Concurrency 4

CCS - Simulation and bisimulation. Coinduction.

Catuscia Palamidessi
 INRIA Futurs and LIX - Ecole Polytechnique

The other lecturers for this course:
Jean-Jacques Lévy (INRIA Rocquencourt) James Leifer (INRIA Rocquencourt)

Eric Goubault (CEA)
http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2005/

OutlineSolution to exercises from previous timeModern definition of CCS (1999)

- Syntax
- Labeled transition SystemSimulation and bisimulation
- Simulation
- Bisimulation
- Proof methods
- Examples and exercises
- Alternative characterization of bisimulation
- Bisimulation in CCS is a congruenceExercises

Announcement

The class of Wednesday 26 October will follow the usual schedule (16h15-19h15).

The semaphore

Define in CCS a semaphore with initial value n

First Solution

$$
\operatorname{rec}_{S_{n}} \text { down.rec }_{S_{n-1}}\left(\text { up. } S_{n}+\text { down.rec }_{S_{n-2}}\left(\ldots\left(\text { up. } S_{2}+\text { down.rec }_{S_{0}} \text { up. } S_{1}\right) \ldots\right)\right)
$$

Second solution

- Let $S=\operatorname{rec}_{X}$ down.up. X
- Then $S_{n}=S|S| \ldots \mid S \quad n$ times

Maximal trace equivalence is not a congruence

Consider the following processes

- $P=a .(b .0+c .0)$
- $Q=$ a.b. $0+$ a.c. 0
- $R=\bar{a} \cdot \bar{b} \cdot \bar{d} \cdot 0$
P and Q have the same maximal traces, but $(\nu a)(\nu b)(\nu c)(P \mid R)$ and $(\nu a)(\nu b)(\nu c)(Q \mid R)$ have different maximal traces.

Solution to exercises from previous time Modern definition of CCS (1999) Simulation and bisimulation Exercises
 Labeled transition System
 Labeled transition system for "modern" CCS

We assume a given set of definitions D

$$
\begin{aligned}
& \text { [Act] } \underset{\mu . P \xrightarrow{\mu} P}{ } \quad[\operatorname{Res}] \frac{P \xrightarrow{\mu} P^{\prime} \quad \mu \neq a, \bar{a}}{(\nu a) P^{\mu}(\nu a) P^{\prime}} \\
& \text { [Sum1] } \frac{P \xrightarrow{\mu} P^{\prime}}{P+Q \xrightarrow{\stackrel{H}{\longrightarrow}} P^{\prime}} \\
& \text { [Sum2] } \frac{Q \xrightarrow{\mu} Q^{\prime}}{P+Q \xrightarrow{\mu} Q^{\prime}} \\
& {[\mathrm{Par1}] \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q}} \\
& {[P a r 2] \frac{Q \stackrel{\mu}{\rightrightarrows} Q^{\prime}}{P|Q \xrightarrow{\mu} P| Q^{\prime}}} \\
& {\left[\text { Com] } \frac{P \xrightarrow{a} P^{\prime} Q \xrightarrow{\bar{a}} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}\right.} \\
& {[R e c] \frac{P[\vec{a} / \vec{x}] \xrightarrow{\mu} P^{\prime} K(\vec{x}) \stackrel{\text { def }}{\stackrel{\text { den }}{ }} P \in D}{K(\vec{a}) \xrightarrow{\mu} P^{\prime}}}
\end{aligned}
$$

The reason for moving to "modern" CCS was to get static scope (thanks to the presence of the parameters). The old version had dynamic scope.

Modern definition of CCS (1999)

Syntax of "modern" CCS

(channel, port) names: a, b, c, ...

- co-names: $\bar{a}, \bar{b}, \bar{c}, \ldots \quad$ Note: $\quad \overline{\bar{a}}=a$
- silent action:
- actions, prefixes: $\mu::=a|\bar{a}| \tau$
- processes: $P, Q \quad::=0 \quad$ inaction
u.P prefix
$P \quad Q$ paralle
$P+Q \quad$ (external) choice
$(\nu a) P$ restriction
$K(\vec{a}) \quad$ process name with parameters
- Process definitions:
$D \quad:: K(\vec{x}) \stackrel{\text { def }}{=} P \quad$ where P may contain only the \vec{x} as channel names

6

```
Simulation
```


Simulation

Definition We say that a relation R on processes is a simulation if

```
P\mathcal{R}Q implies that if P }\xrightarrow{}{\mu}\mp@subsup{P}{}{\prime}\mathrm{ then }\exists\mp@subsup{Q}{}{\prime}\mathrm{ s.t. }Q\xrightarrow{}{\mu}\mp@subsup{Q}{}{\prime}\mathrm{ and }\mp@subsup{P}{}{\prime}\mathcal{R}\mp@subsup{Q}{}{\prime
```

- Note that this property does not uniquely defines \mathcal{R}. There may be several relations that satisfy it.
- Define $\lesssim=\bigcup\{\mathcal{R} \mid \mathcal{R}$ is a simulation $\}$
- Theorem \lesssim is a bisimulation (Proof: Exercise)
- $P \lesssim Q$ intuitively means that Q can do everything that P can do. Q simulates P.

Bisimulation

Proof methods

- Definition We say that a relation R on processes is a bisimulation if

$$
\begin{aligned}
& P \mathcal{R} Q \text { implies that if } P \xrightarrow{\mu} P^{\prime} \text { then } \exists Q^{\prime} \text { s.t. } Q \xrightarrow{\mu} Q^{\prime} \text { and } P^{\prime} \mathcal{R} Q^{\prime} \\
& \text { if } Q \xrightarrow{\mu} Q^{\prime} \text { then } \exists P^{\prime} \text { s.t. } P \xrightarrow{\mu} P^{\prime} \text { and } P^{\prime} \mathcal{R} Q^{\prime}
\end{aligned}
$$

- Again, this property does not uniquely defines \mathcal{R}. There may be several relations that satisfy it.
- Define $\sim=\bigcup\{\mathcal{R} \mid \mathcal{R}$ is a bisimulation $\}$
- Theorem \sim is a bisimulation (Proof: Exercise)
- $P \sim Q$ intuitively means that Q can do everything that P can do, and viceversa at every step of the computation. Q is bisimilar to P.

Examples and exercises

Examples and exercises

- Consider the following processes
- $P=a .(b .0+c .0)$
- $Q=$ a.b. $0+$ a.c. 0

Prove that $Q \lesssim P$ but $P \not \subset Q$ and $Q \nsim P$

- Assume that $Q \lesssim P$ and $P \lesssim Q$ (for two generic P and Q). Does it follow that $P \sim Q$?
- Consider the following processes
- $R=a .(b .0+b .0)$
- $S=$ a.b. $0+$ a.b. 0

Prove that $Q \sim P$

- Consider the two definitions of semaphore given at the beginning of this lecture. Prove that they are bisimilar.
- Consider the processes $H(a)$ and $K(a)$ defined by $H(x) \stackrel{\text { def }}{=} x \cdot H(x)$ and $K(x) \stackrel{\text { def }}{=} x . K(x) \mid x . K(x)$. Are they bisimilar?
- What is the smallest bisimulation?
- Simulation and bisimulation are coinductive definitions
- In order to prove that $P \lesssim Q$ it is sufficient to find a simulation \mathcal{R} such that $P \mathcal{R} Q$
- Similarly, in order to prove that $P \sim Q$ it is sufficient to find a bisimulation \mathcal{R} such that $P \mathcal{R} Q$

Solution to exercises from previous time	Modern definition of $\operatorname{CCS}(1999)$ $\circ 0$	Simulation and bisimulation $0000 \bullet$ Alternative characterization of bisimulation
Bisimulation as greatest fixpoint		

- Consider the set of relations on processes (that is, on the powerset of the cartesian product on processes) ordered by set inclusion. Obviously, this is a complete lattice.
- Definition Let \mathcal{F} be a function on relation defined in the following way:

$$
\begin{array}{lll}
P \mathcal{F}(\mathcal{R}) Q & \text { iff } & \text { if } P \xrightarrow{\mu} P^{\prime} \text { then } \exists Q^{\prime} \text { s.t. } Q \xrightarrow{\mu} Q^{\prime} \text { and } P^{\prime} \mathcal{R} Q^{\prime} \\
& \text { if } Q \xrightarrow{\mu} Q^{\prime} \text { then } \exists P^{\prime} \text { s.t. } P \xrightarrow{\mu} P^{\prime} \text { and } P^{\prime} \mathcal{R} Q^{\prime}
\end{array}
$$

- Lemma \mathcal{F} is monotonic
- Theorem (Knaster-Tarski) F has (unique) least and greatest fixpoints, and

$$
\begin{aligned}
\operatorname{lfp}(\mathcal{F}) & =\bigcap\{\mathcal{R} \mid \mathcal{F}(\mathcal{R}) \subseteq \mathcal{R}\} \\
\operatorname{gfp}(\mathcal{F}) & =\bigcup\{\mathcal{R} \mid \mathcal{R} \subseteq \mathcal{F}(\mathcal{R})\}
\end{aligned}
$$

- Corollary $\sim=\operatorname{gfp}(\mathcal{F})$
- A similar characterization, of course, holds for \lesssim as well.

Bisimulation in CCS is a congruence

- Definition A relation R on a language is called congruence if
- \mathcal{R} is an equivalence relation (i.e. it is reflexive, symmetric, and transitive), and
- \mathcal{R} is preserved by all the operators of the language, namely if $P \mathcal{R} Q$ then op $(P, \vec{R}) \mathcal{R}$ op (P, \vec{R})
- Theorem \sim is a congruence relation

Exercises

- Complete the proof that bisimulation in CCS is a congruence
- Prove that if $P \lesssim Q$ then the traces of P are contained in the traces of Q
- Prove that if $P \sim Q$ then $P \lesssim Q$ and $Q \lesssim P$
- Prove that
- $P+0 \sim P$ and $P \mid 0 \sim P$
- $P+P \sim P$ but (in general) $P \mid P \nsim P$
- $P+Q \sim Q+P$ and $P|Q \sim Q| P$
- $(P+Q)+R \sim P+(Q+R)$ and $(P \mid Q)|R \sim P|(Q \mid R)$

