, y_{2} / x_{2}, \ldots y_{n} / x_{n}\right]$ when $A\left\langle x_{1}, x_{2}, \ldots x_{n}\right\rangle \stackrel{\text { def }}{=} P$
- congruence: $P \equiv Q \quad \Rightarrow \quad C[P] \equiv C[Q]$
- scope extrusion: $(\nu a) P \mid Q \equiv(\nu a)(P \mid Q)$ when $a \notin f n(Q)$
- $(\nu a)(\nu b) P \equiv(\nu b)(\nu a) P$
- $(\nu a) 0 \equiv 0$
- α-renaming

Reduction rules (2/2)

$P_{0} \stackrel{\text { def }}{=}$ coin. (coffee. $\overline{d r i n k} \cdot P_{0}+$ tea $\left.\cdot \overline{d r i n k} \cdot P_{0}\right)$
Drinker $\stackrel{\text { def }}{=} \overline{\text { coin }} . \overline{c o f f e e} . d r i n k . \overline{c o i n} . \overline{t e a} . d r i n k .0$
$P_{0} \mid$ Drinker
\equiv
(coin. $\left(\right.$ coffee. $\overline{\text { drink }} \cdot P_{0}+$ tea. $\left.\left.\overline{\text { drink }} \cdot P_{0}\right)\right) \mid(\overline{\text { coin }} \cdot \overline{\text { coffee. }}$. drink. $\overline{\text { coin }} \cdot \overline{\text { tea }} . d r i n k .0)$
$\left(\right.$ coffee. $\overline{\text { drink }} \cdot P_{0}+$ tea $\left.. \overline{d r i n k} . P_{0}\right) \mid \overline{\text { coffee. }} . d r i n k . \overline{\text { coin. }} \overline{\text { tea. }} . d r i n k . ~ 0$
\qquad
$\overline{d r i n k} . P_{0} \mid$ drink. $\overline{\text { coin }} . \overline{\text { tea }}$. drink. 0
\longrightarrow
$P_{0} \mid \overline{\text { coin. }} \overline{\text { tea }}$. drink. 0

Reduction rules (1/2)

$[$ React $](a . P+M)|(\bar{a} \cdot Q+N) \longrightarrow P| Q$

$$
\left[\text { Par } \frac{P \longrightarrow P^{\prime}}{P\left|Q \longrightarrow P^{\prime}\right| Q} \quad[\text { Res }] \frac{P \longrightarrow P^{\prime}}{(\nu a) P \longrightarrow(\nu a) P^{\prime}}\right.
$$

[Struct] $\frac{P \equiv \longrightarrow Q}{P \longrightarrow Q}$

Semantic equivalences

- \mathcal{R} is a congruence
$P \mathcal{R} Q \Rightarrow C[P] \mathcal{R} C[Q]$
- preserving observation on any α :
$P \mathcal{R} Q \Rightarrow(P \downarrow \alpha \Leftrightarrow Q \downarrow \alpha)$
where
Definition 1 [barb] $P \downarrow \alpha$ iff $P \equiv(\nu \widetilde{\beta})(\alpha \cdot Q+M \mid S)$ where $\alpha \notin \widetilde{\beta}$ Definition 2 [weak barb] $P \Downarrow \alpha$ iff $P \longrightarrow^{*} Q \downarrow \alpha$
- preserving choices (branching time):
$P \mathcal{R} Q \wedge P \longrightarrow P^{\prime} \Rightarrow \exists Q^{\prime}$ s.t. $Q \longrightarrow Q^{\prime} \wedge P^{\prime} \mathcal{R} Q^{\prime}$ $P \mathcal{R} Q \wedge Q \longrightarrow Q^{\prime} \Rightarrow \exists P^{\prime}$ s.t. $Q \longrightarrow Q^{\prime} \wedge P^{\prime} \mathcal{R} Q^{\prime}$
Such a relation is named a bisimulation

Many recursive definitions. In which order? Are there well-founded? [Park,Milner] defined bisimulations as maximal fixpoints.
[Fournet, Gonthier] proved order is irrelevant.

Labelled Transition Systems

Reducing contexts (\sim critical pairs in TRS):

$$
[\mathrm{Act}] \alpha . P \xrightarrow{\alpha} P
$$

[Sum1] $\frac{P \xrightarrow{\alpha} P^{\prime}}{P+Q \xrightarrow{\alpha} P^{\prime}}$
[Sum2] $\frac{Q \xrightarrow{\alpha} Q^{\prime}}{P+Q \xrightarrow{\alpha} Q^{\prime}}$
[Com] $\frac{P \xrightarrow{a} P^{\prime} Q \stackrel{\bar{a}}{\longrightarrow} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}$
$\left[\right.$ Par1] $\frac{P \stackrel{\alpha}{\longrightarrow} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q}$
[Par2] $\frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}}$
[Res] $\frac{P \xrightarrow{\alpha} P^{\prime} \alpha \notin\{a, \bar{a}\}}{(\nu a) P \xrightarrow{\alpha}(\nu a) P^{\prime}}$
$[R e c] \frac{P[\vec{a} / \vec{x}] \stackrel{\alpha}{\longrightarrow} P^{\prime} \quad A\langle\vec{x}\rangle \stackrel{\text { def }}{=} P}{A\langle\vec{a}\rangle \xrightarrow{\alpha} P^{\prime}}$
Proposition $3 P \xrightarrow{\tau} \equiv Q$ iff $P \longrightarrow Q$
Proposition $4 \quad P \equiv \xrightarrow{\alpha} Q$ implies $P \xrightarrow{\alpha} \equiv Q$
Proposition $5 \quad P \xrightarrow{\alpha} Q$ iff $P \downarrow \alpha \quad(\alpha \neq \tau)$

Strong bisimulation (2/4)

Proposition 7 Strong bisimulation is a congruence

$$
P \sim Q \Rightarrow C[P] \sim C[Q]
$$

So \sim is a semantics for $\downarrow \alpha$ (strong observation)
Exercise 5 (difficult) Show that it is the semantics induced by strong observation.

How to prove previous proposition ?
Typical (co-inductive) proof about bisimulation:

$$
\text { We want to show } P \sim Q
$$

As \sim is a maximal fixpoint
\sim is the the largest relation \mathcal{R}
satisfying the fixpoint equations of definition 5 ;
find \mathcal{R} such that $P \mathcal{R} Q$
show it satisfies the fixpoint equations of definition 5 ,
we say "we show that \mathcal{R} is a bisimulation".

Strong bisimulation (1/4)

Definition $6 \quad P$ strongly bisimilar to Q (we write $P \sim Q$) if whenever

- $P \xrightarrow{\alpha} P^{\prime}$, there is Q^{\prime} such that $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \sim Q^{\prime}$.
- $Q \xrightarrow{\alpha} Q^{\prime}$, there is P^{\prime} such that $P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} \sim Q^{\prime}$.

Graphically,

Exercise 1 Give intuition for $P_{0} \lesssim P_{0}^{\prime \prime \prime} \lesssim P_{0}$
Exercise 2 Give intuition for $P_{0} \sim P_{0}^{\prime}, P_{0} \nsim P_{0}^{\prime \prime}, P_{0} \nsim P_{0}^{\prime \prime \prime}$ (\lesssim is strong simulation, i.e. half of strong bisimulation)
Exercise 3 Show that $(\nu a)(P+M) \sim(\nu a) P+(\nu a) M$.
Exercise 4 Show that $(\nu a)(P \mid Q) \nsim(\nu a) P \mid(\nu a) M$.

Strong bisimulation (3/4)

Proof of previous proposition.

- $P+0 \sim P$. Take $\mathcal{R}=\{(P+0, P),(P, P+0),(P, P)\}$ and show \mathcal{R} is a bisimulation.
Let $P+0 \xrightarrow{\alpha} P^{\prime}$. Then $P \xrightarrow{\alpha} P^{\prime}$ by rule [Sum1] since $0 \xrightarrow{\alpha} P^{\prime}$ is not possible. And $P^{\prime} \mathcal{R} P^{\prime}$.
Conversely let $P \xrightarrow{\alpha} P^{\prime}$. Then $P+0 \xrightarrow{\alpha} P^{\prime}$ by rule [Sum1]. And again $P^{\prime} \mathcal{R} P^{\prime}$
- $P+Q \sim Q+P$. Show following \mathcal{R} is a bisimulation. Take $\mathcal{R}=\{P+Q, Q+P,(P, P)\}$.
Let $P+Q \xrightarrow{\alpha} S$.
- Case 1: let $P+Q \xrightarrow{\alpha} S$ using [Sum1]. Then $P \xrightarrow{\alpha} S$. But $Q+P \xrightarrow{\alpha} S$ using [Sum2] .
QED since $S \mathcal{R} S$.
- Case 2: let $P+Q \xrightarrow{\alpha} S$ using [Sum2]. Then $Q \xrightarrow{\alpha} S$. But $Q+P \xrightarrow{\alpha} S$ using [Sum1] . QED since $S \mathcal{R} S$.
Conversely let $Q+P \xrightarrow{\alpha} S$. QED by symmetry.

CCS and strong bisimulation (4/4)

Proof of theorem (continued)

- $(P+Q)+R \sim P+(Q+R)$. Show following \mathcal{R} is a bisimulation. Take $\mathcal{R}=\{(P+Q)+R, P+(Q+R),(P, P)\}$
Let $(P+Q)+R \xrightarrow{\alpha} S$.
- Case 1: let $(P+Q) \xrightarrow{\alpha} S$ using [Sum1]
* Case 1.1: let $P \xrightarrow{\alpha} S$ using [Sum1]

Then $P+(Q+R) \xrightarrow{\alpha} S$ by [Sum1]
QED since $S \mathcal{R} S$.

* Case 1.2: Let $Q \xrightarrow{\alpha} S$. Then $(Q+R) \xrightarrow{\alpha} S$ by [Sum1], and $P+(Q+R) \xrightarrow{Q} S$ by [Sum2]
QED since $S \mathcal{R} S$.
- Case 2: Let $R \xrightarrow{\alpha} S$ by [Sum2]. Then $(Q+R) \xrightarrow{\alpha} S$ by [Sum2], and $P+(Q+R) \xrightarrow{\alpha} S$ by [Sum2] . QED since $S \mathcal{R} S$.
By symmetry when $P+(Q+R) \xrightarrow{\alpha} S$.
- other equations ..

Exercise 6 Give full proof of theorem

Weak bisimulation (1/2)

Only visible actions are interesting \Rightarrow Skip internal moves $\xrightarrow{\tau}$
Definition $8 P \xrightarrow{\alpha} Q$ iff $P \longrightarrow{ }^{*} \xrightarrow{\alpha_{1}} \longrightarrow{ }^{*} \xrightarrow{\alpha_{2}} \cdots \longrightarrow{ }^{*} \xrightarrow{\alpha_{n}} \longrightarrow^{*} Q \quad(n \geq 0)$ and $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{n}$.
Definition $9 \widehat{\alpha}$ is α where τ has been eliminitated.
Definition $10 \quad P$ weakly bisimilar to Q (we write $P \approx Q$) if whenever

- $P \xrightarrow{\alpha} P^{\prime}$, there is Q^{\prime} such that $Q \xlongequal{\widehat{\alpha}} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.
- $Q \xrightarrow{\alpha} Q^{\prime}$, there is P^{\prime} such that $P \stackrel{\widehat{\alpha}}{\Longrightarrow} P^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.

Nearly a congruence, except for + (partial commitment problem).
Definition 11 [observation-congruence] P observation-congruent to Q (we write $P \cong Q$) if, for any $\alpha \in \mathcal{A} c t$, whenever

- $P \xrightarrow{\alpha} P^{\prime}$, there is Q^{\prime} such that $Q \xlongequal{Q} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.
- $Q \xrightarrow{\alpha} Q^{\prime}$, there is P^{\prime} such that $P \xrightarrow{Q} P^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.
(differs from weak bisimulation in first step)

Weak bisimulation (2/2)

Exercise 7 Show that \cong is the semantics induced by observation of weak barbs $\Downarrow \alpha$

Conclusion

- axiomatization of (weak) bisimulations
- algorithms to compute bisimulations
- model checkers for bisimulations
- temporal logic: Hennessy-Milner Iogic
- missing reconfigurable networks of processes

\Rightarrow the π-calculus

