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Quick review of CCS operational equivalences

Strong simulation: a relation R is a strong simulation if for all (P, Q) ∈ R and P
α

−→ P ′, there
exists Q′ such that Q

α
−→ Q′ and (P ′, Q′) ∈ R.

Strong bisimilarity: ∼ is the largest strong bisimulation.

Weak simulation: a relation R is a weak simulation if for all (P, Q) ∈ R we have:

1. if P
τ

−→ P ′ then there exists Q′ such that Q
τ

−→∗ Q′ and (P ′, Q′) ∈ R.

2. if P
α

−→ P ′ and α 6= τ then there exists Q′ such that Q
τ

−→∗ α
−→

τ
−→∗ Q′ and (P ′, Q′) ∈ R.

Weak bisimilarity (also known as bisimilarity, also known as observational equivalence): ≈ is the
largest weak bisimulation.

Observational congruence: ≅ is the largest symmetric relation satisfying the following property:
if P ≅ Q and P

α
−→ P ′ then there exists Q′ such that Q

τ
−→∗

α
−→

τ
−→∗ Q′ and P ′ ≈ Q′.

Note that (∼) ⊆ (≅) ⊆ (≈). We will freely use these inclusions throughout.

Question 1

1. We show that (∼), the strongest of the three relations, holds.

Consider R = {(C, A |B)}. The only transitions of C are to itself with labels a and b: C
a

−→ C

and C
b

−→ C. Likewise, the only transitions of A|B are to itself with labels a and b: A|B
a

−→ A|B

and A | B
b

−→ A | B. Therefore R is bisimulation.

2. (∼) does not hold. Take P = a. Then the second process has the transition
a

−→ but the first
doesn’t.

(≅) does hold (hence so does (≈)). We consider the labelled transitions of each side. We will
rely once on the rule

Q ≈ τ.Q (1)

and the fact that ≈ is closed by parallel composition.

• The only transition of first process is τ.(P | P )
τ

−→ P | P . The second process can match
this transition to the identical target P | τ.P

τ
−→ P | P .

• There are two classes of transitions for the second process.

Case P | τ.P
τ

−→ P | P : As seen just above the first process can match this transition to
the identical target.

Case P | τ.P
α

−→ P ′ | τ.P where P
α

−→ P ′: The first process can match this transition
with τ.(P | P )

τ
−→

α
−→ P ′ | P . By (1), P ′ | τ.P ≈ P ′ | P , as desired.



3. None of the relations holds. Suppose for contradiction that (≈) held. Take P = Q = x. The
first process may undergo two τ transitions and reach a deadlocked state:

νa.(νb.(a | b | a.b.P | b.a.Q))
τ

−→
τ

−→ νa.(νb.(0 | 0 | b.P | a.Q)) ∼ 0

By hypothesis the second process can match this state with a sequence of 0 or more τ transitions;
only two target states are possible:

τ.x + τ.x x

but neither is deadlocked since both can do
τ

−→∗
x

−→, a contradiction.

Note: the question should have had the side condition {a, b} ∩ (fn(P ) ∪ fn(Q)) = ∅. In the
absence of this side condition, there is a simpler counterexample. Take P = a. Then the second
process can do

τ
−→

a
−→ but the first process can never have an a transition.

4. Trick question! None of the relations holds. Take a = b. Then a.0 has an a transition but the
other process is weakly bisimilar to 0.

Let us assume that the examiner meant to include the side condition a 6= b. Then we can answer
the question as follows...

The relation ≅ doesn’t hold (hence neither does ∼). This is because νb.(A | B) can do a τ

transition to itself, but a.0 has no τ transitions.

The relation ≈ does hold, as illustrated by the red dotted lines relating the states of two reduction
graphs. Note that we show all the states up to structural equivalence.
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5. None of the relations holds. Suppose for contradiction that (≈) held. We have A
τ

−→ B. By
hypothesis, a.0 ≈ B, but this is impossible because a.0 can have an a transition while B ≈ 0, a
contradiction.

Question 2

They are weakly bisimilar, as illustrated by the red dotted lines relating the states of two reduction
graphs. Since neither U nor U ′ have any initial τ transitions, U ≅ U ′, as desired.



Note that we omit writing the new bindings in all states in the complex graph in order to save
space. Also, we show all the states up to structural equivalence.
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Question 3

We shall use the following name vectors (“left”, “right”, “mid”) throughout:

~l = 〈empty , in, out〉

~r = 〈e, i, o〉

~m = 〈e′, i′, o′〉

Then the concatenation of cells can be easily written as:

P ⊲ Q = (~l, ~r).ν ~m.(P 〈~l, ~m〉 | Q〈~m,~r〉)

1. For C ′ ⊲ C, we calculate as follows:

(C ′ ⊲ C)〈~l, ~r〉

= ν ~m.(C ′〈~l, ~m〉 | C〈~m,~r〉) definition of ⊲

= ν ~m.((o′.C〈~l, ~m〉 + e′.E〈~l, ~m〉) | (o′.C ′〈~m,~r〉 + i′.(C ⊲ C)〈~m,~r〉)) definition of C ′ and C
τ

−→ ν ~m.(C〈~l, ~m〉 | C ′〈~m,~r〉) synchronisation on o′

= (C ⊲ C ′)〈~l, ~r〉 definition of ⊲

Since the transition shown above is the only one possible (all others are prevented by the outer-
most new binding), we conclude C ′ ⊲ C ≈ C ⊲ C ′, as desired.

For C ′ ⊲ E, we calculate as follows:

(C ′ ⊲ E)〈~l, ~r〉

= ν ~m.(C ′〈~l, ~m〉 | E〈~m,~r〉) definition of ⊲

= ν ~m.((o′.C〈~l, ~m〉 + e′.E〈~l, ~m〉) | (e′.E〈~m,~r〉 + i′.(C ⊲ E)〈~m,~r〉)) definition of C ′ and E
τ

−→ ν ~m.(E〈~l, ~m〉 | E〈~m,~r〉) synchronisation on e′

= (E ⊲ E)〈~l, ~r〉 definition of ⊲

Since the transition shown above is the only one possible (all others are prevented by the outer-
most new binding), we conclude C ′ ⊲ E ≈ E ⊲ E, as desired.

For E ⊲ E, we calculate as follows:

(E ⊲ E)〈~l, ~r〉

= ν ~m.(E〈~l, ~m〉 | E〈~m,~r〉) definition of ⊲

= ν ~m.((empty .E〈~l, ~m〉 + in.(C ⊲ E)〈~l, ~m〉) | E〈~m,~r〉) definition of C ′

∼ empty .ν ~m.(E〈~l, ~m〉 | E〈~m,~r〉) + in.ν ~m.((C ⊲ E)〈~l, ~m〉 | E〈~m,~r〉) expansion

∼ empty .(E ⊲ E)〈~l, ~r〉 + in.(C ⊲ (E ⊲ E))〈~l, ~r〉 definition of ⊲ and associativity

Therefore E and E ⊲ E satisfy the same guarded recurrences, hence E ∼ E ⊲ E, as desired.

2. We now show that C ′ ⊲ C(k) ≈ C(k) for 0 ≤ k. We induct on k.

Base case: We calculate:

C ′ ⊲ C(0)

= C ′ ⊲ E definition

≈ E ⊲ E previous exercise

∼ E previous exercise

= C(0) definition

Since (∼) ⊆ (≈), we have C ′ ⊲ C(0) ≈ C(0) as desired.



Step case: We calculate:

C ′ ⊲ C(k+1)

= C ′ ⊲ (C ⊲ C(k)) definition

∼ (C ′ ⊲ C) ⊲ C(k) associativity

≈ (C ⊲ C ′) ⊲ C(k) previous ex; also ≈ closed by ⊲

≈ C ⊲ C(k) inductive hypothesis

= C(k+1) definition

Since (∼) ⊆ (≈), we have C ′ ⊲ C(k) ≈ C(k) as desired.

3. First we consider the base case:

C(0)〈~l, ~r〉

= E〈~l, ~r〉 definition

= empty .E〈~l, ~r〉 + in.(C ⊲ E)〈~l, ~r〉 definition

= empty .C(0)〈~l, ~r〉 + in.C(1)〈~l, ~r〉 definition

Then we consider the other case:

C(k+1)〈~l, ~r〉

= (C ⊲ C(k))〈~l, ~r〉 definition

∼ out .(C ′ ⊲ C(k))〈~l, ~r〉 + in.((C ⊲ C) ⊲ C(k))〈~l, ~r〉 expansion

∼ out .C(k)〈~l, ~r〉 + in.((C ⊲ C) ⊲ C(k))〈~l, ~r〉 previous exercise

∼ out .C(k)〈~l, ~r〉 + in.C(k+2)〈~l, ~r〉 associativity and definition of C(k+2)

We have show that the families C(k) and Bk satisfy the same guarded recurrences, hence C(k) ≈
Bk for all 0 ≤ k.


