MPRI Concurrency (course number 2-3) 2004-2005: π -calculus 9 December 2004

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/

James J. Leifer INRIA Rocquencourt

James.Leifer@inria.fr

Today's plan

- exercises from last week
- review: barbed bisimilarity
- two natural congruences
- a family portrait
- weak barbed congruence and weak labelled bisimilarity correspond

Weak barbed bisimulation

Recall that a process P has a strong barb x, written $P \downarrow x$ iff there exists P_0 , P_1 , and \vec{y} such that $P \equiv \nu \vec{y}.(\overline{x}u.P_0 \mid P_1)$ and $x \notin \vec{y}.$

A process *P* has a weak barb *x*, written $P \Downarrow x$ iff there exists *P'* such that $P \longrightarrow^* P'$ and $P' \downarrow x$.

A relation \mathcal{R} is a weak barbed bisimulation if it is symmetric and for all $(P,Q) \in \mathcal{R}$

- if $P \longrightarrow P'$, there exists Q' such that $Q \longrightarrow^* Q'$ and $(P', Q') \in \mathcal{R}$;
- if $P \downarrow x$ then $Q \Downarrow x$.

Weak barbed bisimilarity, written $\dot{\approx}$, is the largest such relation.

Two possible equivalences (non-input congruences)

We write "equivalence" for "non input-prefixing congruence".

Clearly \approx isn't an equivalence: $\overline{x}y \approx \overline{x}z$ but $- | x(u).\overline{u}w$ can distinguish them. There are two ways of building an equivalence:

- Close up at the end: weak barbed equivalence, \approx° , is the largest equivalence included in \approx . Concretely, $P \approx^{\circ} Q$ iff for all contexts $C \in \mathcal{E}$ we have $C[P] \approx C[Q]$. Check!
- Close up at every step: weak barbed reduction equivalence, \approx , is the largest relation \mathcal{R} such that \mathcal{R} is a weak barbed bisimulation and an equivalence. Concretely, \approx is the largest symmetric relation \mathcal{R} such that for all $(P, Q) \in \mathcal{R}$,
 - if $P \longrightarrow P'$, there exists Q' such that $Q \longrightarrow^* Q'$ and $(P', Q') \in \mathcal{R}$;
 - if $P \downarrow x$ then $Q \Downarrow x$;
 - for all $C \in \mathcal{E}$, we have $(C[P], C[Q]) \in \mathcal{R}$.

Check!

An extended family portrait

	strong	
	labelled	barbed
not an equivalence		"bisimilarity" $\dot{\sim}$
equivalence	"bisimilarity" \sim_ℓ	"equivalence" $\dot{\sim}^{\circ}$
		"reduction equivalence" \sim
congruence	"full bisimilarity" \simeq_ℓ	"congruence" $\dot{\simeq}^{\circ}$
		"reduction congruence" \simeq
	weak	
	labelled	barbed
not an equivalence		"bisimilarity" \dot{pprox}
equivalence	"bisimilarity" $pprox_\ell$	"equivalence" \dot{pprox}°
		"reduction equivalence" $pprox$
congruence	"full bisimilarity" \cong_ℓ	"congruence" $\stackrel{.}{\cong}^{\circ}$
		"reduction congruence" \cong

A detailed family portrait

	labelled	barbed		
		$ \stackrel{\stackrel{\scriptstyle \leftarrow}{\sim}: \text{ largest } \mathcal{R} \text{ st} \\ P \longrightarrow P' \\ \mathcal{R} \middle \qquad & \stackrel{\scriptstyle +}{\mid} \mathcal{R} \\ Q \xrightarrow{\scriptstyle -\stackrel{\scriptstyle \ast}{-} \rightarrow Q'} \\ P \downarrow x \text{ implies } Q \Downarrow x $		
not an equivalence				
equivalence	$\approx_{\ell} : \text{ largest } \mathcal{R} \text{ st}$ $P \xrightarrow{\alpha} P'$ $\mathcal{R} \Big \qquad $	$\approx: \text{ largest } \mathcal{R} \text{ st}$ $P \longrightarrow P'$	$\dot{\approx}^{\circ}:$ $\{(P,Q) / (\forall D \in \mathcal{E}.D[P] \approx D[Q]\}$	

What's the difference between pprox and \dot{pprox}° ?

- $\approx \subseteq \dot{\approx}^{\circ}$: Yes, trivially.
- $\approx \supseteq \dot{\approx}^{\circ}$: Not necessarily.

Two difficult results due to Cédric Fournet and Georges Gonthier. "A hierarchy of equivalences for asynchronous cacluli". ICALP 1998. Journal version:

 $http://research.microsoft.com/\sim fournet/papers/a-hierarchy-of-equivalences-for-asynchronous-calculi.pdf$

– In general they're not the same. $\dot{\approx}^\circ$ is not even guaranteed to be a weak barbed bisimulation:

$$\begin{array}{ccc} P & C[P] \longrightarrow P' \\ \dot{\approx}^{\circ} \middle| & \dot{\approx} \middle| & & & & \\ Q & C[Q] \dashrightarrow Q' \end{array}$$

– But for π -calculus, they coincide.

Comparing labels and barbs

- $\approx_{\ell} \subseteq \approx$: Yes, easy.
- $\approx_{\ell} \supseteq \approx$: Yes, provided we have name matching. The result is subtle.

Name matching

Motivation: Which context can detect that $P \xrightarrow{\overline{x}y} P'$? It's easy to tell P can output on x; we just check $P \downarrow x$. If we want to test that this transition leads to P', we can take the context $C = -|x(u).k| \overline{k}$ for k fresh. Now

$$C[P] \longrightarrow P'$$

where $P' \not\downarrow k$.

But how do we detect that the message is y? We could try

$$C = - \mid x(u).(\overline{u} \mid y.k) \mid \overline{k}$$

but this risks having the \overline{u} and the y interact with the process in the hole. Thus, we introduce a simple new construct called name matching:

$$P ::= \dots \\ [x = y].P$$

Reductions: $[x = x].P \longrightarrow P$

Labelled transitions: $[x = x] \cdot P \xrightarrow{\tau} P$

Barbed equivalence is a weak labelled bisimulation

Theorem: $\approx_{\ell} \supseteq \approx$.

Proof: Consider $P \approx Q$ and suppose $P \xrightarrow{\alpha} P'$. (For simplicity, ignore structural congruence.)

case $\alpha = \tau$: Then $P \longrightarrow P'$. By definition, there exists Q' such that $Q \longrightarrow^* Q'$ and $P' \approx Q'$. Thus $Q \xrightarrow{\tau} Q'$ as desired.

case $\alpha = xy$: Let $C = - | \overline{x}y.k | \overline{k}$, where k is fresh. Then $C[P] \longrightarrow P'$. Therefore, there exists Q such that $C[Q] \longrightarrow^* Q'$ and $P' \approx Q'$. Since $P' \not \downarrow k$, we have $Q' \not \downarrow k$, therefore $Q \xrightarrow{\tau} * \xrightarrow{xy} \xrightarrow{\tau} * Q'$, as desired. **case** $\alpha = \overline{xy}$: Let $C = - | x(u).[u = y].k | \overline{k}$, where k is fresh. Then $C[P] \longrightarrow \longrightarrow P'$. Therefore, there exists Q such that $C[Q] \longrightarrow^* Q'$ and $P' \approx Q'$. Since $P' \not \downarrow k$, we have $Q' \not \downarrow k$, therefore $Q \xrightarrow{\tau} * \xrightarrow{\overline{xy}} \xrightarrow{\tau} * Q'$, as desired.

case
$$\alpha = \overline{x}(y)$$
 and $y \notin fn(Q)$: Let
 $C = - |x(u). (\overline{z}u | k | \prod_{w \in fn(P)} [u = w].\overline{k}) | \overline{k}$
where k and z are fresh. Then $C[P] \longrightarrow H_{z,y}[P']$ where
 $H_{z,y} = \nu y. (\overline{z}y | -)$
Therefore, there exists Q'' such that $C[Q] \longrightarrow^* Q''$ and $H_{z,y}[P'] \approx$
Cince $H_{z,y} = P' | V_{z,y} = P' | V_{z,y} = P' | V_{z,y} = P' | V_{z,y}$

Since $H_{z,y}[P'] \not k$, we have $Q'' \not k$. Thus there exists Q' such that $Q'' \equiv C'[Q']$ and $Q \xrightarrow{\tau} * \overline{\overline{x}(y)} \xrightarrow{\tau} * Q'$. Do we know $P' \approx Q'$?

Exercises for next lecture

1. Since the last lecture, the proof has been fixed by using $\nexists k$ everywhere. Prove from the definition of \approx that for $P \approx Q$ if $P \Downarrow x$ then $Q \Downarrow x$, and thus the contrapositive: if $Q \not \Downarrow x$ then $P \not \Downarrow x$.

Answer: Suppose $P \approx Q$. If $P \Downarrow x$ then there exists P' such that $P \longrightarrow^* P'$ and $P' \downarrow x$. Thus there exists Q' such that $Q \longrightarrow^* Q'$ and $P' \approx Q'$. Since $P' \downarrow x$, we have $Q' \Downarrow x$. Hence there exists Q'' such that $Q' \longrightarrow^* Q''$ and $Q'' \downarrow x$. Thus $Q \Downarrow x$, as desired. 2. The last case of the proof relies on the following lemma: $H_{z,y}[P] \approx H_{z,y}[Q]$ implies $P \approx Q$, where $z \notin \operatorname{fn}(P) \cup \operatorname{fn}(Q)$. In the updated version of the proof you will find the definition $H_{z,y} = \nu y.(\overline{z}y \mid -)$. Hints...

In order to prove this, consider

 $\mathcal{R} = \{ (P,Q) \mid z \notin \mathsf{fn}(P) \cup \mathsf{fn}(Q) \text{ and } H_{z,y}[P] \approx H_{z,y}[Q] \}.$

Our goal (as usual) is to prove that \mathcal{R} satisfies the same properties as \approx , and thus deduce that $\mathcal{R} \subseteq \approx$. Assume $(P, Q) \in \mathcal{R}$.

• \mathcal{R} is a bisimulation: Show that $P \longrightarrow P'$ implies that there exists Q' such that $Q \longrightarrow^* Q'$ and $(P', Q') \in \mathcal{R}$.

Answer: Suppose $P \longrightarrow P'$. Since $H_{z,y}$ is an evaluation context, $H_{z,y}[P] \longrightarrow H_{z,y}[P']$. Since $H_{z,y}[P] \approx H_{z,y}[Q]$, there exists Q'' such that $H_{z,y}[Q] \longrightarrow^* Q''$ and $H_{z,y}[P'] \approx Q''$. Since $z \notin \text{fn}(Q)$, these reductions could not be due to any interaction between $H_{z,y}$ and Q, nor can $H_{z,y}$ itself reduce, thus there exists Q' such that $Q \longrightarrow^* Q'$ and $Q'' \equiv H_{z,y}[Q']$. Thus (ignoring structural congruence), $(P', Q') \in \mathcal{R}$, as desired.

• \mathcal{R} preserves barbs: Show that $P \downarrow w$ implies $Q \Downarrow w$. *Answer:* Suppose $P \downarrow w$. Since $z \notin fn(P)$, we know that $w \neq z$. We distinguish two cases.

- **case** $w \neq y$: We have $P \downarrow w$ implies $H_{z,y}[P] \downarrow w$. Since $H_{z,y}[P] \approx H_{z,y}[Q]$, we have $H_{z,y}[Q] \Downarrow w$. Since there is no interaction between $H_{z,y}$ and Q and the former can't be responsible for the barb because $w \neq z$, we have $Q \Downarrow w$, as desired.
- **case** w = y: We don't have $H_{z,y}[P] \downarrow w$ since the new binder in $H_{z,y}$ prevents the w from being seen. However, we can let $C = z(u).u(v).\overline{k} \mid -$ where u, k are fresh. By extrusion we can see $C[H_{z,y}[P]] \Downarrow k$. Since $H_{z,y}[P] \approx H_{z,y}[Q]$, we have $C[H_{z,y}[P]] \approx C[H_{z,y}[Q]]$, thus $C[H_{z,y}[Q]] \Downarrow k$. The only way this can be is if $Q \Downarrow w$, as desired.
- \mathcal{R} is an equivalence: It is sufficient to show that $(C[P], C[Q]) \in \mathcal{R}$ where $C = \nu \vec{w}.(-|S)$. Hint: try to find a context C' and name z'such that $H_{z',y}[C[P]] \approx C'[H_{z,y}[P]]$ and the same for Q (perhaps using a labelled bisimilarity since we know $\approx_{\ell} \subseteq \approx$). You may have to distinguish between the cases $y \in \vec{w}$ and $y \notin \vec{w}$.

Answer: We first need the following lemma, which, holds for all kinds of equivalences. Lemma (injective renaming): Let ρ be an injective function on the universe of names. If $P \approx Q$ then $\rho P \approx \rho Q$.

Note that this lemma is quite different from a typical "substitution" lemma since ρ is not making two names equal that weren't previously equal. Now returning to the main problem...

By hypothesis, we know that there exists z, y such that $z \notin \operatorname{fn}(P) \cup \operatorname{fn}(Q)$ and $H_{z,y}[P] \approx H_{z,y}[Q]$. By injective renaming, we can assume without loss of generality that z is fresh. As a consequences $z \notin \operatorname{fn}(P) \cup \operatorname{fn}(S) \cup y, \vec{w}$. Let z' be fresh. We distinguish

two cases:

$\begin{aligned} \mathbf{case} \ y \notin \vec{w} : \\ H_{z',y}[C[P]] &\equiv \boldsymbol{\nu} y.(\overline{z'}y \mid \boldsymbol{\nu} \vec{w}.(P \mid S)) \\ &\equiv \boldsymbol{\nu} \vec{w}. \boldsymbol{\nu} y.(\overline{z'}y \mid P \mid S) \quad \mathbf{since} \ y, z' \notin \vec{w} \\ &\approx_{\ell} \boldsymbol{\nu} \vec{w}. z.(\boldsymbol{\nu} y.(\overline{z}y \mid P) \mid z(y).(\overline{z'}y \mid S)) \quad \mathbf{since} \ z \notin \mathrm{fn}(P) \cup \mathrm{fn}(S) \cup y, \vec{w} \\ &= \boldsymbol{\nu} \vec{w}, z.(H_{z,y}[P] \mid z(y).(\overline{z'}y \mid S)) \end{aligned}$

Thus we let $C' = \nu \vec{w}, z.(- | z(y).(\overline{z'y} | S))$ case $y \in \vec{w}$: Then $y, \vec{v} = \vec{w}$ for some \vec{v} . Now

$$\begin{split} H_{z,y}[C[P]] &\equiv \boldsymbol{\nu} y.(\overline{z}y \mid \boldsymbol{\nu} \vec{w}.(P \mid S)) \\ &\equiv \boldsymbol{\nu} y.(\overline{z}y) \mid \boldsymbol{\nu} \vec{w}.z.(\overline{z}y \mid P \mid S) \quad \text{since } z \notin \text{fn}(P) \cup \text{fn}(S) \\ &\approx_{\ell} \boldsymbol{\nu} y.(\overline{z}y) \mid \boldsymbol{\nu} \vec{v}.z.(\boldsymbol{\nu} y.(\overline{z}y \mid P) \mid z(y).(\overline{z'}y \mid S)) \quad \text{since } z \notin \text{fn}(P) \cup \text{fn}(S) \cup \vec{w} \\ &= \boldsymbol{\nu} y.(\overline{z}y) \mid \boldsymbol{\nu} \vec{v}.z.(H_{z,y}[P] \mid z(y).(\overline{z'}y \mid S)) \end{split}$$

Thus we let $C' = \boldsymbol{\nu} y.(\overline{z}y) \mid \boldsymbol{\nu} \vec{v}, z.(- \mid z(y).(\overline{z'}y \mid S))$