Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
000000000000 o

Concurrency 2
Shared Memory

Catuscia Palamidessi
INRIA Futurs and LIX - Ecole Polytechnique

The other lecturers for this course:

Jean-Jacques Lévy (INRIA Rocquencourt)
James Leifer (INRIA Rocquencourt)
Eric Goubault (CEA)

http://pauillac.inria.fr/ " leifer/teaching/mpri-concurrency-2005/

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
000000000000 o

Outline

0 Solution to some of the exercises in previous lecture
@ Semaphores in Java
@ Readers and Writers

9 Verification of Concurrent Software (by Jean-dacques Lévy)
@ A case study: Ariane

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
©00000000000 o

Semaphores in Java

A few facts about Java (1/2)

Threads in Java

@ Athread is a single sequential line of control. It may be
execute in parallel/interleaving with other threads.

@ The states of a live thread in Java:

notifyAll ()
con0\

L scheduler

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
000000000000 o

Semaphores in Java

A few facts about Java (2/2)

Classes with synchronized methods

@ Class whose objects may be shared by different threads need synchronized
methods

@ Example: A bank account with two or more owners

class Account {
private int balance;
public Account(int initialDeposit) {
balance = initialDeposit;

public synchronized void deposit(int amount) {
balance = balance + amount;
}

@ Synchronized methods are handled using a lock mechanism. A lock is per object.
@ When a thread suspends inside a synchronized method, it releases the lock.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
00®000000000 o

Semaphores in Java

Definition of Semaphore (from previous lecture)

A generalized semaphore s is an integer variable with two operations:

@ acquire(s): If s > 0 then s := s — 1, otherwise suspend on s.
(atomically)

@ release(s): If some process is suspended on s, wake it up,
otherwise s .= s+ 1. (atomically)
Example of use: At beginning, s = max. Then

[--- ;acquire(s); Cy; release(s);---] || [---;acquire(s); Cy; release(s); - -]

Solution to some of the exercises in previous lecture

Verification of Concurrent Software (by Jean-Jacques Lévy)
000@00000000 o

Semaphores in Java

Use of a semaphore in Java

Creation of a Semaphore s

s.Semaphore(max);

Thread 1 Thread 2

s.acquire(); s.acquire();
C1; Co;
s.release(); s.release();

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
000080000000 o

Semaphores in Java

Declaration of class Semaphore in Java

Use sus to indicate the number of suspended threads on the semaphore

class Semaphore {
private int value, sus;
public Semaphore(int initial) {
value = initial; sus = 0;

public synchronized void acquire() {
if (value == 0) { sus = sus + 1; wait(); sus =sus - 1;}
else value = value - 1;
}
public synchronized void release() {
if (sus > 0) { notify(); }
else { value = value + 1;}

However, this is not efficient (why?) and it is not in the typical “Java style”.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
000008000000 o

Semaphores in Java

Semaphore in Java (typical Java solution)

class Semaphore {
private int value;
public Semaphore(int initial) {

value = initial;

}

public synchronized void acquire() {
while (value == 0) wait();
value = value - 1;

}

public synchronized void release() {
value = value + 1;
notify();

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
000000800000 o

Readers and Writers

Problem: A certain resource (for instance a file) is shared by
some readers and some writers. The readers cannot modify
the resource, while the writers can.

We want that only one writer can access the resource at a time,
while the readers are allowed to do it concurrently.

Solution to some of the exercises in previous lecture

Verification of Concurrent Software (by Jean-Jacques Lévy)
000000080000 o

Readers and Writers

Readers and Writers in Java

r.acquireShared(); r.acquireExclusive();
user; user,
r.releaseShared(); r.releaseExclusive();

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
000000008000 o

Readers and Writers

The class Resource

Resource

class Resource {
private int readers, writers;
public Resource() {
readers = 0;
writers = 0;
}
public synchronized void acquireShared() { ... }
public synchronized void releaseShared() { ... }
public synchronized void acquireExclusive()
public synchronized void releaseExclusive()

(..}
{..}

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
000000000800 o

Readers and Writers

The methods of Resource

acquireShared() acquireExclusive()
{ {
while (writers == 1) { while (writers == 1 || readers > 0) {
wait(); wait();
readers = readers + 1; writers = 1;
} v } v
releaseShared() releaseExclusive()
{ {
readers = readers - 1; writers = 0;
notify(); notifyAll();
} }

N,
A\

However, this solution is not efficient. (Why?)

Solution to some of the exercises in previous lecture
000000000000

Readers and Writers

A more efficient solution

@ Use suspension conditions cR, cW

Verification of Concurrent Software (by Jean-Jacques Lévy)
o

@ Use sRto indicate the number of readers suspended.

acquireShared()

{
while (writers == 1) {
sR=sR +1;
wait(cR);
sR=sR-1;
1
readers = readers + 1;
}

releaseShared()

readers = readers - 1;
notify(cW);

acquireExclusive()

while (writers == 1 || readers > 0) {
wait(cW);

}

writers = 1;

}

\

releaseExclusive()

{
writers = 0;
if (sR > 0) { notifyAll(cR); }
else { notify(cW); }

}

<

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)
00000000000 o

Readers and Writers

Exercises

@ The "more efficient solution" for the Readers and Writers
problem that we presented in this lecture is not
starvation-free, because it always gives priority to the
readers. Modify the solution so to ensure that neither the
writers nor the readers will starve.

@ About the first solution we presented for the Readers and
Writers problem: it that one starvation-free? Justify your
answer.

15

o

	Solution to some of the exercises in previous lecture
	Semaphores in Java
	Readers and Writers

	Verification of Concurrent Software (by Jean-Jacques Lévy)
	A case study: Ariane

