
On asynchrony
(...and on mobility)

Francesco Zappa Nardelli1

francesco.zappa nardelli@inria.fr

1. INRIA Rocquencourt, MOSCOVA research team.

MPRI - Concurrency January 11, 2006

Plan

Objective:

understand the peculiarities of asynchronous interaction
and discover advanced applications of LTSs.

Plan:

1. Asynchronous pi-calculus:

motivations, definition, encoding of synchronous communication, equivalences;

2. examples of process calculi with explicit distribution:

DPI, Mobile Ambients.

1

Premise

All the equivalences mentioned in this lecture are weak equivalences.

We can start now...

2

Asynchronous communication

CCS and pi-calculus (and many others) are based on synchronized interaction,
that is, the acts of sending a datum and receiving it coincide:

a.P
n

a.Q _ P
n

Q .

In real-world distributed systems, sending a datum and receiving it are distinct
acts:

a.P
n

a.Q . . . _ . . . a
n

P
n

a.Q . . . _ . . . P ′
n

Q .

In an asynchronous world, the prefix . does not express temporal precedence.

3

Asynchronous interaction made easy

Idea: the only term than can appear underneath an output prefix is 0.

Intuition: an unguarded occurence of xy can be thought of as a datum y in an
implicit communication medium tagged with x.

Formally:

xy
n

x(z).P _ P{y/z} .

We suppose that the communication medium has unbounded capacity and
preserves no ordering among output particles.

4

Asynchronous pi-calculus

Syntax:

P ::= 0
∣∣ x(y).P

∣∣ xy
∣∣ P

n
P

∣∣ (νx)P
∣∣ !P

The definitions of free and bound names, of structural congruence ≡, and of the
reduction relation _ are inherited from pi-calculus.

5

Examples

Sequentialization of output actions is still possible:

(νy, z)(xy
n

yz
n

za
n

R) .

Synchronous communication can be implemented by waiting for an
acknoledgement:

[[xy.P]] = (νu)(x(y, u)
n

u().P)

[[x(v).Q]] = x(v, w).(w
n

Q) for w 6∈ Q

Exercise: implement synchronous communication without relying on polyadic primitives.

6

Background: a recipe for a “natural” contextual equivalence

Say that P and Q are equivalent (in symbols: P ' Q) if:

Preservation under contexts For all contexts C[−], we have C[P] ' C[Q];

Preservation of observations If P ↓ x then Q ⇓ x, where P ↓ x is defined as

P ≡ (νñ)(xy.P ′
n

P ′′) or P ≡ (νñ)(x(u).P ′
n

P ′′) for x 6∈ ñ ;

Preservation of reductions If P ' Q and P _ P ′ then there is a Q′ such that
Q _∗ Q′ and P ′ ' Q′.

7

Contextual equivalence and asynchronous pi-calculus

It is natural to impose two constraints to the basic recipe:

• compare terms using only asynchronous contexts;

• restrict the observables to be co-names. To observe a process is to interact with
it by performing a complementtary action and reporting it: in asynchronous
pi-calculus input actions cannot be observed.

8

A peculiarity of synchronous equivalences

The terms

P = !x(z).xz

Q = 0

are not reduction barbed congruent, but they are asynchronous reduction barbed
congruent.

Intuition: in an asynchronous world, if the medium is unbound, then buffers do
not influence the computation.

9

A proof method

Consider now the weak bisimilarity ≈s built on top of the standard (early) LTS
for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, ≈s is
an equivalence for asynchronous pi-calculus terms.

It holds ≈s ⊆ ', that is the standard pi-calculus bisimilarity is a sound proof
technique for '.

But
!x(z).xz 6≈s 0 .

Question: can a labelled bisimilarity recover the natural contextual equivalence?

10

A problem and two solutions

Transitions in an LTS should represent observable interactions a term can engage
with a context:

• if P
xy−−−→ P ′ then P can interact with the context − f

x(u).beep, where beep
is activated if and only if the output action has been observed;

• if P
x(y)−−−−→ P ′ then in no way beep can be activated if and only if the input

action has been observed!

Solutions:

1. relax the matching condition for input actions in the bisimulation game;

2. modify the LTS so that it precisely identifies the interactions that a term can
have with its environment.

11

Amadio, Castellani, Sangiorgi - 1996

Idea: relax the matching condition for input actions.

Let asynchronous bisimulation ≈a be the largest symmetric relation such that
whenever P ≈a Q it holds:

1. if P
`−−→ P ′ and ` 6= x(y) then there exists Q′ such that Q

ˆ̀
=⇒ Q′ and

P ′ ≈a Q′;

2. if P
x(y)−−−−→ P ′ then there exists Q′ such that Q

f
xy =⇒ Q′ and P ′ ≈a Q′.

Remark: P ′ is the outcome of the interaction of P with the context − f
xy.

Clause 2. allows Q to interact with the same context, but does not force this
interaction.

12

Honda, Tokoro - 1992

xy
xy−−→ 0 x(u).P

x(y)−−−→ P{y/u} 0
x(y)−−−→ xy

P
xy−−→ P ′ x 6= y

(νy)P
x(y)−−−→ P ′

P
α−−→ P ′ y 6∈ α

(νy)P
α−−→ (νy)P ′

P
xy−−→ P ′ Q

x(y)−−−→ Q′

P
f
Q

τ−→ P ′ fQ′

P
x(y)−−−→ P ′ Q

x(y)−−−→ Q′ y 6∈ fn(Q)

P
f
Q

τ−→ (νy)(P ′ fQ′)

P
α−−→ P ′ bn(α) ∩ fn(Q) = ∅

P
f
Q

α−−→ P ′ fQ

P ≡ P ′ P ′ α−−→ Q′ Q′ ≡ Q

P
α−−→ Q

13

Honda, Tokoro explained

Ideas:

• modify the LTS so that it precisely identifies the interactions that a term can
have with its environment;

• rely on a standard weak bisimulation.

Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of
HT LTS, and reduction barbed congruence coincide.1

1ahem, more or less.

14

Properties of asynchronous bisimilarity in ACS style

• Bisimilarity is a congruence;

it is preserved also by input prefix, while it is not in the synchronous case;

• bisimilarity is an equivalence relation (transitivity is non-trivial);

• bisimilarity is sound with respect to reduction barbed congruence;

• bisimilarity is complete with respect to reduction barbed congruence.2

2for this the calculus must be equipped with a matching operator.

15

Some proofs about ACS bisimilarity... on asynchronous CCS

Syntax:

P ::= 0
∣∣ a.P

∣∣ a
∣∣ P

n
P

∣∣ (νa)P .

Reduction semantics:

a.P
f
a _ P

P ≡ P ′ _ Q′ ≡ Q

P _ Q

where ≡ is defined as:

P
f
Q ≡ Q

f
P (P

f
Q)

f
R ≡ P

f
(Q

f
R)

(νa)P
f
Q ≡ (νa)(P

f
Q) if a 6∈ fn(Q)

16

Background: LTS and weak bisimilarity for asynchronous CCS

a.P
a−→ P a

a−→ 0
P

a−→ P ′ Q
a−→ Q′

P
f
Q

τ−→ P ′ fQ′

P
`−→ P ′

P
f
Q

`−→ P ′ fQ

P
`−→ P ′ a 6∈ fn(`)

(νa)P
`−→ (νa)P ′

symmetric rules omitted.

Definition: Asynchronous weak bisimilarity, denoted ≈, is the largest symmetric
relation such that whenever P ≈ Q and

• P
`−−→ P ′, ` ∈ {τ, a}, there exists Q′ such that Q

ˆ̀
=⇒ Q′ and P ′ ≈ Q′;

• P
a−−→ P ′, there exists Q′ such that Q

f
a =⇒ Q′ and P ′ ≈ Q′.

17

Sketch of the proof of transitivity of ≈

Let R = {(P, R) : P ≈ Q ≈ R}. We show that R ⊆ ≈.

• Suppose that P R R because P ≈ Q ≈ R, and that P
a−→ P ′.

The definition of ≈ ensures that there exists Q′ such that Q
f
a =⇒ Q′ and P ′ ≈ Q′.

Since ≈ is a congruence and Q ≈ R, it holds that Q
f
a ≈ R

f
a.

A simple corollary of the defintion of the bisimilarity ensures that there exists R′ such that

R
f
a =⇒ R′ and Q′ ≈ R′.

Then P ′ R R′ by construction of R.

• The other cases are standard.

Remark the unusual use of the congruence of the bisimilarity.

18

Sketch of the proof of completeness

We show that ' ⊆ ≈.

• Suppose that P ' Q and that P
a−→ P ′.

We must conclude that there exists Q′ such that Q
f
a =⇒ Q′ and P ′ ' Q′.

Since ' is a congruence, it holds that P
f
a ' Q

f
a.

Since P
a−→ P ′, it holds that P

f
a

τ−→ P ′.

Since P
f
a ' Q

f
a, the definition of ' ensures that there exists Q′ such that Q

f
a =⇒ Q′

and P ′ ' Q′, as desired.

• The other cases are analogous to the completeness proof in synchronous CCS.

The difficulty of the completeness proof is to construct contexts that observe the actions of a

process. The case P
a−→ P ′ is straightforward because “there is nothing to observe”.

19

Some references

Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous
Communication. ECOOP 1991.

Kohei Honda, Mario Tokoro, On asynchronous communication semantics. Object-
Based Concurrent Computing 1991.

Gerard Boudol, Asynchrony and the pi-calculus. INRIA Research Report, 1992.

Roberto Amadio, Ilaria Castellani, Davide Sangiorgi, On bisimulations for the
asynchronous pi-calculus. Theor. Comput. Sci. 195(2), 1998.

20

Distribution, action at distance, and mobility

The parallel composition operator of CCS and pi-calculus does not specify whether
the concurrent threads are running on the same machine, or on different machines
connected by a network.

Some phenomena typical of distributed systems require a finer model, that
explicitly keeps track of the spatial distribution of the processes.

We will briefly sketch two models that have been proposed: DPI (Hennessy and
Riely, 1998) and Mobile Ambients (Cardelli and Gordon, 1998).

The aim of this section is to get a glimpse of more complex process languages, and to rediscover

the idea of “transitions in an LTS characterise the interactions a term can have with a context”

in this setting.

21

DPI, design choices

• add explicit locations to pi-calculus processes: `[[P]];

• locations are identified by their name: `[[P]]
f
`[[Q]] ≡ `[[P

f
Q]];

• communication is local to a location:

`[[xy.P]]
n

`[[x(u).Q]] _ `[[P]]
n

`[[Q{y/u}]] ;

• add explicit migration: `[[goto k.P]] _ k[[P]].

We also include the restriction and match operators, subject to the usual pi-calculus semantics.

22

Behavioural equivalence for DPI

Again, we apply the standard recipe:

• define the suitable contexts:

C[−] ::= − ∣∣ C[−]
n

`[[P]]
∣∣ (νn)C[−] .

• define the observation:

M ↓ x@` iff P ≡ (νñ)(`[[x(u).P ′]]
n

P ′′) for x, ` 6∈ ñ .

Can we characterise this equivalence with a labelled bisimulation?

23

Labelled bisimulation for DPI

P _ P ′

P
τ−→ P ′

P ≡ (νñ)(`[[x(u).P ′]]
f
P ′′) x, ` 6∈ ñ

P
x(y)@`−−−−−→ (νñ)(`[[P ′{y/u}]]

f
P ′′)

P ≡ (νñ)(`[[xy.P ′]]
f
P ′′) x, y, ` 6∈ ñ

P
xy@`−−−−→ (νñ)(`[[P ′]]

f
P ′′)

P ≡ (νñ)(`[[xy.P ′]]
f
P ′′) x, ` 6∈ ñ y ∈ ñ

P
x(y)@`−−−−−→ (νñ \ y)(`[[P ′]]

f
P ′′)

24

Labelled bisimulation for DPI, ctd.

The standard bisimulation on top of the LTS below coincides with reduction
barbed congruence.

Remark: the LTS is written in an unconventional style, which precisely
characterises the interactions a term can have with a context.

Questions:

1- every label should correspond to a (minimal) interacting context: can you spell
out these contexts?

2- why there are no explicit labels for the ”goto” action?

25

Mobile Ambients, design choices

Objective: build a process language on top of the concepts of barriers
(administrative domains, firewalls, ...) and of barrier crossing.

A graphical representation of the syntax and of the reduction semantics of Mobile Ambients can

be found here:

http://research.microsoft.com/Users/luca/Slides/
2000-11-10%20Wide%20Area%20Computation%20(Valladolid).pdf

26

Mobile Ambients syntax (in ISO 10646)

Processes: Capabilities:
P, Q,R ::= 0 C ::= in n∣∣ P1

f
P2

∣∣ out n∣∣ (νn)P
∣∣ open n∣∣ n[P]∣∣ C.P∣∣ !P

27

Mobile Ambients: interaction

• Locations migrate under the control of the processes located at their inside:

n[in m.P
f
Q]

f
m[R] _ m[n[P

f
Q]

f
R]

m[n[out m.P
f
Q]

f
R] _ n[P

f
Q]

f
m[R]

• a location may be opened:

open n.P
n

n[Q] _ P
n

Q

28

Hint about an LTS for Mobile Ambients

Consider the term M ≡ (νm̃)(k[in n.P
f
Q]

f
R) where k 6∈ m̃. It can interact

with the context n[T]
f−, where T is an arbitrary process, yielding O ≡

(νm̃)(n[T
f
k[P

f
Q]]

f
R). This interaction can be captured with a transition

M
k.enter n−−−−−−−→ O.

Remark that, contrarily to what happens in CCS and pi-calculus, a bit of the
interacting context is still visible in the outcome!

Along these lines (asynchrony is needed too!) it is possible to characterise
reduction barbed congruence using a labelled bisimilarity.

29

References

James Riely, Matthew Hennessy: Distributed Pprocesses and location failures.
Theoretical Computer Science, 2001. An extended abstract appeard in ICALP 97.

Luca Cardelli, Andrew Gordon: Mobile Ambients. Theoretical Computer Science,
2000. An extended abstract appeared in FOSSACS 1998.

Massimo Merro, (ahem, myself): A behavioral theory for Mobile Ambients.
Journal of ACM, 2005.

30

Conclusion: two ideas

- Labelled bisimilarities are proof-methods for “natural” contextual equivalences.

- A well-designed LTS should characterise precisely the interactions that a term
can have with an arbitrary context.

31

