MPRI Concurrency (course number 2-3) 2005-2006:
m-calculus
2006-02-15

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2005/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

A summary of the m-calculus

e Core syntax

e Structural congruence (=)

e Reduction (—)

e Labelled transitions (—)

e Strong bisimulation (~) and weak bisimulation (=)
e Strong barbs (P |x) and weak barbs (Pl x)

e “Up to” techniques (up to strong bisimilarity, up to contexts)

Features

e SuM (xy.P + wz.(Q))
e Infinite behaviour (! P or recursive definitions)

e Polyadic channels (zy. P, ...)

Core syntax

P . =7y P output
x(y). P input (y binds in P)
ve.P restriction (new) (z binds in P)
P|P parallel (par)
0 empty

The free names of P are written fn(P).

fn(zy.P) = {x,y}Ufn(P)
fn(z(y).P) = {z} U (fn(P)\ {y})
fn(ve.P) = fn(P)\ {z}
fn(P|P) = fn(P)Ufn(P)
fn(0) = O

We consider processes up to alpha-conversion: provided 3’ ¢ fn(P), we
have

r(y).P = z(y){y'/y} P
vy P =vy {y [y} P

Structural congruence (=)

The smallest equivalence relation such that:

Pl(Q]|S)=(P|Q)|S (str-assoc)
PlQ=Q|P (str-commut)
PlO=P (str-id)
ve.vy.P =vyve. P (str-swap)
vr.0=0 (str-zero)
ve.P|Q =vz.(P|Q) if z ¢ fn(Q) (str-ex)
And congruence rules:
p=rp st-par-) p=r (stnew
str-par- str-new
PlQ=P|Q P ve.P=vx. P

Note: we don’t close up by input or output prefixing.

Reduction (—)

We say that P reduces to P/, written P — P/, if this can be derived from
the following rules:

Ty.P|z(u).Q — P|{y/u}@ (red-comm)
P— P

P ‘ 0 2] ’ 0 (red-par)
P— P

(red-new)

/
ve. P — vy P

We close reduction by structural congruence:

P=—=p

P (red-str)

Labels

The labels a are of the form:

Q= TY output
Z(y) bound output
Y Input
T silent

The free names fn(«) and bound names bn(«) are defined as follows:

a Ty T(Yy) Ty T
fn(@g {z,y} {z} {z,y} @

bn(a)] @ {y} @ O

Labelled transitions (P — P’

Labelled transitions are of the form P —— P’ and are generated by:

zy.P =% P (lab-out) 2(y).P =5 {z/y}P (lab-in)
P P
— if bn(a) Nfn(Q) = @ (lab-par-l)
PlQ— P'|Q
P-4 p p-Lp
— if y & fn(o) Ubn(a) (lab-new) — " ify#a (lab-open)
vy.P — vy P vy. P W, pr
p zy P Ty / p z(y) P Y /
- Q/_j “ jab-comm-) — — C;? ify ¢ fn(Q) (lab-close-I)
PlQ-P|Q PlQ —vy.(P|Q)

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).

Feature: sum

P.=M sum

PP parallel (par)

ve.P restriction (new) (z binds in P)
M =7y.P output

x(y). P input (y binds in P)

M+ M sum

0

Changes:
e structural congruence: + is associative and commutative with identity 0.
e reduction: (zy.P+ M) | (z(u).QQ + N) — P |{y/u}Q.

e labelled transition: M +zy.P + N N P
M + z(y).P+ N == {z/y}P

Feature: Infinite behaviour via replication

Syntax: P .= ...IP
Structural congruence: 'P = P | P

Labelled transitions (easy to state):
PP P
P P

if bn(ar) Nfn(P) =@ (lab-bang)

Labelled transitions (easy to use):
P P
P2 PP

if bn(a) Nfn(P) = @ (lab-bang-simple)

p2p pp
P (P'|P")|IP

(lab-bang-comm)

pWop p . pr

if fn(P lab-bang-close
P o P V) grelose)

Feature: infinite behaviour via process abstraction

We can define a
F = (uy,...,up).P

Instantiation takes an abstraction and a vector of names and gives back a
pProcess:

F(xy,...,z) = {z1/uq, ..., xp/u } P

10

Feature: polyadic channels

In the syntax we extend our notion of monadic channels, which carry exactly
one name, to polyadic channels, which carry a vector of names, i.e.

P =%y,,yn).P output
T(Y1y -eey Yn)- P input (y1, ..., yn, pairwise distinct and bind in P)

We then generalise the reduction rule as follows:
Ty.P | z(u).) — P [{y/u}Q

(The label transitions become complicated because some of the elements
of an output may be bound and some free.)

11

Strong bisimulation

A relation R is a strong bisimulation if it is symmetric and for all (P, Q) € R

and P - P’ where bn(a)Nfn(Q) = @, there exists @’ such that Q — @’
and (P, Q") € R.

P L} P/
R R
Q-4

Strong bisimilarity ~ is the largest strong bisimulation.

12

Weak bisimulation

A relation R is a weak bisimulation if it is symmetric and for all (P, Q) € R
and P —— P’ where bn(a)) N fn(Q) = &, one of the following cases holds:

o If o« = 7 then there exists)’ such that Q —* Q" and (P, Q') € R.

o If a # 7 then there exists @’ such that Q —*——* @’
and (P, Q") e R.

p——— p P @ > p!
R R R R
Q ______ }*Q/ Q ________ }* ____9{___} _______ }*Q/

Weak bisimilarity = is the largest weak bisimulation.

13

Strong bisimulation up to strong bisimilarity

Suppose for all (P,Q) € R and P —— P’, where bn(a) N fn(Q) = &, there
exists)’ such that Q — @’ and (P, Q) € ~R~, and symmetrically.

0}

P > P’
R R
4

Then ~R~ Is a strong bisimulation. Is R also a strong bisimulation?

14

Evaluation contexts

Let £ be the set of

De€&

What isn’'t an evaluation context?

, these are generated by the grammar:

D|P
P|D
ve.D

15

Strong bisimulation up to contexts

Suppose for all (P,Q) € R and P —— P’ where bn(a) N fn(Q) = &, there
exists D € &, P”, and Q" such that P’ = D[P"] and Q — D[Q"] and
(P" Q") € R, and symmetrically.

P @ . p/_ D[P”] !
R R
Q === D[Q" Q'

Then {(D|P|, D|Q]) / (P,Q) € R,D € £} is a strong bisimulation.

Example: 'P ~ P,

16

Barbs

A process P has a x, written P | x iff there exists Fy, P;, and y
such that P = vy.(7u.Py | P;) and = ¢ v.

A process P has a z, written Pllz iff there exists P’ such that
P —*Pland P'|x.

17

