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About the lectures

The MPRI represents a transition from student to researcher. So...

• Interrupting me with questions is good.

• Working through a problem without already knowing the answer is good.

• I’ll make mistakes. 8-)

About me

• 1995–2001: Ph.D. student of Robin Milner’s in Cambridge, UK

• 2001–2002: Postdoc in INRIA Rocquencourt, France

• 2002–: Research scientist in INRIA Rocquencourt, France

• November 2004: voted against W (who, despite this, was elected for the
first time)
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Books
• Robin Milner. Communicating and mobile systems: the π-calculus.

(Cambridge University Press, 1999).

• Robin Milner. Communication and concurrency. (Prentice Hall, 1989).

• Davide Sangiorgi and David Walker. The π-calculus: a theory of mobile
processes. (Cambridge University Press, 2001).

Tutorials available online
• Robin Milner. “The polyadic pi-calculus: a tutorial”. Technical Report

ECS-LFCS-91-180, University of Edinburgh.
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/ECS-LFCS-91-180.ps

• Joachim Parrow. “An introduction to the pi-calculus”.
http://user.it.uu.se/∼joachim/intro.ps

• Peter Sewell. “Applied pi — a brief tutorial”. Technical Report 498,
University of Cambridge. http://www.cl.cam.ac.uk/users/pes20/apppi.ps
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Today’s plan

• syntax

• reduction semantics and structural congruence

• labelled transitions

• bisimulation
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Syntax

P ::= xy.P output
x(y).P input (y binds in P )
νx.P restriction (new) (x binds in P )
P | P parallel (par)
0 empty
!P replication (bang)
...

Significant difference from CCS: channels carry names.
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Free names

The free names of P are written fn(P ).
Example: fn(0) = ∅; fn(xy.z(y).0) = {x, y, z}.
Exercise: Calculate fn(z(y).xy.0); fn(νz.(z(y).xy) | yz).
Formally:

fn(xy.P ) = {x, y} ∪ fn(P )
fn(x(y).P ) = {x} ∪ (fn(P ) \ {y})
fn(νx.P ) = fn(P ) \ {x}
fn(P | P ′) = fn(P ) ∪ fn(P ′)
fn(0) = ∅

fn(!P ) = fn(P )

Alpha-conversion
We consider processes up to alpha-conversion: provided y′ /∈ fn(P ), we
have

x(y).P = x(y′).{y′/y}P

νy.P = νy′.{y′/y}P

Exercise: Freshen all bound names: νx.(x(x).xx) | x(x)
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Reduction (−→)

We say that P reduces to P ′, written P −→ P ′, if this can be derived from
the following rules:

xy.P | x(u).Q −→ P | {y/u}Q (red-comm)

P −→ P ′

P | Q −→ P ′ | Q
(red-par)

P −→ P ′

νx.P −→ νx.P ′ (red-new)

Example: νx.(xy | x(u).uz) −→ νx.(0 | yz)

As currently defined, reduction is too limited:

(xy | 0) | x(u) 6−→

νw.xy | x(u) 6−→
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Structural congruence (≡)
The smallest equivalence relation such that:

P | (Q | S) ≡ (P | Q) | S (str-assoc)

P | Q ≡ Q | P (str-commut)

P | 0 ≡ P (str-id)

νx.νy.P ≡ νy.νx.P (str-swap)

νx.0 ≡ 0 (str-zero)

νx.P | Q ≡ νx.(P | Q) if x /∈ fn(Q) (str-ex)

!P ≡ P | !P (str-repl)

And congruence rules:

P ≡ P ′

P | Q ≡ P ′ | Q
(str-par-l)

P ≡ P ′

νx.P ≡ νx.P ′ (str-new)

Note: we don’t close up by input or output prefixing.
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Fixing reduction

We close reduction by structural congruence:

P ≡−→≡ P ′

P −→ P ′ (red-str)

Exercise: Calculate the reductions of νy.(xy | y(u).uz) | x(w).wv and
xy | νy.(x(u).uw | y(v))
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Application of new binding: from polyadic to monadic
channels

Let us extend our notion of monadic channels, which carry exactly one
name, to polyadic channels, which carry a vector of names, i.e.

P ::= x〈y1, ..., yn〉.P output
x(y1, ..., yn).P input (y1, ..., yn bind in P )

Is there an encoding from polyadic to monadic channels? We might try:

Jx〈y1, ..., yn〉.P K = xy1....xyn.JP K

Jx(y1, ..., yn).P K = x(y1)....x(yn).JP K

but this is broken! Can you see why? The right approach is use new binding:

Jx〈y1, ..., yn〉.P K = νz.(xz.zy1....zyn.JP K)

Jx(y1, ..., yn).P K = x(z).z(y1)....z(yn).JP K

where z /∈ fn(P ) in both cases. (We also need some well-sorted
assumptions.)
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Application of new binding: from synchronous to
asynchronous ouput

In distributed computing, sending and receiving messages may be
asymmetric: we clearly know when we have received a message but not
necessarily when a message we sent has been delivered. (Think of email.)

P ::= xy output
x(y).P input (y binds in P )

Nonetheless, one can always achieve synchronous sends by using an
acknowledgement protocol:

Jxy.P K = νz.(x〈y, z〉 | z().JP K)

Jx(y).P K = x(y, z).(z〈〉 | JP K)

provided z /∈ fn(P ) in both cases.

But this is cheating since the encoding relies on being able to send tuples
(e.g. x〈y, z〉). Can you see how to use only monadic communication?
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Labels

The labels α are of the form:

α ::= xy output
x(y) bound output
xy input
τ silent

The free names fn(α) and bound names bn(α) are defined as follows:

α xy x(y) xy τ
fn(α) {x, y} {x} {x, y} ∅

bn(α) ∅ {y} ∅ ∅
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Labelled transitions (P α
−→ P ′)

Labelled transitions are of the form P
α

−→ P ′ and are generated by:

xy.P
xy
−→ P (lab-out) x(y).P

xz
−→ {z/y}P (lab-in)

P
α

−→ P ′

P | Q
α

−→ P ′ | Q
if bn(α) ∩ fn(Q) = ∅ (lab-par-l)

P
α

−→ P ′

νy.P
α

−→ νy.P ′
if y /∈ fn(α) ∪ bn(α) (lab-new)

P
xy
−→ P ′

νy.P
x(y)
−→ P ′

if y 6= x (lab-open)

P
xy
−→ P ′ Q

xy
−→ Q′

P | Q
τ

−→ P ′ | Q′
(lab-comm-l)

P
x(y)
−→ P ′ Q

xy
−→ Q′

P | Q
τ

−→ νy.(P ′ | Q′)
if y /∈ fn(Q) (lab-close-l)

P | !P
α

−→ P ′

!P
α

−→ P ′
(lab-bang)

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).
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Labelled transitions and structural congruence

Theorem:

1. P −→ P ′ iff P
τ

−→≡ P ′.

2. P ≡
α

−→ P ′ implies P
α

−→ ≡ P ′

Exercise: Why does the converse of the second not hold?

Exercise: Show that the following pair of processes are both in (−→) and
(

τ
−→≡):

νz.xz | x(u).yu νz.yz

Fun with side conditions
Exercise: Show that the side condition on (lab-par-l) is necessary by
considering the process νy.(xy.y(u)) | zv and an alpha variant.
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Adding sum

P ::= M sum
P | P parallel (par)
νx.P restriction (new) (x binds in P )
!P replication (bang)

M ::= xy.P output
x(y).P input (y binds in P )
M + M sum
0

Changes:

• structural congruence: + is associative and commutative with identity 0.

• reduction: (xy.P + M) | (x(u).Q + N) −→ P | {y/u}Q.

• labelled transition: M + xy.P + N
xy
−→ P

M + x(y).P + N
xz
−→ {z/y}P
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Exercises for next lecture

1. Define an encoding J K from the monadic synchronous π-calculus to the
monadic asynchronous π-calculus.

2. Prove that if P
xy
−→ P ′ then there exist P0, P1, and ~z such that

P ≡ ν~z.(xy.P0 | P1)

P ′ ≡ ν~z.(P0 | P1)

{x, y} ∩ ~z = ∅

NB: the notation ν~z.P is merely a convenient way of expressing a series
of new bindings:

ν~z.P =

{

P if ~z is empty

νw.(ν ~w.P ) if ~z = w~w
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