LTSs, revisited

Francesco Zappa Nardelli¹

francesco.zappa_nardelli@inria.fr

1. INRIA Rocquencourt, MOSCOVA research team.

MPRI - Concurrency

November 16, 2005

Plan

Objective:

understand what lies behind the equivalences for process languages.

Plan:

1. A natural contextual equivalence:

motivations, definition, relationships with bisimilarity in CCS, what an LTS is;

2. from CCS to pi-calculus:

congruence of bisimulation, full bisimulation.

A historical perspective

CCS Milner defined the operational semantics of CCS in term of a *labelled transition system* and associated *bisimilarity*;

...several attempts to handle mobility algebraically led to...

pi-calculus Milner, Parrow and Walker introduced the pi-calculus. They defined its semantics along the lines of research on CCS. But...

...lifting CCS techniques was not so smooth

The original paper on pi-calculus defines *two* LTSs:

Early LTS Late LTS

$\overline{x}v.P \xrightarrow{\overline{x}v} P$	$\overline{x}v.P \xrightarrow{\overline{x}v} P$
$x(y).P \xrightarrow{x(v)} \{v/_y\}P$	$x(y).P \xrightarrow{x(y)} P$
$P \xrightarrow{\overline{x}v} P' \qquad Q \xrightarrow{x(v)} Q'$	$P \xrightarrow{\overline{x}v} P' \qquad Q \xrightarrow{x(y)} Q'$
$P \mid\mid Q \xrightarrow{\tau} P' \mid\mid Q'$	$P \mid\mid Q \xrightarrow{\tau} P' \mid\mid \{ v/_y \} Q'$

These LTSs define the same τ -transitions. But the bisimilarity built on top of them observe *all* the labels: do the resulting bisimilarities coincide? No... Question: which is the *right* one?

A step backward: defining a language

Recipe:

- 1. define the *syntax* of the language (that is, specify what a program is);
- 2. define its *reduction semantics* (that is, specify how programs are executed);
- 3. define when *two terms are equivalent* (that is, hum...?!).

Share and enjoy the new language...

Equivalent?

Suppose that P and Q are equivalent (in symbols: $P \simeq Q$).

Which properties do we expect?

Preservation under contexts For all contexts C[-], we have $C[P] \simeq C[Q]$;

Same observations If $P \downarrow n$ then $Q \downarrow n$, where $P \downarrow n$ means that we can *observe* n at P (or P can do n);

Preservation of reductions P and Q must mimic their reduction steps (that is, they realise the same nondeterministic choices).

What if we apply this recipe to (a subset of) CCS?

Syntax:

$$P ::= \mathbf{0} \mid a.P \mid \overline{a}.P \mid P \mid P \mid P \mid (\boldsymbol{\nu}a)P$$

Reduction semantics:

$$a.P \| \overline{a}.Q \twoheadrightarrow P \| Q \qquad \qquad \frac{P \equiv P' \twoheadrightarrow Q' \equiv Q}{P \twoheadrightarrow Q}$$

where \equiv is defined as:

 $P ||Q \equiv Q ||P \qquad (P ||Q) ||R \equiv P ||(Q ||R)$ $(\nu a)P ||Q \equiv (\nu a)(P ||Q) \text{ if } a \notin \text{fn}(Q)$

The recipe, formally

A relation \mathcal{R} between processes is

preserved by contexts: if $P \mathcal{R} Q$ implies $C[P] \mathcal{R} C[Q]$ for all contexts C[-].

barb preserving: if $P \mathcal{R} Q$ and $P \downarrow_n$ imply $Q \Downarrow_n$, where $P \Downarrow n$ holds if there exists P' such that $P \twoheadrightarrow^* P'$ and $P' \downarrow n$, while

$$P \downarrow n$$
 holds if $P \equiv (\boldsymbol{\nu}\tilde{a})(n.P' || P'')$ with $n \notin \{\tilde{a}\}$.

reduction closed: if $P \mathcal{R} Q$ and $P \rightarrow P'$, imply that there is a Q' such that $Q \rightarrow^* Q'$ and $P' \mathcal{R} Q'$ (\rightarrow^* is the reflexive and transitive closure of \rightarrow).

The recipe, formally (ctd.)

Definition Reduction barbed congruence, denoted \simeq , is the largest symmetric relation over processes which is reduction closed, barb preserving, and preserved by contexts.

Claim: reduction barbed congruence is a *natural*, *intuitive*, contextual equivalence.

Pro and contra of reduction barbed congruence

Reduction barbed congruence is *simple* (even a programmer will understand it), *"natural"*, and can be defined over any (process) language: just pick up a reasonable observation $P \downarrow n$ and you are done. Great!

Great? Hum, the definition of reduction barbed congruence tells you *nothing* about the language. In particular you have *no hints about which terms are equivalent*.

And proving that $P \simeq Q$ holds is *difficult*, because of the *universal quantification* over all contexts.

The role of bisimilarity

Observation: the definition of bisimilarity does not involve a universal quantification over all contexts!

Question: is there any relationship between (weak) bisimilarity and reduction barbed congruence?

Theorem:

1. $P \approx Q$ implies $P \simeq Q$ (soundness of bisimilarity);

2. $P \simeq Q$ implies $P \approx Q$ (completeness of bisimilarity).

Point 2. does not hold in general (it does for the subset of CCS we consider). Point 1. ought to hold (otherwise your LTS/bisimilarity is very odd!).

Background: LTS and weak bisimilarity for CCS

$$a.P \xrightarrow{a} P \qquad \overline{a}.P \xrightarrow{\overline{a}} P \qquad \frac{P \xrightarrow{a} P' \quad Q \xrightarrow{a} Q'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q'}$$
$$P \xrightarrow{\ell} P' \qquad P \xrightarrow{\ell} P' \qquad a \notin \operatorname{fn}(\ell)$$

 $P \| Q \xrightarrow{\ell} P' \| Q \qquad (\boldsymbol{\nu} a) P \xrightarrow{\ell} (\boldsymbol{\nu} a) P'$

symmetric rules omitted.

Let $\stackrel{\hat{\ell}}{\Longrightarrow}$ be $\stackrel{\tau}{\longrightarrow}^* \stackrel{\ell}{\longrightarrow} \stackrel{\tau}{\longrightarrow}^*$ if $\ell \neq \tau$, and $\stackrel{\tau}{\longrightarrow}^*$ otherwise.

Definition: Weak bisimilarity, denoted \approx , is the largest symmetric relation such that whenever $P \approx Q$ and $P \xrightarrow{\ell} P'$ there exists Q' such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q'$ and $P' \approx Q'$.

Soundness of weak bisimilarity: $P \approx Q$ implies $P \simeq Q$.

Proof We show that \approx is contextual, barb preserving, and reduction closed.

Contextuality of \approx can be shown by induction on the structure of the contexts, and by case analysis of the possible interactions between the processes and the contexts. (Omitted).

Suppose that $P \approx Q$ and $P \downarrow a$. Then $P \equiv (\boldsymbol{\nu}\tilde{n})(a.P_1 || P_2)$, with $a \notin \tilde{n}$. We derive $P \xrightarrow{a} (\boldsymbol{\nu}\tilde{n})(P_1 || P_2)$. Since $P \approx Q$, there exists Q' such that $Q \xrightarrow{a} Q'$, that is $Q \xrightarrow{\tau} Q'' \xrightarrow{a} \dots$ But Q'' must be of the form $(\boldsymbol{\nu}\tilde{m})(a.Q_1 || Q_2)$ with $a \notin \operatorname{fn}(Q)$. This implies that $Q'' \downarrow a$, and in turn $Q \Downarrow a$, as required.

Suppose that $P \approx Q$ and $P \rightarrow P'$. We have that $P \xrightarrow{\tau} P'' \equiv P'$. Since $P \approx Q$, there exists Q' such that $Q \xrightarrow{\tau} Q'$ and $P' \equiv P'' \approx Q'$. Since $Q \xrightarrow{\tau} Q'$ it holds that $Q \rightarrow Q'$. Since $P' \equiv P''$ implies $P' \approx P''$, by transitivity of \approx we conclude $P' \approx Q'$, as required. \Box

Completeness of weak bisimilarity: $P \simeq Q$ **implies** $P \approx Q$.

Proof We show that \simeq is a bisimulation.

Suppose that $P \simeq Q$ and $P \xrightarrow{a} P'$ (the case $P \simeq Q$ and $P \xrightarrow{\tau} P'$ is easy). Let

$$C_{a}[-] = - \|\overline{a}.d \qquad Flip = \overline{d}.(o \oplus f)$$

$$C_{\overline{a}}[-] = - \|a.d \qquad -_{1} \oplus -_{2} = (\nu z)(z_{\cdot} -_{1} \|z_{\cdot} -_{2} \|\overline{z})$$

where the names z, o, f, d are *fresh* for P and Q.

Lemma 1. $C_a[P] \rightarrow^* P' || d$ if and only if $P \stackrel{a}{\Longrightarrow} P'$. Similarly for $C_{\overline{a}}[-]$.

Since \simeq is contextual, we have $C_a[P] || Flip \simeq C_a[Q] || Flip$. By Lemma 1. we have $C_a[P] || Flip \rightarrow^* P_1 \equiv P' || o || (\boldsymbol{\nu} z) z. f.$

Lemma 2. If $P \simeq Q$ and $P \twoheadrightarrow^* P'$ then there exists Q' such that $Q \twoheadrightarrow^* Q'$ and $P' \simeq Q'$.

By Lemma 2. there exists Q_1 such that $C_a[Q] || Flip \to^* Q_1$ and $P_1 \simeq Q_1$. Now, $P_1 \downarrow o$ and $P_1 \not\downarrow f$. Since \simeq is barb preserving, we have $Q_1 \Downarrow o$ and $Q_1 \not\not\downarrow f$. The absence of the barb f implies that the \oplus operator reduced, and in turn that the d action has been consumed: this can only occur if Q realised the a action. Thus we can conclude $Q_1 \equiv Q' || o || (\nu z) z \cdot f$, and by Lemma 1. we also have $Q \stackrel{a}{\Longrightarrow} Q'$.

It remains to show that $P' \simeq Q'$.

Lemma 3. $(\nu z)z.P \simeq 0.$

Since $P_1 \simeq Q_1$ and \simeq is contextual, we have $(\nu o)P_1 \simeq (\nu o)Q_1$. By Lemma 3., we have

$$P' \equiv P' \left| \left| (\boldsymbol{\nu} o) o \right| \right| (\boldsymbol{\nu} z) z.f \equiv (\boldsymbol{\nu} o) P_1 \simeq (\boldsymbol{\nu} o) Q_1 \equiv Q' \left| \left| (\boldsymbol{\nu} o) o \right| \right| (\boldsymbol{\nu} z) z.f \simeq Q'.$$

The equivalence $P' \simeq Q'$ follows because $\equiv \subseteq \simeq$ and \simeq is transitive.

Exercise: explain the role of the Flip process.

Back to pi-calculus: weak bisimilairity

Both weak labels and weak bisimilarity can be built as done in CCS.

Let $\stackrel{\hat{\ell}}{\Longrightarrow}$ be $\stackrel{\tau}{\longrightarrow}^* \stackrel{\ell}{\longrightarrow} \stackrel{\tau}{\longrightarrow}^*$ if $\ell \neq \tau$, and $\stackrel{\tau}{\longrightarrow}^*$ otherwise.

Definition: Weak bisimilarity, denoted \approx , is the largest symmetric relation such that whenever $P \approx Q$ and $P \xrightarrow{\ell} P'$ there exists Q' such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q'$ and $P' \approx Q'$.

Reduction barbed congruence and pi-calculus

First, define barbs:

$$P \downarrow x$$
 iff $P \equiv (\boldsymbol{\nu} \tilde{n})(x(y).P' || P'')$ with $x \notin \tilde{n}$.

Let reduction barbed congruence \simeq be the largest symmetric relation over picalculus processes that is *preserved by all contexts*, barb preserving, and reduction closed.

Exercise: prove that defining $P \downarrow x$ as $P \equiv (\nu \tilde{n})(\overline{x}y.P || P'')$ with $x \notin \tilde{n}$ yields the same equivalence.

Reduction barbed congruence and pi-calculus, ctd.

Exercise: Consider the terms (in a pi-calculus with sums):

$$P = \overline{x}v || y(z)$$
$$Q = \overline{x}v.y(z) + y(z).\overline{x}v$$

- 1. Prove that $P \approx Q$.
- 2. Does $P \simeq Q$?¹²

¹Hint: define a context that *equates* the names x and y. ²Hint: use input prefix.

Bisimilarity is not a congruence

In pi-calculus, bisimilarity (both strong and weak) is not preserved by input prefixes, that is contexts of the form C[-] = x(y).-.

Question: how to recover the soundness of the bisimilarity with respect to the reduction barbed congruence? Two solutions:

1. close the reduction barbed congruence under *all non input prefix contexts*;

2. close the bisimilarity under substitution: let $P \approx^{c} Q$ (*P* is fully bisimilar with *Q*) if $P\sigma \approx Q\sigma$ for all substitutions σ .

Exercise: Show that $P \not\approx^c Q$, where P and Q are defined in the previous slide.

Conclusion: LTSs revisited

Reduction barbed congruence involves a universal quantification over all contexts. Weak bisimilarity does not, yet bisimilarity *is a sound proof technique* for reduction barbed congruence. How is this possible?

An LTS captures all the interactions that a term can have with an arbitrary context. In particular, each label correspond to a minimal context.

For instance, in CCS, $P \xrightarrow{a} P'$ denotes the fact that P can interact with the context $C[-] = - || \overline{a}$, yielding P'.

More interestingly, in pi-calculus (early LTS), $P \xrightarrow{x(v)} P'$ denotes that P can interact with the context $C[-] = - || \overline{x}v$, yielding P'.

And τ transitions characterises all the interactions with an *empty context*.