Advertisement

AUTOMATIC VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS

Hubert Comon-Lundh LSV, CNRS INRIA project SECSI École Normale Supérieure de Cachan comon@lsv.ens-cachan There is a grant programme for master/PhD students at ENS Cachan

Deadline for applications: Feb 15th, 2005

Look at ENS Cachan web pages www.ens-cachan.fr.

Cimpa school, Feb 2005

2-Automatic Verification of Cryptographic Protocols

1-Automatic Verification of Cryptographic Protocols

SUMMARY OF THE LECTURES

Part 0: introduction Part 1:local theories Part 2: protocols Part 3: algebraic properties

Cimpa school, Feb 2005

Part 0 Introduction

AUTOMATIC VERIFICATION

CRYPTOGRAPHIC PROTOCOLS

Why automatic ?

- Verification of many small variants of a protocol. (Nonce implementation, memory constraints, bandwidth constraints,...)
- Refine the model: include more properties of the primitives, depending on the encryption algorithms (e.g. malleability, encryption and decryption commute... See F. Morain's lecture).

Alternative: use machine assisted proofs Paulson 97 - 04.

Cimpa school,	Feb	2005
---------------	-----	------

5-Automatic Verification of Cryptographic Protoco

THE OPTIMISTIC APPROACH

- ProVerif (See C. Fournet's lecture)
- The EVA project: LSV, VERIMAG, TRUSTED LOGIC.
- Many others CAPSL, ...

Many papers and results, using various techniques: Clauses, Set constraints, Tree automata,... (See Ramanujam lecture)

Weaknesses:

Cimpa school, Feb 2005

- A failure doesn't mean that there is an attack
- A success means no attack, assming some hypothesis on the cryptographic primitives. Difficult to take algebraic properties into account.
- There is a huge variety of security properties, whose proofs can hardly be automatized

THE TWO APPROACHES

The security problem is Π_1^1 -hard: there is no decision and even no semi-decision algorithm.

This result holds even under strong additional hypotheses (see Ramanujam lecture).

The two approaches:

Pessimistic : try to find an attack

Optimistic : use upper approximations, trying to find a proof.

6-Automatic Verification of Cryptographic Protocols

BOUNDED NUMBER OF SESSIONS

We fix the number of protocol instances; no guarantee that the protocol is secure for more instances.

M. Rusinowitch and M. Turuani, 2001: security is co-NP-complete for a bounded number of sessions, *In the Dolev-Yao model* (perfect cryptography)

BOUNDED NUMBER OF SESSIONS

We fix the number of protocol instances; no guarantee that the protocol is secure for more instances.

Cimpa school, Feb 2005

9-Automatic Verification of Cryptographic Protocols

BOUNDED NUMBER OF SESSIONS

We fix the number of protocol instances ; no guarantee that the protocol is secure for more instances.

M. Rusinowitch and M. Turuani, 2001: security is co-NP-complete for a bounded number of sessions, *In the Dolev-Yao model* (perfect cryptography)

The PROUVÉ project: LSV, VERIMAG, LORIA, FRANCE TELECOM, CRIL

Case studies: Electronic money, Vote. Properties are not reduced to secrecy and authentication.

Many tools based on model checking, boundind the number of sessions and often also the instances: CSP/FDR, ATHENA, CASRUL, AVISPA, ...

BOUNDED NUMBER OF SESSIONS

We fix the number of protocol instances ; no guarantee that the protocol is secure for more instances.

M. Rusinowitch and M. Turuani, 2001: security is co-NP-complete for a bounded number of sessions, *In the Dolev-Yao model* (perfect cryptography)

The PROUVÉ project: LSV, VERIMAG, LORIA, FRANCE TELECOM, CRIL

Case studies: Electronic money, Vote. Properties are not reduced to secrecy and authentication.

Cimpa school, Feb 2005

9-Automatic Verification of Cryptographic Proto

EXAMPLES OF PROTOCO	LS	GOALS OF	THE LECTURES
TMN: 1. $A \rightarrow S$: $A, B, \{K_A\}_{pub(S)}$ 2. $S \rightarrow B$: A 3. $B \rightarrow S$: $A, \{K_B\}_{pub(S)}$ 4. $S \rightarrow A$: $B, K_B \oplus K_A$ NS: 1. $A \rightarrow B$: $\{\langle A, N_A \rangle\}_{pub(B)}$ 2. $B \rightarrow A$: $\{\langle N_A, N_B \rangle\}_{pub(A)}$ 3. $A \rightarrow B$: $\{N_B\}_{pub(B)}$		 Design proof strategies whi Refutation complete complete for a fixed nur work for various intrude can take into account se cryptographic primitives 	ch are nber of sessions r theories everal algebraic theories for
SPORE – the protocol library			
//www.lsv.ens-cachan.fr/sp	ore/		
Cimpa school, Feb 2005	11-Automatic Verification of Cryptographic Protocols	Cimpa school, Feb 2005	10-Automatic Verification of Cryptographic Protocol
SUMMARY OF THE LECTURES	(CNTD)	SUMMARY C	OF THE LECTURES
Part 3: algebraic properties 1. Basic on rewriting and narrowing		Part 0: introduction	

- 2. Another local theory
- 3. Computing variants
- 4. Locality and variants.

13-Automatic Verification of Cryptographic Protocols

4. Exercises
Part 2: proof normalization

1. Tractable Decision problems HORNSAT

Protocols rules as intruder oracles
 A normal proof result in the simplest case

Rusinowitch and Turuani, 20016. Extensions to other intruder theories

2. Tractable inference systems: LOCAL THEORIES. Mc Allester 93

1. Protocols: A quick reminder of the trace semantics

3. Examples of local theories: the Dolev-Yao intruder deduction systems

2. Proof systems; the particular case of a bounded number of sessions

5. co-NP completeness in the case of a bounded number of sessions.

THE HORNSAT DECISION PROBLEM

Data : a finite set of propositional Horn clauses : there is at most one positive litteral in each clause

Question : is the set of clauses satisfiable ?

Theorem 1 HORNSAT is decidabable in linear time and is PTIME-complete

Many equivalent problems (under constant space reductions):

- AND/OR graph reachability
- Tree automata emptiness

PART 1: LOCAL THEORIES

Cimpa school, Feb 2005

14-Automatic Verification of Cryptographic Protoco

PROOF OF THE THEOREM (I)

Reduce first the problem to a fixed point computation, separating the purely negative clauses from the others.

Assume the data are organized in two arrays:

- A_1 is indexed by propositional variables and $A_1[P] = (s(P), LC(P))$ where s(P) is a status flag and LC(P) is the list of clauses in which P occurs negatively.
- A_2 is indexed by clauses and $A_2[C] = (n(C), H(C))$ where n(C) is an integer, initially set to the number of distinct negative litterals in C. H(C) is the litteral in the head.

PROOF OF THE THEOREM (I)

Reduce first the problem to a fixed point computation, separating the purely negative clauses from the others.

Cimpa school, Feb 2005

15-Automatic Verification of Cryptographic Protocol

Proof of Theorem (II)		Proof of the theorem (I)
First scan A ₂ once: for every clause do		Reduce first the problem to a fixed point computation, separating the purely negative clauses from the others.
if $n(C) = 0$ then		Assume the data are organized in two arrays:
let $P = H(C)$ in if $s(P) = 0$ then push P on σ ; set $s(P)$ to 1		• A_1 is indexed by propositional variables and $A_1[P] = (s(P), LC(P))$ where $s(P)$ is a status flag and $LC(P)$ is the list of clauses in which P occurs negatively.
		• A_2 is indexed by clauses and $A_2[C] = (n(C), H(C))$ where $n(C)$ is an integer, initially set to the number of distinct negative litterals in C . $H(C)$ is the litteral in the head.
		The array computation can be done in linear time. (Note: numbers can be written in base 1).
		In addition, we consider a list M , which is initially empty (the least model) and a stack σ .
Cimpa school, Feb 2005	17-Automatic Verification of Cryptographic Protocols	Cimpa school, Feb 2005 16-Automatic Verification of Cryptographic Protocol
INFERENCE SYSTEMS		Proof of the theorem (III)
		while σ is not empty do
		Pop a proposition P from σ
		For every $C\in LC(P),$
		decrement $n(C)$
		$ ext{if} n(C) = 0$ then
		let $P = H(C)$ in if $s(P) = 0$ then
		push P on σ
		set $s(P)$ to 1.
		Exercise 1 (level 2): show that every variable is pushed at most once on the stack. Conclude that the algorithm works in linear time (assuming decrementation can be done in constant time).

An inference rule r has order $k \in \mathbb{N}$ if there are expressions e_1, \ldots, e_k such that each e_i is a subexpression of some formula in r and every (meta)-variable of r occurs in some e_i .

The inference rule

 $\frac{T \vdash k^{-1} \quad T \vdash \{x\}_k}{T \vdash x}$

has order 1 (and any larger integer)

ORDER OF AN INFERENCE RULE

An inference rule r has order $k \in \mathbb{N}$ if there are expressions e_1, \ldots, e_k such that each e_i is a subexpression of some formula in r and every (meta)-variable of r occurs in some e_i .

The inference rule

$$\frac{T \vdash k^{-1} \quad T \vdash \{x\}_k}{T \vdash x}$$

has order

Cimpa school, Feb 2005

21-Automatic Verification of Cryptographic Protoco

TRACTABILITY OF LOCAL INFERENCE SYSTEMS

The size of a term (resp. a set of terms) is the number of its distinct subterms.

Theorem 2: If

Cimpa school, Feb 2005

- F is computable in linear time (resp. polynomial time),
- I is F-local and
- \checkmark every rule as order k

then, given a finite set of formulas S and a formula ϕ , we can decide whether $S \vdash_{\mathcal{I}} \phi$ in time $O(n^k)$. (resp.), where $n = |S| + |\phi|$.

Proof: Compute $T = F(S \cup \{\phi\})$, each of them is a propositional variable. Compute for each inference rule the $O(n^k)$ Horn clauses obtained by solving the k matching equations for every $t \in T$. Use HORNSAT

TRACTABILITY OF LOCAL INFERENCE SYSTEMS

The size of a term (resp. a set of terms) is the number of its distinct subterms.

Theorem 2: If

- \blacksquare F is computable in linear time (resp. polynomial time),
- I is F-local and
- \checkmark every rule as order k

then, given a finite set of formulas S and a formula ϕ , we can decide whether $S \vdash_{\mathcal{I}} \phi$ in time $O(n^k)$. (resp.), where $n = |S| + |\phi|$.

21-Automatic Verification of Cryptographic Proto

EXERCISE 2 (LEVEL 1)

Theorem 2 essentially assumes that there are no side conditions in the inference rules. What must be changed if we allow side conditions ?

The size of a term (resp. a set of terms) is the number of its distinct subterms.

Theorem 2: If

- *F* is computable in linear time (resp. polynomial time),
- \checkmark *I* is *F*-local and
- \blacksquare every rule as order k

then, given a finite set of formulas S and a formula ϕ , we can decide whether $S \vdash_{\mathcal{I}} \phi$ in time $O(n^k)$. (resp. $O(n^{m \times k})$), where $n = |S| + |\phi|$.

Proof: Compute $T = F(S \cup \{\phi\})$, each of them is a propositional variable. Compute for each inference rule the $O(n^k)$ Horn clauses obtained by solving the k matching equations for every $t \in T$. Use HORNSAT

Cimpa school, Feb 2005

22-Automatic Verification of Cryptographic Protoco

Dolev-Yao rules are F-local

Theorem Let F(T) be the set of subterms of T. Then the set of Dolev-Yao rules is F-local.

DOLEV-YAO LIKE THEORIES

$\mathcal{F} \text{ be } pub(_), priv(_), \{_\}_, <_,_$	$_>, [_]_$ and constants.
---	----------------------------

x y	$x \ y$	$x \ y$
$\langle x, y \rangle$	$\{x\}_y$	$[x]_y$
		[]
$\langle x, y \rangle$	$\langle x, y \rangle$	$[x]_y y$
x	y	x
	~	
$\{x\}_{pub(y)} priv(y)$	<i>x</i>	
x	pub(x)	

Cimpa school, Feb 2005

23-Automatic Verification of Cryptographic Protocols

LOCALITY PROOF (CNTD)

If the last inference rule is a construction rule, use induction hypothesis.

Π_1		Π_n
t_1		t_n
f(t	1,	(t_n)

Dolev-Yao rules are F-local

Theorem Let F(T) be the set of subterms of T. Then the set of Dolev-Yao rules is F-local.

We divide the rules into two sets: the *constructor rules*, which build new terms and the *decomposition rules*, which consist of the other 5 rules. We prove, by induction on the length of a minimal size proof that, if $T \vdash_{\mathcal{I}} t$ then

- 1. if the last rule is a construction rule, then all terms in the proof are in $F(T) \cup F({t})$
- 2. otherwise, all terms in the proof are in F(T).

In case the proof contains no inference step, $t \in T$ and all terms in the proof are in F(T).

Cimpa school, Feb 2005

25-Automatic Verification of Cryptographic Protocol

LOCALITY PROOF (CNTD)

If it is a symmetric decryption:

The last rule of Π_1 is not a construction. We use induction hypothesis twice and closure of F(T) by subterm.

LOCALITY PROOF (CNTD)

If the last inference rule is a construction rule, use induction hypothesis.

Π_1		Π_n
t_1		t_n
f(t	$_{1}, \ldots,$	(t_n)

If it is unpairing, then the last rule of II cannot be a pairing rule:

$\Pi_1 \Pi_2$	
\overline{u} v	
$\langle u, v \rangle$	
u	

is not minimal in size: Π_1 is a shorter proof of the same term. Then we use induction hypothesis.

The other unpairing rule yields a similar proof.

Cimpa school, Feb 2005

26-Automatic Verification of Cryptographic Protocols

LOCALITY PROOF (CNTD)

If it is a symmetric decryption:

$$\frac{\frac{\Pi_1}{[u]_v} \frac{\Pi_2}{v}}{\frac{u}{u}}$$

The last rule of Π_1 is not a construction. We use induction hypothesis twice and closure of F(T) by subterm.

If it is an asymetric decryption of $\{u\}_{pub(v)}$:

$$\frac{\Pi_1}{\{u\}_{\mathsf{pub}(v)}} \quad \frac{\Pi_2}{\mathsf{priv}(v)}$$

The last rule of Π_1 is not a construction rule. By induction hypothesis, all terms in Π_1 belong to F(T). In particular, $u, pub(v) \in F(T)$. Next, there is no construction rule yielding priv(v), hence apply the induction hypothesis.

Cimpa school, Feb 2005

27-Automatic Verification of Cryptographic Protocols

29-Automatic Verification of Cryptographic Protocols

MORE EXERCISES

 $\frac{\{x\}_{\mathsf{priv}(y)} \quad \mathsf{pub}(y)}{x}$

Show that this yields also a local theory (possibly using another function F)

Exercise 5 (level 3)

Assume we add the following rule, which is assumed to model some kind of cipher-block chaining property:

 $\frac{\{\langle x, y \rangle\}_z}{\{x\}_z}$

Again, show that we get a local theory. ^{Cimpa school, Feb 2005}

LOCALITY PROOF (CNTD)

• If it is a symmetric decryption: $\frac{\prod_{1}}{\lfloor u \rfloor_{v}} \frac{\prod_{2}}{v}$ The last rule of \prod_{1} is not a construction. We use induction hypothesis twice and closure of F(T) by subterm. • If it is an asymetric decryption of $\{u\}_{pub(v)}$: $\frac{\prod_{1}}{\{u\}_{pub(v)}} \frac{\prod_{2}}{priv(v)}$ uCimpa school, Feb 2005

PASSIVE ATTACKS ARE EASY TO FIND

Corollary Deducibility can be decided in linear time for the Dolev-Yao rules.

Exercise 3 (level 2) In early papers, the following procedure was proposed for the intruder deduction problem: given t_1, \ldots, t_n, t

- 1. First decompose as much as possible t_1, \ldots, t_n : compute the fixed point by decryption and unpairing.
- 2. Next try to build the term t using encryption and pairing from the set obtained in the first step

Why is this procedure incomplete (Give an example) ? Under which additional hypotheses is it complete ?

EXCLUSIVE OR AXIOMS	More exercises (CNTD)
$\begin{array}{rcl} x \oplus x \oplus y & \rightarrow & y & x \oplus (y \oplus z) & = & (x \oplus y) \oplus z \\ & x \oplus x & \rightarrow & 0 & & x \oplus y & = & y \oplus x \\ & x \oplus 0 & \rightarrow & x \end{array}$ The rewrite system is AC-convergent: there are unique normal forms $t \downarrow$, up to AC.	Exercise 6 (level 3) Show that, if S is a recognizable tree language, then the set of terms deducible from S in the DY inference system is also a recognizable tree language.
Cimpa school, Feb 2005 31-Automatic Verification of Cryptographic Protocols	Cimpa school, Feb 2005 30-Automatic Verification of Cryptographic Protocols
	EXTENDING DY WITH EXCLUSIVE OR
	Add to DY the following rule(s): $x_1 \cdots x_n$
	$(x_1\oplus\ldots\oplus x_n)\downarrow$

Exercise 7 (level 4). Show that the new inference system, with exclusive or, is *F*-local. (Ind: consider for *F* the set of subterms, when \oplus is viewed as a varyadic symbol).