CIMPA-UNESCO School, Bangalore, 2005:

Models of Concurrency

Jean-Jacques Lévy

INRIA

jeanjacqueslevy.net/cimpa.html

Examples

- λ -calculus [Church] $M, N ::= x \mid \lambda x.M \mid MN$ $M \simeq_e N \text{ iff } \forall C[] C[M] \longrightarrow^* nf \text{ implies } C[N] \longrightarrow^* nf$ $M \simeq_w N \text{ iff } \forall C[] C[M] \longrightarrow^* hnf \text{ implies } C[N] \longrightarrow^* hnf$
- PCF [Plotkin] M, N ::= typed λ -calculus + recursion + arithmetic $M \simeq_p N$ iff $\forall C[] C[M] \longrightarrow^* \underline{\mathbf{n}} implies C[N] \longrightarrow^* \underline{\mathbf{n}}$ sequentiality
- Algol M, N ::= valid Algol programs $M \simeq_p N$ iff $\forall C[] C[M] \longrightarrow^* \underline{n}$ implies $C[N] \longrightarrow^* \underline{n}$
- etc

Semantics

A semantics function $[\![\cdots]\!]$ assigns meaning $[\![M]\!]$ to terms M.

The induced relation \simeq defined by $M\simeq N$ iff $[\![M]\!]=[\![N]\!]$ must be:

- 1. compositional, i.e. $M \simeq N$ implies $C[M] \simeq C[N]$ for any context C[], i.e. \simeq is a congruence
- 2. consistent with observation, i.e. if M produces α and $M\simeq N,$ then N produces α
- keeping choices (more specific to non-determinism), i.e. branching time semantics, i.e. bisimulation [Milner]

Last item is more ideologic than necessary. Bisimulation are useful for proofs.

Concurrency

3

4

Plan

- 1. Define a calculus for concurrency
- 2. Define directly semantics equivalence, instead of providing a semantics function.
- 3. Define observation
- 4. Context lemma for congruences (to reduce the set of contexts to consider)

Unfortunately, there are 2 calculi:

- 1. CCS, A calculus of communicating systems, [Milner, 80]
- 2. π -calculus, Communicating and mobile systems: the π -calculus, [Milner et al, 90]

Fortunately, the π -calculus is strong to express interaction, and is useful in security.

Input-output behaviour

- x is a global variable. At beginning, x = 0
- Consider
 - S = [x := 1]T = [x := 0; x := x + 1]

 $[\![S]\!]$ and $[\![T]\!]$ same functions on memory state.

- S || S and T || S are different relations on memory state.
 ⇒ [[S]] ≠ [[T]] in any compositional semantics
- Conclusion: Interaction is important.

Non-determinism

- x is a global variable. At beginning, x = 0
- Consider:

S = [x := 1;]T = [x := 2;]

After $S \parallel T$, then $x \in \{1, 2\}$

- Result is not unique.
- Concurrent programs are not described by functions, \Rightarrow relations.

Atomicity

- x is a global variable. At beginning, x = 0
- Consider

S = [x := x + 1 || x := x + 1]

After S, then x = 2.

However if

[x := x + 1] compiled into [A := x + 1; x := A]

- Then S = [A := x + 1; x := A] || [B := x + 1; x := B] After S, then $x \in \{1, 2\}$.
- Conclusion: define atomicity

5

Interaction

• A process is an atomic action, followed by a process. Ie.

 $\mathcal{P} \simeq Null + 2^{action \times \mathcal{P}}$

Is this equation meaningful?

- Answer: Scott's domains, denotational semantics. Remarkable and difficult theory of [Plotkin, 1976] (powerdomains for Scott's domains).
- Too difficult theory

Termination

- Concurrent processes are often non terminating.
- An operating system never terminates; same for the software of a vending machine, or a traffic-light controler, or a human, etc.
- Atomic steps usually terminate.

Example (1/3)

A vending machine for coffee/tea. At beginning, $\ensuremath{\mathcal{P}}_0$

Transition Graphs

A transition graph is a triple $(\mathcal{P}, \mathcal{A}ct, \mathcal{T})$ where

- $\ensuremath{\mathcal{P}}$ is the set of processes
- *Act* is the set of (atomic) actions
- $\mathcal{T} \subseteq \mathcal{P} \times \mathcal{A}ct \times \mathcal{P}$ is the transition relation

Example (2/3)

A different vending machine for coffee/tea. At beginning, P'_0

Is this graph equivalent to previous one?

Example (3/3)

Two new vending machines $P_0^{\prime\prime}$ and $P_0^{\prime\prime\prime}$

CCS

Why these graphs are not equivalent to previous ones?

CCS (1/2)

CCS (2/2)

$$\begin{split} P_0 \langle \rangle \stackrel{\text{def}}{=} coin.(\mathit{coffee.drink.P_0} \langle \rangle + \mathit{tea.drink.P_0} \langle \rangle) \\ \text{or simply} \end{split}$$

 $P_0 \stackrel{\text{def}}{=} coin.(coffee.\overline{drink}.P_0 + tea.\overline{drink}.P_0)$

 $\begin{array}{ll} P_0' \stackrel{\mathrm{def}}{=} \operatorname{coin.} P_1' & P_1' \stackrel{\mathrm{def}}{=} \operatorname{coffee.} \overline{\operatorname{drink.}} P_2' + \operatorname{tea.} \overline{\operatorname{drink.}} P_2' \\ P_2' \stackrel{\mathrm{def}}{=} \operatorname{coin.} P_0' \end{array}$

 $P_0^{\prime\prime\prime} \stackrel{\text{def}}{=} coin.(coffee.\overline{drink}.P_0 + tea.\overline{drink}.P_0) + coin.0$

 $Drinker \stackrel{\text{def}}{=} \overline{coin}.\overline{coffee}.drink.\overline{coin}.\overline{tea}.drink.0$

 $Drinker \mid P_0$ $Drinker \mid P'_0$ $Drinker \mid P''_0$

Structural equivalence

• monoid laws

$$\begin{split} P+Q &\equiv Q+P & P \mid Q \equiv Q \mid P \\ P+(Q+R) &\equiv (P+Q)+R & P \mid (Q \mid R) \equiv (P \mid Q) \mid R \\ P+0 &\equiv P & P \mid 0 \equiv P \end{split}$$

- $A\langle y_1, y_2, \dots y_n \rangle \equiv P[y_1/x_1, y_2/x_2, \dots y_n/x_n]$ when $A\langle x_1, x_2, \dots x_n \rangle \stackrel{\text{def}}{=} P$
- congruence: $P \equiv Q \Rightarrow C[P] \equiv C[Q]$
- scope extrusion: $(\nu a)P \mid Q \equiv (\nu a)(P \mid Q)$ when $a \notin fn(Q)$
- $(\nu a)(\nu b)P \equiv (\nu b)(\nu a)P$
- $(\nu a)0 \equiv 0$
- α -renaming

Reduction rules (2/2)

 $\begin{array}{l} P_{0} \stackrel{\text{def}}{=} coin.(coffee.\overline{drink}.P_{0} + tea.\overline{drink}.P_{0}) \\ Drinker \stackrel{\text{def}}{=} \overline{coin.}\overline{coffee}.drink.\overline{coin}.\overline{tea}.drink.0 \\ P_{0} \mid Drinker \\ \equiv \\ (coin.(coffee.\overline{drink}.P_{0} + tea.\overline{drink}.P_{0})) \mid (\overline{coin}.\overline{coffee}.drink.\overline{coin}.\overline{tea}.drink.0) \\ \longrightarrow \\ (coffee.\overline{drink}.P_{0} + tea.\overline{drink}.P_{0}) \mid \overline{coffee}.drink.\overline{coin}.\overline{tea}.drink.0 \\ \longrightarrow \\ \overline{drink}.P_{0} \mid drink.\overline{coin}.\overline{tea}.drink.0 \\ \longrightarrow \\ P_{0} \mid \overline{coin}.\overline{tea}.drink.0 \end{array}$

Reduction rules (1/2)

 $[\mathsf{React}] \ (a.P+M) \mid (\overline{a}.Q+N) \longrightarrow P \mid Q$

$$[\operatorname{Par}] \xrightarrow{P \longrightarrow P'} P \xrightarrow{} P' | Q \qquad [\operatorname{Res}] \xrightarrow{P \longrightarrow P'} (\nu a) P \xrightarrow{} (\nu a) P'$$

[Struct] $\frac{P \equiv \longrightarrow \equiv Q}{P \longrightarrow Q}$

Semantic equivalences

- \mathcal{R} is a congruence: $P \mathcal{R} Q \Rightarrow C[P] \mathcal{R} C[Q]$
- preserving observation on any α : $P \mathcal{R} Q \Rightarrow (P \downarrow \alpha \Leftrightarrow Q \downarrow \alpha)$ where

Definition 1 [barb] $P \downarrow \alpha$ iff $P \equiv (\nu \tilde{\beta})(\alpha . Q + M \mid S)$ where $\alpha \notin \tilde{\beta}$ Definition 2 [weak barb] $P \Downarrow \alpha$ iff $P \longrightarrow^* Q \downarrow \alpha$

• preserving choices (branching time): $P \mathcal{R} Q \land P \longrightarrow P' \Rightarrow \exists Q' \text{ s.t. } Q \longrightarrow Q' \land P' \mathcal{R} Q'$ $P \mathcal{R} Q \land Q \longrightarrow Q' \Rightarrow \exists P' \text{ s.t. } Q \longrightarrow Q' \land P' \mathcal{R} Q'$ Such a relation is named a bisimulation

Many recursive definitions. In which order? Are there well-founded?
[Park,Milner] defined bisimulations as maximal fixpoints.
[Fournet,Gonthier] proved order is irrelevant.

17

Labelled Transition Systems

Reducing contexts (\sim critical pairs in TRS):

$$[\operatorname{Act}] \alpha.P \xrightarrow{\alpha} P$$

$$[\operatorname{Sum1}] \frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} \qquad [\operatorname{Sum2}] \frac{Q \xrightarrow{\alpha} Q'}{P + Q \xrightarrow{\alpha} Q'}$$

$$[\operatorname{Com}] \frac{P \xrightarrow{\alpha} P' Q \xrightarrow{\overline{\alpha}} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \qquad [\operatorname{Par1}] \frac{P \xrightarrow{\alpha} P'}{P \mid Q \xrightarrow{\alpha} P' \mid Q} \qquad [\operatorname{Par2}] \frac{Q \xrightarrow{\alpha} Q'}{P \mid Q \xrightarrow{\alpha} P \mid Q}$$

$$[\operatorname{Res}] \frac{P \xrightarrow{\alpha} P' \alpha \notin \{a, \overline{a}\}}{(\nu a)P \xrightarrow{\alpha} (\nu a)P'}$$

$$\operatorname{Rec}] \frac{P[\vec{a}/\vec{x}] \xrightarrow{\alpha} P' A\langle \vec{x} \rangle \stackrel{\text{def}}{=} P}{A\langle \vec{a} \rangle \xrightarrow{\alpha} P'}$$

$$\operatorname{Proposition 3} P \xrightarrow{\tau} \equiv Q \text{ iff } P \longrightarrow Q$$

$$\operatorname{Proposition 5} P \xrightarrow{\alpha} Q \text{ iff } P \downarrow \alpha \quad (\alpha \neq \tau)$$

21

Strong bisimulation (1/4)

Definition 6 *P* strongly bisimilar to *Q* (we write $P \sim Q$) if whenever

- $P \xrightarrow{\alpha} P'$, there is Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \sim Q'$.
- $Q \xrightarrow{\alpha} Q'$, there is P' such that $P \xrightarrow{\alpha} P'$ and $P' \sim Q'$.

Graphically,

Exercise 1 Give intuition for $P_0 \leq P_0''' \leq P_0$ **Exercise 2** Give intuition for $P_0 \sim P_0'$, $P_0 \neq P_0''$, $P_0 \neq P_0'''$ (\leq is strong simulation, i.e. half of strong bisimulation) **Exercise 3** Show that $(\nu a)(P + M) \sim (\nu a)P + (\nu a)M$. **Exercise 4** Show that $(\nu a)(P | Q) \neq (\nu a)P | (\nu a)M$.

Strong bisimulation (2/4)

Proposition 7 Strong bisimulation is a congruence

$$P \sim Q \Rightarrow C[P] \sim C[Q]$$

So \sim is a semantics for $\downarrow \alpha$ (strong observation)

Exercise 5 (difficult) Show that it is the semantics induced by strong observation.

How to prove previous proposition ?

Typical (co-inductive) proof about bisimulation:

We want to show $P \sim Q$. As \sim is a maximal fixpoint, \sim is the the largest relation \mathcal{R} satisfying the fixpoint equations of definition 5; find \mathcal{R} such that $P \mathcal{R} Q$ show it satisfies the fixpoint equations of definition 5, we say "we show that \mathcal{R} is a bisimulation".

Strong bisimulation (3/4)

Proof of previous proposition.

• $P + 0 \sim P$. Take $\mathcal{R} = \{(P + 0, P), (P, P + 0), (P, P)\}$ and show \mathcal{R} is a bisimulation.

Let $P + 0 \xrightarrow{\alpha} P'$. Then $P \xrightarrow{\alpha} P'$ by rule [Sum1] since $0 \xrightarrow{\alpha} P'$ is not possible. And $P' \mathcal{R} P'$.

Conversely let $P \xrightarrow{\alpha} P'$. Then $P + 0 \xrightarrow{\alpha} P'$ by rule [Sum1]. And again $P' \mathcal{R} P'$.

• $P + Q \sim Q + P$. Show following \mathcal{R} is a bisimulation. Take $\mathcal{R} = \{P + Q, Q + P, (P, P)\}.$

Let $P + Q \xrightarrow{\alpha} S$.

- $\begin{array}{l} \mbox{ Case 1: let } P+Q \xrightarrow{\alpha} S \mbox{ using [Sum1]}. \mbox{ Then } P \xrightarrow{\alpha} S. \\ \mbox{ But } Q+P \xrightarrow{\alpha} S \mbox{ using [Sum2]}. \\ \mbox{ QED since } S \mbox{ \mathcal{R} S.} \end{array}$
- $\begin{array}{l} \ \mbox{Case 2: let } P+Q \xrightarrow{\alpha} S \ \mbox{using [Sum2]} \ . \ \mbox{Then } Q \xrightarrow{\alpha} S. \\ \mbox{But } Q+P \xrightarrow{\alpha} S \ \mbox{using [Sum1]} \ . \\ \mbox{QED since } S \ \mathcal{R} \ S. \end{array}$

Conversely let $Q + P \xrightarrow{\alpha} S$. QED by symmetry.

CCS and strong bisimulation (4/4)

Proof of theorem (continued)

- $(P+Q) + R \sim P + (Q+R)$. Show following \mathcal{R} is a bisimulation. Take $\mathcal{R} = \{(P+Q) + R, P + (Q+R), (P,P)\}$. Let $(P+Q) + R \xrightarrow{\alpha} S$.
 - Case 1: let $(P+Q) \xrightarrow{\alpha} S$ using [Sum1].
 - * Case 1.1: let $P \xrightarrow{\alpha} S$ using [Sum1]. Then $P + (Q + R) \xrightarrow{\alpha} S$ by [Sum1]. QED since $S \mathcal{R} S$.
 - * Case 1.2: Let $Q \xrightarrow{\alpha} S$. Then $(Q + R) \xrightarrow{\alpha} S$ by [Sum1], and $P + (Q + R) \xrightarrow{\alpha} S$ by [Sum2]. QED since $S \mathcal{R} S$.
 - Case 2: Let $R \xrightarrow{\alpha} S$ by [Sum2]. Then $(Q + R) \xrightarrow{\alpha} S$ by [Sum2], and $P + (Q + R) \xrightarrow{\alpha} S$ by [Sum2]. QED since $S \mathcal{R} S$.
 - By symmetry when $P + (Q + R) \xrightarrow{\alpha} S$.
- other equations ...

Exercise 6 Give full proof of theorem.

25

Weak bisimulation (1/2)

Only visible actions are interesting \Rightarrow Skip internal moves $\xrightarrow{\tau}$

Definition 8 $P \xrightarrow{\alpha} Q$ iff $P \longrightarrow^* \xrightarrow{\alpha_1} \longrightarrow^* \xrightarrow{\alpha_2} \cdots \longrightarrow^* \xrightarrow{\alpha_n} \longrightarrow^* Q$ $(n \ge 0)$ and $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n$.

Definition 9 $\hat{\alpha}$ is α where τ has been eliminitated.

Definition 10 *P* weakly bisimilar to *Q* (we write $P \approx Q$) if whenever

- $P \xrightarrow{\alpha} P'$, there is Q' such that $Q \xrightarrow{\widehat{\alpha}} Q'$ and $P' \approx Q'$.
- $Q \xrightarrow{\alpha} Q'$, there is P' such that $P \xrightarrow{\hat{\alpha}} P'$ and $P' \approx Q'$.

Nearly a congruence, except for + (partial commitment problem).

Definition 11 [observation-congruence] P observation-congruent to Q (we write $P \cong Q$) if, for any $\alpha \in Act$, whenever

- $P \xrightarrow{\alpha} P'$, there is Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \approx Q'$.
- $Q \xrightarrow{\alpha} Q'$, there is P' such that $P \xrightarrow{\alpha} P'$ and $P' \approx Q'$.

(differs from weak bisimulation in first step)

Weak bisimulation (2/2)

Exercise 7 Show that \cong is the semantics induced by observation of weak barbs $\Downarrow \alpha$.

Conclusion

- axiomatization of (weak) bisimulations
- algorithms to compute bisimulations
- model checkers for bisimulations
- temporal logic: Hennessy-Milner logic
- missing reconfigurable networks of processes

\Rightarrow the π -calculus