
Just Fast Keying in the Pi Calculus

Martı́n Abadi1, Bruno Blanchet2, and Cédric Fournet3

1 University of California, Santa Cruz
2 CNRS, Département d’Informatique, École Normale Supérieure, Paris

and Max-Planck-Institut für Informatik, Saarbrücken
3 Microsoft Research

Abstract. JFK is a recent, attractive protocol for fast key establishment as part

of securing IP communication. In this paper, we analyze it formally in the ap-

plied pi calculus (partly in terms of observational equivalences, partly with the

assistance of an automatic protocol verifier). We treat JFK’s core security prop-

erties, and also other properties that are rarely articulated and studied rigorously,

such as resistance to denial-of-service attacks. In the course of this analysis we

found some ambiguities and minor problems, but we mostly obtain positive re-

sults about JFK. For this purpose, we develop ideas and techniques that should be

useful more generally in the specification and verification of security protocols.

1 Introduction

The design of security mechanisms for the Internet has been the focus of much activity.

In particular, IP security has received much attention; in this area, we have seen some

progress but also some disappointment and some controversy. The Internet Key Ex-

change (IKE) protocol [12], an important method for establishing cryptographic keys

for secure IP communication, has been the subject of considerable and reasonable criti-

cisms. Those criticisms tend to concern not the core authenticity and secrecy properties

that IKE offers but rather the complexity of IKE, some of its inefficiencies, and its poor

resistance against denial-of-service (DOS) attacks. Several recent protocols aim to ad-

dress IKE’s shortcomings. These include the JFK protocol [6,5] (for “just fast keying”)

and the IKEv2 protocol [13], currently under development.

In some respects, IKE and its successors are fairly classical security protocols. They

all employ common pieces in the standard arsenal of modern cryptography, and aim

to guarantee the integrity and secrecy of IP communication. They are all subject to

common efficiency considerations, which limit the use of expensive cryptographic op-

erations and the number and size of messages. Beyond such basic aspects, however,

these protocols—and JFK in particular—exhibit a number of interesting features be-

cause they address other security objectives. These other objectives are sometimes sub-

tle; they are seldom articulated precisely. Moreover, they give rise to new tensions and

delicate compromises. For instance, in the name of privacy, a protocol may attempt

to hide the identities of the participants (that is, to provide identity protection) and to

guarantee the plausible deniability of their actions, and may accordingly avoid or delay

An earlier version of this paper appears in the proceedings of the 13th European Symposium on Programming.

D. A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 340–354. c© Springer-Verlag Berlin Heidelberg 2004.

the authentication of the participants. On the other hand, strong, early authentication

can simplify DOS resistance. Of course, such tensions are not unique to JFK and its

close relatives. Rather, they seem to be increasingly important in the design of modern

security protocols. JFK exemplifies them well and resolves them nicely.

In this paper we analyze JFK, relying on the applied pi calculus, an extension of the

standard pi calculus with functions. Specifically, we present a formalization of one of

the two variants of JFK known as JFKr (the one closer to IKEv2). While fairly short

and abstract, our formalization gives a fine level of detail in the modelling of contexts

and parallel sessions. It also covers aspects of the protocol beyond the “messages on the

wire”, such as protocol interfaces, the checks performed by the participants, and other

delicate features such as the treatment of duplicate requests.

We treat several properties of the protocol, such as plausible deniability and DOS

resistance. (We consider all the properties with a single model of the protocol: we do not

need to define special, partial models for particular properties.) We also provide proofs

for those properties. Some of the proofs were done by hand, while others were done with

an automated protocol verifier, ProVerif [7]. In some cases, there are overlaps between

the two kinds of proofs; those overlaps provide extra assurance about the correctness of

the formalization and the proofs. Moreover, while ProVerif can be used for establishing

standard security properties such as correspondence assertions, it is still limited when it

comes to subtler properties, which we therefore prove partly by hand.

In the course of this analysis, we identified some minor limitations and weaknesses

of JFK. In particular, we discovered that JFK does not provide as much identity protec-

tion as one might have expected on the basis of informal descriptions of the protocol.

However, we did not discover fatal mistakes. That is comforting but not surprising,

since the authors of JFK have substantial experience in protocol design and since JFK

benefited from careful review and prolonged discussion in the IETF context.

Beyond observations and results on JFK, this study contributes to the specification

and verification of security protocols in several ways. Our basic approach and tools

come from recent work; it is pleasing to confirm their effectiveness. On the other hand,

the approach to formalizing several of the protocol’s less mundane facets is largely

new, and should be applicable elsewhere. Similarly, the proofs are non-trivial and mo-

tivate some new developments of our techniques. These novelties include a formula-

tion of plausible deniability, a general lemma about state elimination, and extensions in

ProVerif. The proofs also provide an opportunity for integrating manual and automatic

methods in the applied pi calculus.

Contents The next section is a review and informal discussion of JFK. Section 3

presents a model of JFKr in the applied pi calculus. Section 4 treats DOS resistance.

Section 5 concerns core security properties (secrecy and authenticity). It also briefly

addresses identity protection. Section 6 mentions some related work and concludes.

Because of space constraints, this version of the paper omits much material that

appears in an extended version [3]: a discussion of the ambiguities and minor problems

that we found, a description and partial analysis of the protocol variant JFKi, a review

of the applied pi calculus, further material on identity protection and on DOS resistance,

a study of plausible deniability, details on our use of ProVerif, and proofs.

2

2 The JFK Protocol

The JFK protocol has been discussed in a series of five Internet Drafts [6], starting in

2001, and it is also described in a conference paper [5]. While our work is based on

all those documents, we tend to privilege the contents of the conference paper, since

it should have some permanence. We refer to that paper for additional material on the

protocol and its motivation. As indicated above, we focus on a variant called JFKr.

JFKr involves two principals that play the roles of an initiator and a responder. As

in many other protocols, these two principals wish to open a secure communication

channel, and they attempt to accomplish it by establishing a shared secret. This shared

secret serves as the basis for computing session keys. The two principals should asso-

ciate the shared secret with each other, verify each other’s identities, and also agree on

various communication parameters (for example, what sort of session keys to employ).

Attackers may eavesdrop, delete, and insert messages; they may also attempt to im-

personate principals [19]. Therefore, the communications between the initiator and the

responder are cryptographically protected. Informally, JFKr consists of the following

four messages:

Message 1 I → R : NI , xI

Message 2 R → I : NI , NR, xR, gR, tR
Message 3 I → R : NI , NR, xI , xR, tR, eI , hI

Message 4 R → I : eR, hR

where:

xI = g ˆdI xR = g ˆdR

tR = H{KR}(xR, NR, NI , IPI)

Ku = H{xR ˆdI}(NI , NR, u) for u = a, e, v

eI = E{Ke}(IDI , ID
′
R, saI , sI) eR = E{Ke}(IDR, saR, sR)

hI = H{Ka}(i, eI) hR = H{Ka}(r, eR)

sI = S{K−
I }(NI , NR, xI , xR, gR) sR = S{K−

R}(xR, NR, xI , NI)

Figure 1 summarizes the notations of this exchange.

The first pair of messages establishes a shared secret via a Diffie-Hellman exchange.

Each principal generates and communicates a fresh nonce Nz . Each principal also se-

lects or generates a secret exponent dz , and communicates the corresponding exponen-

tial xz = g ˆdz . Relying on the equation xR ˆdI = xI ˆdR, three independent shared

keys are derived from nonces and exponentials: Ka and Ke are used in Messages 3

and 4, while Kv is returned to each principal as the newly-established session secret.

The reuse of exponentials is allowed, with a trade-off between forward secrecy and ef-

ficiency; in any case, the freshness of nonces suffices to guarantee that the generated

shared secrets differ for all sessions.

Message 2 includes an authenticator cookie tR, keyed with a secret local to the
responder, KR. The responder expects to see this cookie in Message 3, and need not

perform any expensive cryptography or allocate resources until such a successful round-

trip with the initiator. Furthermore, after receiving Message 3, the responder can re-

member handling tR, so as to avoid expense in the event that tR is replayed.

3

z = I, R one of the two roles in the protocol: initiator or responder.

Nz random fresh nonce for the session.

dz Diffie-Hellman secret exponents.

xz = g ˆdz Diffie-Hellman exchange values (gi and gr in [5]).

g Diffie-Hellman group (possibly obtained from a previously received gR).

gR responder’s choice of group g and cryptographic algorithms (GRPINFOR in [5]).

tR authenticator cookie used by the responder against DOS.

KR responder’s secret hash key for authenticators tR (HKR in [5]).

u = a, e, v one of the three usages for keys: authentication, encryption, and main session secret.

Ku shared key obtained by a Diffie-Hellman computation, specialized for u.
E shared-key encryption function.

H keyed hash function for MACs (message authentication codes).

ez, hz encrypted payload messages and their MACs (protecting z’s identity and signature).
S public-key signature function.

sz signed nonces and exponentials.

K−
z private signature key for the principal playing role z.

IDz identity for the principal playing role z, and its public signature-verification key.
ID′

R “hint” of the responder identity, provided by the initiator.

IPI IP source address for the initiator (hashed in tR).

saz additional parameters for setting IP security associations (sa and sa′ in [5]).
A, B principals, taking part in the protocol (in either or both roles).

Fig. 1.Main notations

The second pair of messages provides authentication. Specifically, Messages 3 and 4

include encrypted signatures of the nonces, exponentials, and other material. The en-

cryptions protect identity information. The signatures can be interpreted as delegations

from the principals that control the signature keys (possibly users) to the protocol end-

points that control the exponents. Only transient protocol data is signed—not identities

or long-term keys associated with users. In this respect, the protocol is in tune with con-

cerns about plausible deniability that have appeared from time to time in this context.

The protocol specification, although clear, focuses on the messages exchanged in a

single successful protocol run. It does not say much on the local processing that the par-

ties perform, on the deployment of the protocol, and other subjects relevant for security.

For instance, it does not prescribe how principals should use the protocol (and espe-

cially what is the sharing of signing keys and exponentials); how messages should be

checked; and how the responder should manage state in order to resist DOS attacks. We

have reason to believe that implementations differ in some of these respects, sometimes

with unfortunate consequences. The protocol specification does however state several

security objectives. We discuss them and study them formally below.

3 A Model of JFK in the Applied Pi Calculus

In this section, we express JFKr in the applied pi calculus. This calculus is an extension

of the pi calculus with function symbols, for instance for tupling and for encryption,

that can be assumed to satisfy particular equations. (We refer to prior work [4] for its

syntax and semantics.) So we first select function symbols and an equational theory

4

M, T, U, V ::= Terms

N, K, k, x, y, z variable

c, n, s name

g, U ˆV Diffie-Hellman group and exponential

E{U}(T), D{U}(T) shared-key encryption and decryption

S{U}(T), V{U, V }(T), true public-key signature and verification

Pk(U) public key (and identity) from private key

H{U}(T) keyed cryptographic hash function

e, a, v, i, r constant tags for keyed-hash specialization

cons(V1, V2), 1(V1, V2), . . . , 4(V1, V2) constructors for pairs and formatted messages

Fcons
1 (T), Fcons

2 (T), F1
1(T), . . . , F4

2(T) selectors for pairs and formatted messages

∅, U.V empty set and set extension

RecoverKey(V), RecoverText(V) additional functions for the attacker

(g ˆy) ˆz = (g ˆz) ˆy Diffie-Hellman

V{Pk(k), S{k}(x)}(x) = true public-key signature verification

D{k}(E{k}(x)) = x shared-key decryption

Fn
i (n(x1, . . . , xi, . . .)) = xi projections for tuples (n = cons, 1, 2, 3, 4)

(∅.x).x = ∅.x idempotence of set extension

(x.y).z = (x.z).y commutativity of set extension

RecoverKey(S{k}(x)) = Pk(k) public key recovery from a signature (attacker)

RecoverText(S{k}(x)) = x signed text recovery from a signature (attacker)

Fig. 2. Grammar and equational theory for JFK

for modelling the messages of JFKr, then we discuss our representations for the IP

network, attackers, and principals, and assemble processes that represent configurations

of principals. We also outline how we program these processes in ProVerif.

An Equational Theory We use the grammar for terms and the equations of Figure 2.

These deal both with cryptographic operations and with auxiliary functions for con-

structing tags, pairs, formatted messages, and sets. (We have functions for constructing

sets, but not a set membership relation; instead, we let U ∈ V abbreviate V.U = V .)
The equations embody our (fairly standard) hypotheses on the primitives introduced

in Section 2. For instance, the keyed hash function H{ }() does not appear in any
equation, and in particular has no inverse; thus it represents a perfect one-way function.

More interestingly, exponentiation ˆ has no inverse, but an equation accounts for the

commutativity property used for establishing a shared secret. Some of the functions

and equations are not needed in the protocol itself, but may (in principle) weaken the

protocol for the benefit of an attacker: RecoverKey() and RecoverText() can be used
to extract information from signatures. We could further refine our theory by reflecting

known weaknesses of the underlying cryptographic algorithms or their interactions.

Syntax and Informal Semantics for Processes We recall the main notations for pro-

cesses in the applied pi calculus : 0 does nothing (and we typically omit it); P | Q is the

parallel composition of P and Q; !P behaves as an infinite number of copies of P run-

ning in parallel; νn.P makes a new name n then behaves as P ; if U = V then P else Q

5

is standard, with U = V depending on the equational theory. The input process c(x).P
is ready to input a message on channel c, then to run P with the actual message replaced

for the formal parameter x, while the output process c〈V 〉.P is ready to output mes-

sage V on channel c, then to run P . The process let {x1 = V1} | . . . | {xn = Vn} in P
is P with local variables x1, . . . , xn bound to V1, . . . , Vn, respectively. The active sub-

stitution {x1 = V1} | . . . | {xn = Vn} similarly defines x1, . . . , xn, but does not restrict

their scope; hence, the environment can use x1, . . . , xn as aliases for V1, . . . , Vn in its

computations. A context C[] is a process with a hole, and C[P] is the result of filling
C[]’s hole with P ; when is not under a guard, C[] is an evaluation context.

Labelled transitions P
a(V)−−−→ Q and P

νũ.a〈V 〉−−−−−→ Q represent interactions with the

environment—inputs and outputs, respectively. In both, a is a communication channel
and V a message. Transitions P → Q represent internal computation steps.

Syntactic Sugar We write if M then P instead of if M = true then P . We omit pair
constructors and parentheses for nested pairs, writing for instance H{K}(xR, NR, NI)
for H{K}(cons(xR, cons(NR, NI))). We use pattern matching on tuples as syntactic
sugar for the corresponding selectors, writing for instance c(1(=NI , xI)).P instead

of c(z).let {xI = F1
2(z)} in if z = 1(NI , xI) then P for some fresh variable z; this

process receives a message on channel c, matches it with 1(NI , T) for some subterm T ,
then runs P with T substituted for xI . We also define syntax for filtering duplicate

messages: !a(X)\V.C[if T fresh then P] stands for

νf.
(
f〈V 〉 | !a(X).C[f(s).(f〈s.T 〉 | if T /∈ s then P)]

)
where C[] is a context, X is a pattern, f is a fresh channel name, and s is a fresh
variable. We use the local channel f for maintaining a set V of previous values for the

term T . The arrival of a message may cause the addition of a particular T (which may

depend on variables bound in X) to this set, and the execution of P .

The Network and the Attacker In our model, all IP messages are transmitted on a free

pi calculus communication channel, c, which represents a public IP network in which
message contents serve for differentiating traffic flows. An arbitrary environment (an

arbitrary evaluation context) represents the attacker. This environment can interact with

other principals by inputs and outputs on any free channel, including c.
As a special case, we sometimes model a weaker, passive attacker that only eaves-

drops on messages but does not modify them. An attack step against a process P con-

sists in eavesdropping on a message sent by P , and amounts to a message interception
(formally, with an output label νũ.c〈V 〉) followed by a re-emission of the same mes-
sage (with an input label c(V)). We write P

νũ.c[V]−−−−−→ P ′ as a shorthand for the two

transitions P
νũ.c〈V 〉−−−−−→ c(V)−−−→ P ′.

Configurations of Principals Our model allows an arbitrary number of principals. Each

principal may run any number of sessions, as initiator and as responder, and may per-

form other operations after session establishment or even independently of the proto-

col. Only some of these principals follow the protocol. We are interested in the security

properties that hold for them.

6

For the present purposes, the essence of a principal lies in its ability to produce

signatures verifiable with its public key. Accordingly, we refer to each principal by

its public key, using variables IDA, IDB ,. . . for both identities and public keys. We

also associate the context PKA[] of Figure 3 with every principal A. This context
restricts the use of the signing key K−

A to the process in the context and it exports the

corresponding verification key IDA. Whenever we put a process R in this context, our

intent is that R never communicatesK−
A to the environment.

We let C range over sets of compliant principals—that is, principals that entirely del-
egate the use of their signing keys to JFKr. While some properties will obviously hold

only for compliant principals, the initiator and responder code do not assume knowledge

of C: indeed, compliant and non-compliant principals can attempt to establish sessions.
Our representation of a compliant principal A has two parts: an implementation of

JFKr, written S, and a “user process”, written PA. The user process defines any addi-

tional behavior, such as when protocol runs are initiated and what happens to the shared

secret Kv after each session establishment. While we define S below, we treat PA as

an abstract parameter, in the context that encloses S, possibly under the control of the
attacker. The user process interacts with S through the following control interface:

As initiator: PA sends a message init
A〈ID′

R, saI〉 to initiate a new session, with re-
sponder hint ID′

R and security association saI . When the protocol completes suc-

cessfully, S sends connectA〈IDB , ID′
R, saI , saR,Kv〉 to notify PA that the session

has been accepted, and that A now sharesKv with a principal with identifier IDB .

As responder: S sends acceptA〈IDB , ID′
R, saI , saR,Kv〉 to notify PA that it has ac-

cepted a session initiated by a principal with identifier IDB , parameters ID′
R, saI ,

saR and shared secretKv . To control who can initiate a session withA, S is param-
eterized by a set SA

I of acceptable initiator identities. (We do not need a set such as

SA
I at the initiator: after completion of the protocol, the initiator’s user process can

decide what to do with the new session depending on the responder identity in the

connect message.) For simplicity, SA
I and saR are fixed.

Thus, the interface between each principalA and JFKr consists of three communication
channels initA, acceptA, connectA plus a set of identities SA

I . These channels can be

restricted (with ν) in order to hide the interface from the environment. For instance, a
principal A that does not play the role of an initiator can be modelled easily by restrict-

ing communication on initA.

The Protocol Figure 3 shows our implementation of JFKr in the applied pi calculus.

It includes definitions of processes for each role: a single process (IA
0) for the initiator,

and two processes (RA
1 , RA

3) that do not share session state for the responder. For each

principalA, these replicated processes detail the tests performed on incoming messages,
interleaved with the computations on outgoing messages. The figure also includes the

definition of a configuration S: an assembly of an arbitrary but fixed set of compliant
principals C that potentially share an arbitrary but fixed pool of exponentials X .

The design of JFK allows reusing Diffie-Hellman exponents for several sessions,

principals, and roles, and does not impose a particular policy for changing them. For

each exponent, one can decide when to stop using that exponent in new sessions. For

7

IA
0 = !initA(ID′

R, saI). Initiator for each message init

νNI . create a fresh nonce

c〈1(NI , xI)〉. send Message 1

c(2(=NI , NR, xR, gR, tR)). wait for Message 2

let κI in compute DH shared keys (see below)

let {sI = S{K−
A}(NI , NR, xI , xR, gR)} in sign

let {eI = E{Ke}(IDA, ID′
R, saI , sI)} in encrypt

let {hI = H{Ka}(i, eI)} in compute MAC

c〈3(NI , NR, xI , xR, tR, eI , hI)〉. send Message 3

c(4(eR, hR)). wait for Message 4

if H{Ka}(r, eR) = hR then check MAC

let {IDR, saR, sR = D{Ke}(eR)} in decrypt

if V{IDR, sR}(NI , NR, xI , xR) then check signature

connect
A〈IDR, ID′

R, saI , saR, Kv〉 complete keying

RA
1 = !c(1(NI , xI)). Responder for each Message 1

νNR. create a fresh nonce

let {tR = H{KR}(xR, NR, NI)} in compute anti-DOS token

c〈2(NI , NR, xR, gR, tR)〉 send Message 2

RA
3 = !c(3(NI , NR, xI , xR, tR, eI , hI))\∅. Responder for each Message 3

if tR = H{KR}(xR, NR, NI) then check anti-DOS token

if tR fresh then accept token only once∏
x∈X if x = xR then branch on DH exponential

let κR in compute DH shared keys (see below)

if H{Ka}(i, eI) = hI then check MAC

let {IDI , ID′
R, saI , sI = D{Ke}(eI)} in decrypt

if IDI ∈ SA
I then authorize

if V{IDI , sI}(NI , NR, xI , xR, gR) then check signature

accept
A〈IDI , ID′

R, saI , saR, Kv〉. accept the session

let {sR = S{K−
A}(NI , NR, xI , xR)} in sign

let {eR = E{Ke}(IDA, saR, sR)} in encrypt

let {hR = H{Ka}(r, eR)} in compute MAC

c〈4(eR, hR)〉 send Message 4

S = DX

[∏
A∈C PKA

[
IA|RA

]]
Compliant principal configuration

IA =
∏

xI∈X IA
0 A as initiator

RA = νKR.(
∏

xR∈X RA
1 | RA

3) A as responder

PKA[] = νK−
A .({IDA = Pk(K−

A)} | []) A’s signing and verification keys

Dx[] = νdx.({x = g ˆdx} | []) DH secret d and exchange value x
DX [] = Dx1 [. . . Dxn []] whereX = {x1, . . . , xn} shared exponentials

κI =
∏

u=a,e,v{Ku = H{xR ˆdxI}(NI , NR, u)} key computations for I
κR =

∏
u=a,e,v{Ku = H{xI ˆdxR}(NI , NR, u)} key computations for R

Fig. 3. JFKr in the applied pi calculus

8

instance, an exponent may expire once the first session established using that expo-

nent terminates, so that discarding session keys prevents their later compromise. In our

model, all compliant principals may use any number of shared exponentials, in both

roles, for any number of parallel sessions. Results for configurations with less sharing

are immediate corollaries of ours.

The context Dx[] represents a Diffie-Hellman party, dx the corresponding secret

exponent, x the derived exchange value (the exponential), and g the group (the same
one for all compliant principals). The set X contains the exponentials shared by the

compliant principals. The contextDX [] consists of contextsDx[] for each x ∈ X . For
simplicity, according to the code, compliant principals never disclose exponents.

In contrast with actual implementations of JFK, our model treats abstractly several

aspects of the protocol. In particular, it uses an unambiguous format for all messages,

thereby assuming, for instance, that the wire format for messages does not leak ad-

ditional information, and that ill-formed messages are safely ignored. Furthermore, it

does not cover IP addressing, routing, and fragmentation concerns, the contents of the

security-association parameters saz , the handling of ID
′
R, the potential usage of several

groups g, aspects of caching, and error messages. We made such simplifications partly
by choice, partly by necessity; the resulting model remains quite informative and rich.

Script for Proof Automation We rely at least partially on ProVerif in most proofs. For

that purpose, we code JFK configurations (S in Figure 3) in the input syntax of ProVerif
(which is an ASCII syntax for the applied pi calculus), specify the properties to prove,

and simply run ProVerif. The correctness of these proofs relies on the theory devel-

oped in prior work ([7,1] for secrecy, [8] for correspondence assertions, [2] for some

extensions). Additional details on ProVerif and our script appear in the full paper [3].

The script differs superficially from S in that it gives an interface to the adversary that
enables the creation of compliant principals (and provides their identities and control

interfaces) and of shared exponents (and provides their exponentials). These unfoldings

are best omitted in the statements of theorems. For a given configuration S, one can ap-
ply an evaluation context to the process defined in the script so that the resulting process

becomes observationally equivalent to S after exporting the exponentials, the principal
identities, and the control channels initA, acceptA, and connectA.

4 Resistance to Denial-of-Service Attacks

We first consider the security mechanisms at the early stages of the protocol, before

mutual authentication. These mechanisms aim at hardening JFK against certain DOS

attacks relevant in IP security. Our formal analysis relies on an understanding of the

costs incurred at these stages: we characterize the occurrences of operations deemed

expensive, without a formal measure of their cost.

In JFK, protocol-based DOS is a concern mostly for the responder. By design, until

the computation of κR, the processing of Messages 1 and 3 is fast and involves almost

no state. From this point, the protocol performs CPU-intensive operations (including

a Diffie-Hellman exponentiation and two public-key operations), and allocates some

session state.

9

Since in general, in any protocol, the processing of a message depends on the con-

tents of previously received messages, each principal may maintain some local state for

each session of a protocol. This state can be problematic for servers that are willing to

start a session whenever they receive a first message, before adequate authentication.

Indeed, an attacker may send (or redirect) first-message traffic to the server, filling its

buffers, and eventually causing valid session attempts to be dropped. This concern mo-

tivates a common protocol transformation: instead of keeping state for every session in

progress, one or both parties MAC (or encrypt) the state, append the result to outgoing

messages, and check (or decrypt) the corresponding values in later incoming messages

before processing them. Next, we show that this transformation is correct (i.e., preserves

equivalence) for a general class of protocols coded as processes.

We relate a sequential implementation of a protocol to a more complex but stateless

implementation, using the observational-equivalence relation,≈. This relation is closed
by application of evaluation contexts, which can represent active attackers.

Lemma 1. Let C[] be a context that binds at most the variables x̃2, let K be a fresh

name, let P = !c(x3), and

R◦
2 = νN.νt.c〈M2〉.?c(3(=t,=N,=x̃2, x̃3)).R4

R2 = νN.let {t = H{K}(N, x̃2)} in c〈M2〉
R3 = !c(3(t, N, x̃2, x̃3))\ ∅.if t = H{K}(N, x̃2) then if t fresh then R4

We have C[R◦
2] | P ≈ νK.(C[R2] | R3) | P .

In R◦
2, we rely on syntactic sugar for pattern-matching with a retry until a message

that matches the pattern X is received, writing ?c(X).R for νl.(l〈〉 | !c(X).l().R).
(In our automated proofs, we need to use an equivalent but more verbose encoding:

νl.(!c(X).l〈x̃〉 | l(x̃).R), where x̃ collects the variables bound in X .)

Informally, N, x̃2 represents the state of the protocol at the end of R2 that is used

later in R4, M2 represents a message carrying (at least) N and t, and x̃3 represents

new data received in Message 3. The presence of the same state N, x̃2 in the message

received in R3 is checked using the authenticator t. The inclusion of a fresh nonce N
guarantees that all generated authenticators are different. (In R◦

2, the generation of a

fresh t and the matching =t do not serve any functional purpose; they are performed
only so that the two implementations of the protocol behave similarly.) The additional

process P is necessary to account for the possibility of receiving a message x3 and

discarding it after a failed test. The lemma is reminiscent of classical replication laws in

process calculi, such as !(Q2 | !Q3) ≈ !Q2 | !Q3, since R◦
2 and R3 contain replications

and C[] typically will.
The next lemma applies this protocol transformation to JFKr. It relates our main

model S (see Figure 3), which features a stateless responder till reception of a Mes-
sage 3 with a valid token, to a simplified, linear model S◦. The lemma enables us to
prove properties of JFKr preserved by ≈ (such as trace properties) on S◦ instead of S.

10

Lemma 2. We have S◦ ≈ S , where S◦ is S after replacing RA
1 | RA

3 in each RA by

R◦A
1 = !c(1(NI , xI)).νNR, tR.c〈2(NI , NR, xR, gR, tR)〉.

?c(3(=NI ,=NR, xI ,=xR,=tR, eI , hI)).
let κR in . . . (as in RA

3)

Our next theorem expresses that the responder commits session-specific resources

only once an initiator has established round-trip communication, that is, sent a Mes-

sage 1, received a Message 2, and returned a Message 3 with matching nonces. This
property helps because the responder controls the emission of tokens and can cheaply

invalidate old ones by rekeyingKR, and because a “blind” attacker (weaker than a typ-

ical Needham-Schroeder attacker [19]) may send Messages 1 with fake IP addresses,
but then may not be able to eavesdrop on the corresponding Messages 2.

Theorem 1 (Protection from DOS). Let A ∈ C, and let S$ be S with an additional

output $〈NI , NR〉 before the Diffie-Hellman computation κR in RA
3 . For any trace

S$
η−→ S ′, for each output $〈NI , NR〉, there are distinct, successive actions c(1(NI ,)),

c〈2(NI , NR, , ,)〉, and c(3(NI , NR, , , , ,)).

The additional output on $ serves as a marker for the start of expensive processing
(public-key operations and session-state allocation). The theorem formulates “round-

trip authentication” as an injective correspondence between actions. The correspon-

dence depends on the authenticator; we prove it by applying a variant of Lemma 2 to

obtain an equivalent, linear protocol, and invoking ProVerif on that protocol. In incor-

rect interpretations of JFKr, Theorem 1 is false, and manyMessages 3 may be processed

for the same authenticator [3].

5 Core Security: Secrecy and Authenticity

Next, we consider session-key secrecy and mutual authentication. Let S be a JFKr con-
figuration with compliant principals C sharing exponentials X . We study arbitrary runs

of the protocol by examining transitions S η−→ S ′, where η is an arbitrary sequence of
labels. In these labelled transitions, we omit internal steps→. Informally, S ′ represents
any reachable state of the configuration in the presence of an attacker that controls both

the low-level IP network (c) and the control interfaces for the principals in C.
The following theorem characterizes runs of the protocol that involve two compliant

principals, A and B, in terms of what can be observed by an eavesdropper. We write
[1,2,3]−−−−→ for the eavesdropped communications

νNI .[1(NI ,xI)]−−−−−−−−−→ νNR tR.[2(NI ,NR,xR,gR,tR)]−−−−−−−−−−−−−−−−−−→ νeI hI .[3(NI ,NR,xI ,xR,tR,eI ,hI)]−−−−−−−−−−−−−−−−−−−−−→
and

[4]−→ for
νeR hR.[4(eR,hR)]−−−−−−−−−−−→. We also write ϕ3 and ϕ4 for the frames that map the vari-

ables NI , NR, tR, eI , hI and NI , NR, tR, eI , hI , eR, hR, Kv , respectively, to distinct

restricted names. (A frame is basically an active substitution with restricted names.)

These frames represent the simplified “net effect” of the runs
[1,2,3]−−−−→ and

[1,2,3]−−−−→ [4]−→
(including the passing ofKv). Next we examine sessions between compliant principals

starting from any reachable state S ′ of the protocol.

11

Theorem 2 (Secrecy for Complete Sessions). Assume S η−→ S ′. For any principals
A,B ∈ C, exponentials xI , xR ∈ X , and terms ID′

R, saI , there exists S3 such that

S ′ initA(ID′
R,saI)−−−−−−−−→ [1,2,3]−−−−→ S3

and either (i) IDA ∈ SB
I and

S3
νKv.acceptB〈IDA,ID′

R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−−−−→ [4]−→ connectA〈IDB ,ID′
R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−→≈ S ′ | ϕ4

or (ii) IDA (∈ SB
I and S3 ≈ S ′ | ϕ3.

This theorem first expresses the functioning of the protocol, with two normal outcomes

depending on IDA ∈ SB
I ; the first disjunct is for acceptance, the second for rejection.

It also uses observational equivalence to give a simple, abstract characterization of the

protocol outcomes: we are (apparently) back to the state of the protocol just before the

session began, S ′, except for ϕ3 and ϕ4 which export variables bound to plain names

(νN.{x = N}), our representation of independent, fresh values in the pi calculus. From
the viewpoint of an attacker that can eavesdrop on c and communicate on control in-
terfaces, the intercepted message fields and the session key appear to be fresh, inde-

pendent names, rather than computed values. In particular, the attacker can learn Kv

only through the control interfaces, and eI and eR leak nothing about their encrypted

contents. Furthermore, the equivalences ensure that the session does not depend on (or

affect) any other session in S ′. Although the statement of the theorem deals only with a
(temporarily) passive attacker, its combination with Theorem 4 (below) does cover all

cases of complete sessions.

We also have complementary authentication properties, expressed as correspon-

dence properties on control actions (that is, messages on the control interfaces), with an

active attacker.

Theorem 3 (Authenticity for Control Actions). Assume S η−→ S ′. The actions in η
have the following properties:

1. For each accept
B〈IDA, ID′

R, saI , saR,Kv〉, we have IDA ∈ SB
I and, if A ∈ C,

there is a distinct initA(ID′
R, saI).

2. For each connect
A〈IDB , ID′

R, saI , saR,Kv〉 there is a distinct initA(ID′
R, saI) and,

if B ∈ C, there is a distinct acceptB〈IDA, ID′
R, saI , saR,Kv〉.

The proof of these properties relies on ProVerif. For Property 1, we analyze the lin-

ear variant of JFKr, then extend the result to JFKr by Lemma 2; in contrast, the direct

automated analysis of JFKr yields only a weaker, non-injective correspondence, be-

cause ProVerif does not keep track of the linearity enforced by the authenticator cache.

ProVerif also yields proofs of these properties for variants of the protocol—with or

without sharing of exponentials, for JFKr and for JFKi.

The next theorem also deals with an active attacker. It says that, whenever a trace

includes a control message connect
A〈IDB , . . . 〉 for someA,B ∈ C, the trace essentially

contains a normal successful run of the protocol with an eavesdropper, as described

in Theorem 2. The hypotheses exclude internal communication on c; this assumption
means that the attacker sees all messages on c, and is convenient but not essential.

12

Theorem 4 (Authenticity for Complete Sessions). Let A,B ∈ C and assume

S η−→ connectA〈IDB ,ID′
R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−→ S ′

without internal communication steps on c, and with fresh, distinct exported variables.

1.
η−→ contains a series of transitions that match

initA(ID′
R,saI)−−−−−−−−→ [1,2,3]−−−−→ νKv.acceptB〈IDA,ID′

R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−−−−→ [4]−→
in the same order, except possibly for argument xI in the first input on c and for
argument tR in the second input and third output on c.

2. Let η′ be η after erasure of these transitions. We have S | ϕ4
η′
−→≈ S ′.

We use ProVerif to show the first point of this theorem, via Lemma 2.

Theorem 3 is simpler and more abstract than Theorem 4, as it deals with the in-

terface of the protocol, through control actions. Theorem 4 is more complex, as it ex-

presses properties on both control actions and lower-level IP messages exchanged by the

protocol. These properties imply that certain protocol inputs match previous protocol

outputs, so these inputs are authentic. In general, we would not expect an exact match

of all message fields (even if such matches facilitate a formal analysis): some fields are

not authenticated. Here, the absence of authentication of xI in the first message weak-

ens identity protection [3]. The absence of authentication of tR by the initiator seems
harmless, inasmuch as tR is used only by R.

Perfect Forward Secrecy As a corollary of Theorems 4 and 2, the session key Kv , ex-

ported in the control actions, is equivalent to a variable bound to a fresh, independent

name, since ϕ4 contains νN.{Kv = N}. Hence, up to observational equivalence, Kv

is syntactically independent from S and the values intercepted by the attacker. As pre-
viously discussed [4], this provides a characterization of perfect forward secrecy for the

session key. We obtain this property even with our liberal reuse of exponentials. We

also derive a more specific (but still comforting) property that Kv is distinct from any

key established in another session of the protocol.

Independently, ProVerif also shows that the key Kv exchanged between two com-

pliant principals remains secret—that is, here, the adversary cannot compute it—even

if we give the long-term secret keysK−
A of all principals to the attacker after the end of

the protocol run. (Similarly, ProVerif presupposes, then verifies, that the environment

never obtains signing keysK−
A for A ∈ C or Diffie-Hellman secrets dx for x ∈ X .)

Identity Protection We can rely on observational equivalence also for identity protec-

tion. The intercepted variables defined by ϕ3 and ϕ4 are independent from IDA, ID
′
R,

and IDB ; this property is a strong privacy guarantee for sessions between compliant

principals. Further guarantees can be obtained with particular hypotheses (see [11]).

For instance, if all identities in SB
I are of the form IDA for some A ∈ C (that is, B does

not accept sessions with the attacker) and there is no input on initB (that is, B is only a

responder) then, using Theorems 4 and 2, we easily check that the identity IDB occurs

only in outputs on connectA and otherwise cannot be observed by an active attacker.

We can prove additional identity-protection properties, in some cases with ProVerif; on

the other hand, we have also found some limitations in identity protection [3].

13

6 Conclusion

Despite a substantial body of work on the formal analysis of security protocols, and

despite much interest in IKE and related protocols, it seems that neither IKE nor its suc-

cessors has been the subject of an exhaustive analysis until now. The paper that presents

JFK argues informally about some of its core properties, and calls for a formal analysis.

Recent work by Datta et al. explores how the STS protocol, two JFK variants, and the

core of IKE can be derived by successive refinements [9,10]. In particular, it isolates

the usage of authenticators and discusses the properties of JFKr (without however pre-

cise claims or proofs). Further afield, the literature contains partial but useful machine-

assisted verifications of IKE and Skeme (a protocol that influenced IKE) [17,7,8], and a

framework for the study of DOS [18]. More broadly, the literature contains several for-

mal techniques for protocol analysis and many examples (e.g., [14,16,20,21,15]). While

a number of those techniques could potentially yield at least partial results on JFK, we

believe that the use of the applied pi calculus is particularly appropriate. It permits a

rich formalization of the protocol, with a reasonable effort; the formulation of some

of its properties via process equivalences and others in terms of behaviors; and proofs

(sometimes automatic ones) that rely on language-based methods.

We regard the present analysis of JFK as an important case study that goes be-

yond what we have previously attempted, first because JFK is an attractive and intricate

“state-of-the-art” protocol of possible practical impact (through its influence on IKEv2

and other protocols), because JFK tightly packages many ideas that appear elsewhere

in the field, and also because our analysis explores properties that are central to JFK

but that are not often, if ever, explained rigorously. Furthermore, as noted in the in-

troduction, this case study contributes to the development of ideas and results for the

specification and verification of security protocols that should be useful beyond the

analysis of JFK.

An obvious next problem is the analysis of IKEv2. We have not undertaken it (in-

stead or in addition to the analysis of JFK) because IKEv2 is relatively recent and, at the

time of this writing, it continues to evolve, with influence from JFK and other sources.

At present, JFK and its specification seem inherently more self-contained and inter-

esting than IKEv2. On the other hand, there seems to be substantial awareness of the

benefits of formal analysis in and around the IETF, so one may look forward to rigorous

studies of IKEv2 and other significant protocols.

Acknowledgments We are grateful to Ran Canetti and Angelos Keromytis for in-

formation on JFK, to John Mitchell for information on his research on refinement, to

Véronique Cortier for comments on a draft of this paper, and to Michael Roe and Dieter

Gollmann for early discussions on this work. Martı́n Abadi’s work was partly done at

Microsoft Research, Silicon Valley, and it was also partly supported by the National

Science Foundation under Grants CCR-0204162 and CCR-0208800.

References

1. M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic pro-

grams. In 29th ACM SIGPLAN - SIGACT Symposium on Principles of Programming Lan-

14

guages (POPL’02), pages 33–44, Jan. 2002.

2. M. Abadi and B. Blanchet. Computer-assisted verification of a protocol for certified email.

In Static Analysis, 10th International Symposium (SAS’03), volume 2694 of LNCS, pages

316–335. Springer-Verlag, June 2003.

3. M. Abadi, B. Blanchet, and C. Fournet. Just fast keying in the pi calculus. Manuscript, avail-

able from http://www.di.ens.fr/∼blanchet/crypto/jfk.html, Dec. 2003.
4. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’01),

pages 104–115, Jan. 2001.

5. W. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. Ionnidis, A. Keromytis, and O. Reingold.

Efficient, DoS-resistant, secure key exchange for internet protocols. In 9th ACM Conference

on Computer and Communications Security (CCS’02), pages 48–58, Nov. 2002.

6. W. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. Ionnidis, A. Keromytis, and O. Reingold. Just

fast keying (JFK). IETF Internet Draft draft-ietf-ipsec-jfk-04.txt, July 2002.

7. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In 14th IEEE

Computer Security Foundations Workshop (CSFW-14), pages 82–96, June 2001.

8. B. Blanchet. From secrecy to authenticity in security protocols. In Static Analysis, 9th

International Symposium (SAS’02), volume 2477 of LNCS, pages 342–359. Springer-Verlag,

Sept. 2002.

9. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for security proto-

cols and its logical formalization. In 16th IEEE Computer Security Foundations Workshop

(CSFW-16), pages 109–125, July 2003.

10. A. Datta, J. C. Mitchell, and D. Pavlovic. Derivation of the JFK protocol. http://www.

stanford.edu/∼danupam/composition.ps, 2002.
11. C. Fournet and M. Abadi. Hiding names: Private authentication in the applied pi calcu-

lus. In Software Security – Theories and Systems. Mext-NSF-JSPS International Symposium

(ISSS’02), volume 2609 of LNCS, pages 317–338. Springer-Verlag, Jan. 2003.

12. D. Harkins and D. Carrel. RFC 2409: The Internet Key Exchange (IKE). http://www.

ietf.org/rfc/rfc2409.txt, Nov. 1998.

13. Internet Key Exchange (IKEv2) Protocol. IETF Internet Draft at http://www.ietf.

org/internet-drafts/draft-ietf-ipsec-ikev2-11.txt, Oct. 2003.

14. R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis.

Journal of Cryptology, 7(2):79–130, Spring 1994.

15. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework

for protocol analysis. In Fifth ACM Conference on Computer and Communications Security

(CCS’98), pages 112–121, 1998.

16. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In

Tools and Algorithms for the Construction and Analysis of Systems, volume 1055 of LNCS,

pages 147–166. Springer-Verlag, 1996.

17. C. Meadows. Analysis of the Internet Key Exchange protocol using the NRL protocol ana-

lyzer. In IEEE Symposium on Security and Privacy, pages 216–231, May 1999.

18. C. Meadows. A cost-based framework for analysis of denial of service networks. Journal of

Computer Security, 9(1/2):143–164, 2001.

19. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks

of computers. Communications of the ACM, 21(12):993–999, Dec. 1978.

20. L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of

Computer Security, 6(1–2):85–128, 1998.

21. F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security

protocol correct? In IEEE Symposium on Security and Privacy, pages 160–171, May 1998.

15

