
MPRI Concurrency (course number 2-3) 2005-2006:
π-calculus
2005-11-02

http://pauillac.inria.fr/∼leifer/teaching/mpri-concurrency-2005/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

0

About the lectures

The MPRI represents a transition from student to researcher. So...

• Interrupting me with questions is good.

• Working through a problem without already knowing the answer is good.

• I’ll make mistakes. 8-)

About me

• 1995–2001: Ph.D. student of Robin Milner’s in Cambridge, UK

• 2001–2002: Postdoc in INRIA Rocquencourt, France

• 2002–: Research scientist in INRIA Rocquencourt, France

• November 2004: voted against W (who, despite this, was elected for the
first time)

1

Books
• Robin Milner. Communicating and mobile systems: the π-calculus.

(Cambridge University Press, 1999).

• Robin Milner. Communication and concurrency. (Prentice Hall, 1989).

• Davide Sangiorgi and David Walker. The π-calculus: a theory of mobile
processes. (Cambridge University Press, 2001).

Tutorials available online
• Robin Milner. “The polyadic pi-calculus: a tutorial”. Technical Report

ECS-LFCS-91-180, University of Edinburgh.
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/ECS-LFCS-91-180.ps

• Joachim Parrow. “An introduction to the pi-calculus”.
http://user.it.uu.se/∼joachim/intro.ps

• Peter Sewell. “Applied pi — a brief tutorial”. Technical Report 498,
University of Cambridge. http://www.cl.cam.ac.uk/users/pes20/apppi.ps

2

Today’s plan

• syntax

• reduction semantics and structural congruence

• labelled transitions

• bisimulation

3

Syntax

P ::= xy.P output
x(y).P input (y binds in P)
νx.P restriction (new) (x binds in P)
P | P parallel (par)
0 empty
!P replication (bang)
...

Significant difference from CCS: channels carry names.

4

Free names

The free names of P are written fn(P).
Example: fn(0) = ∅; fn(xy.z(y).0) = {x, y, z}.
Exercise: Calculate fn(z(y).xy.0); fn(νz.(z(y).xy) | yz).
Formally:

fn(xy.P) = {x, y} ∪ fn(P)
fn(x(y).P) = {x} ∪ (fn(P) \ {y})
fn(νx.P) = fn(P) \ {x}
fn(P | P ′) = fn(P) ∪ fn(P ′)
fn(0) = ∅

fn(!P) = fn(P)

Alpha-conversion
We consider processes up to alpha-conversion: provided y′ /∈ fn(P), we
have

x(y).P = x(y′).{y′/y}P

νy.P = νy′.{y′/y}P

Exercise: Freshen all bound names: νx.(x(x).xx) | x(x)
5

Reduction (−→)

We say that P reduces to P ′, written P −→ P ′, if this can be derived from
the following rules:

xy.P | x(u).Q −→ P | {y/u}Q (red-comm)

P −→ P ′

P | Q −→ P ′ | Q
(red-par)

P −→ P ′

νx.P −→ νx.P ′ (red-new)

Example: νx.(xy | x(u).uz) −→ νx.(0 | yz)

As currently defined, reduction is too limited:

(xy | 0) | x(u) 6−→

νw.xy | x(u) 6−→

6

Structural congruence (≡)
The smallest equivalence relation such that:

P | (Q | S) ≡ (P | Q) | S (str-assoc)

P | Q ≡ Q | P (str-commut)

P | 0 ≡ P (str-id)

νx.νy.P ≡ νy.νx.P (str-swap)

νx.0 ≡ 0 (str-zero)

νx.P | Q ≡ νx.(P | Q) if x /∈ fn(Q) (str-ex)

!P ≡ P | !P (str-repl)

And congruence rules:

P ≡ P ′

P | Q ≡ P ′ | Q
(str-par-l)

P ≡ P ′

νx.P ≡ νx.P ′ (str-new)

Note: we don’t close up by input or output prefixing.
7

Fixing reduction

We close reduction by structural congruence:

P ≡−→≡ P ′

P −→ P ′ (red-str)

Exercise: Calculate the reductions of νy.(xy | y(u).uz) | x(w).wv and
xy | νy.(x(u).uw | y(v))

8

Application of new binding: from polyadic to monadic
channels

Let us extend our notion of monadic channels, which carry exactly one
name, to polyadic channels, which carry a vector of names, i.e.

P ::= x〈y1, ..., yn〉.P output
x(y1, ..., yn).P input (y1, ..., yn bind in P)

Is there an encoding from polyadic to monadic channels? We might try:

Jx〈y1, ..., yn〉.P K = xy1....xyn.JP K

Jx(y1, ..., yn).P K = x(y1)....x(yn).JP K

but this is broken! Can you see why? The right approach is use new binding:

Jx〈y1, ..., yn〉.P K = νz.(xz.zy1....zyn.JP K)

Jx(y1, ..., yn).P K = x(z).z(y1)....z(yn).JP K

where z /∈ fn(P) in both cases. (We also need some well-sorted
assumptions.)

9

Application of new binding: from synchronous to
asynchronous ouput

In distributed computing, sending and receiving messages may be
asymmetric: we clearly know when we have received a message but not
necessarily when a message we sent has been delivered. (Think of email.)

P ::= xy output
x(y).P input (y binds in P)

Nonetheless, one can always achieve synchronous sends by using an
acknowledgement protocol:

Jxy.P K = νz.(x〈y, z〉 | z().JP K)

Jx(y).P K = x(y, z).(z〈〉 | JP K)

provided z /∈ fn(P) in both cases.

But this is cheating since the encoding relies on being able to send tuples
(e.g. x〈y, z〉). Can you see how to use only monadic communication?

10

Labels

The labels α are of the form:

α ::= xy output
x(y) bound output
xy input
τ silent

The free names fn(α) and bound names bn(α) are defined as follows:

α xy x(y) xy τ
fn(α) {x, y} {x} {x, y} ∅

bn(α) ∅ {y} ∅ ∅

11

Labelled transitions (P α
−→ P ′)

Labelled transitions are of the form P
α

−→ P ′ and are generated by:

xy.P
xy
−→ P (lab-out) x(y).P

xz
−→ {z/y}P (lab-in)

P
α

−→ P ′

P | Q
α

−→ P ′ | Q
if bn(α) ∩ fn(Q) = ∅ (lab-par-l)

P
α

−→ P ′

νy.P
α

−→ νy.P ′
if y /∈ fn(α) ∪ bn(α) (lab-new)

P
xy
−→ P ′

νy.P
x(y)
−→ P ′

if y 6= x (lab-open)

P
xy
−→ P ′ Q

xy
−→ Q′

P | Q
τ

−→ P ′ | Q′
(lab-comm-l)

P
x(y)
−→ P ′ Q

xy
−→ Q′

P | Q
τ

−→ νy.(P ′ | Q′)
if y /∈ fn(Q) (lab-close-l)

P | !P
α

−→ P ′

!P
α

−→ P ′
(lab-bang)

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).
12

Labelled transitions and structural congruence

Theorem:

1. P −→ P ′ iff P
τ

−→≡ P ′.

2. P ≡
α

−→ P ′ implies P
α

−→ ≡ P ′

Exercise: Why does the converse of the second not hold?

Exercise: Show that the following pair of processes are both in (−→) and
(

τ
−→≡):

νz.xz | x(u).yu νz.yz

Fun with side conditions
Exercise: Show that the side condition on (lab-par-l) is necessary by
considering the process νy.(xy.y(u)) | zv and an alpha variant.

13

Adding sum

P ::= M sum
P | P parallel (par)
νx.P restriction (new) (x binds in P)
!P replication (bang)

M ::= xy.P output
x(y).P input (y binds in P)
M + M sum
0

Changes:

• structural congruence: + is associative and commutative with identity 0.

• reduction: (xy.P + M) | (x(u).Q + N) −→ P | {y/u}Q.

• labelled transition: M + xy.P + N
xy
−→ P

M + x(y).P + N
xz
−→ {z/y}P

14

Exercises for next lecture

1. Define an encoding J K from the monadic synchronous π-calculus to the
monadic asynchronous π-calculus.

2. Prove that if P
xy
−→ P ′ then there exist P0, P1, and ~z such that

P ≡ ν~z.(xy.P0 | P1)

P ′ ≡ ν~z.(P0 | P1)

{x, y} ∩ ~z = ∅

NB: the notation ν~z.P is merely a convenient way of expressing a series
of new bindings:

ν~z.P =

{

P if ~z is empty

νw.(ν ~w.P) if ~z = w~w

15

